Lowermost mantle anisotropy along the boundary of the easternmost Pacific LLSVP
-
摘要: 针对太平洋大型横波低速带(Large Low Shear Velocity Province, 简写为LLSVP)东部边界的D″各向异性强度的问题, 利用中美洲和南美洲部分台站的地震记录, 通过对SKS和SKKS震相进行横波分裂分析, 得到22个SKS-SKKS震相对的横波分裂结果, 其中有6个震相对存在显著差异. 对比分析震相对的横波分裂结果差异, 可以保守地估计D″各向异性. 横波分裂结果显示, 地幔最下部存在各向异性; 对D″各向异性成因的分析结果认为, 如果LLSVP边界上的地幔最下部物质存在变形以及内部存在小尺度的非均匀体, 则有助于解释这些观测, 但是本文在LLSVP边界上并没有看到大量的有差异震相对聚集. 结合前人的观测研究推测, 该研究区域下方的LLSVP及其周围地幔的边界可能不是很陡峭, 边界附近没有积累强烈的变形, 并在此基础上讨论了地幔最下部各向异性结构的研究意义.
-
关键词:
- 各向异性 /
- 太平洋LLSVP /
- SKS-SKKS震相对
Abstract: To evaluate the strength of D″ anisotropy beneath the easternmost Pacific Large Low Shear Velocity Province (LLSVP), SKS and SKKS splitting measurements were conducted separately. We examined SKS and SKKS phases for events (Tonga trench) over the life time of 5 seismic stations located in South America and Central America. These phases sample lowermost mantle of easternmost Pacific LLSVP. Finally, 22 SKS-SKKS phase-pairs were obtained, of which six pairs show significantly different splitting between the two phases. The results showed the existence of lowermost mantle anisotropy. We attempt to account for these observations with deformation along LLSVP boundary and small-scale lateral heterogeneity in anisotropic structures in LLSVP's interior, respectively. Based on previous observations, the absence of discrepant pairs clustering along the boundary of LLSVP indicates that the LLSVP boundary is not very sharp here and there is no strong deformation accumulated near the LLSVP boundary beneath the studied region. We also discussed the significance of the research on lowermost mantle anisotropy.-
Keywords:
- anisotropy /
- Pacific LLSVP /
- SKS-SKKS phase-pair
-
-
图 3 HEL台站得到的SKS震相分裂结果
(a) 滤波后的径向和切向分量波形, 灰色区域为所选取的时间窗; (b) 事件的反方位角分布; (c) 利用旋转相关法得到的归一化快慢波波形; (d) 利用旋转相关法得到的径向分量与切向分量的波形; (e) 利用旋转相关法得到的校正前后的水平质点运动图; (f) 互相关系数关于快波偏振方向φ和快慢波时间延迟δt的分布; (g) 利用最小能量法得到的归一化快慢波波形; (h) 利用最小能量法得到的径向分量与切向分量的波形; (i) 利用最小能量法得到的校正前后的水平质点运动图; (j) 切向分量能量关于快波偏振方向和快慢波时间延迟的分布
Figure 3. An example showing measurement process of SKS waveform recorded by the station HEL
(a) Filtered radial and tangential components with shaded area showing selected time window; (b) Back-azimuth distribution of the event used; (c) Normalized fast and slow waveforms by rotation correlation (RC) method; (d) Comparison of radial and tangential components by RC method; (e) Particle motion before and after correction of anisotropy by RC method; (f) Distribution of correlation coefficients with respect to delay time δt and fast wave orientation φ; (g) Normalized fast and slow waveforms by minimum energy (SC) method; (h) Comparison of radial and tangential components by SC method; (i) Particle motion before and after correction of anisotropy by SC method; (j) Distribution of transverse energy with respect to delay time and fast wave orientation
图 4 有差异的SKS (a)和SKKS (b)震相对分析结果示例
(a) 第一列为SKS震相校正前(虚线)、 后(实线)的质点振动图, 图中给出了相应的横波分裂参数; 第二列为滤 波后的地震记录径向(虚线)和切向分量(实线), 灰色阴影表示选用的时间窗, 竖直虚线表示横波震相的理论到 时, 图中还给出了台站名和对应的地震事件时间; (b) 相同台站对应的SKKS震相信息, 图例说明与图(a)相同
Figure 4. Waveform examples of discrepant SKS (a) and SKKS (b) phase-pairs
(a) Left panels are corrected (solid lines) and uncorrected (dashed lines) particle motion for the SKS phase with the measured splitting parameters shown, and right panels are filtered radial (dashed lines) and transverse (solid lines) seismogram components, where the shaded areas represent the selected time window and the vertical dased lines represent theoretical arrval time of seismic shear phases. (b) The corresponding SKKS phase following the same conventions, where the illustrations are the same as Fig.(a)
图 5 GyPSuM成像模型在2700 km深度的剖面
底图的S波层析成像结果引自Simmons et al(2010). 黑色细线连接同一个有差异的SKS-SKKS震相对, 白色细线 连接同一个无差异的SKS-SKKS震相对; 黑色条棒的方向和长度分别代表快波偏振方向和快慢波时间延迟
Figure 5. Results plotted on GyPSuM model at depth 2700 km
Blue and orange circles denote the phases for discrepant pairs. All nondiscrepant pairs are shown as white circles. Thin lines connect SKS-SKKS pairs (black for discrepant pairs, white for nondiscrepant ones). Measured fast directions and delay times are represented by the orientation and length of black bars, respectively. All discrepant SKS-SKKS pairs plotted atop the GyPSuM tomography model (Simmons et al, 2010). The boundaries (red thick line) of the LLSVP are inferred from travel time analysis and waveform modeling results by He and Wen (2012)
图 6 GyPSuM成像模型在2600 km深度的剖面(S波层析成像结果引自Simmons et al, 2010)
All discrepant SKS-SKKS pairs plotted atop the GyPSuM tomography model (Simmons et al, 2010). The boundaries (red thick line) of the LLSVP are inferred from travel time analysis and waveform modeling results by He and Wen (2012)
Figure 6. GyPSuM at depth 2600 km
表 1 本文所使用的地震事件参数
Table 1 Parameters of the seismic events used in this study
发震时间 南纬/° 经度/° 震源深度
/kmMW 发震时间 南纬/° 经度/° 震源深度
/kmMW 1994-03-09 17.77 178.50W 564.0 7.6 2012-12-21 14.38 167.26E 207.9 6.7 1994-03-31 21.95 179.58W 591.0 6.5 2013-05-23 20.56 175.74W 154.1 6.3 1996-10-19 20.41 178.51W 591.0 6.9 2013-06-15 33.90 179.46E 172.4 6.0 1998-03-29 17.55 179.09W 537.2 7.1 2013-08-12 30.62 179.61W 325.2 6.1 1998-05-16 22.23 179.52W 586.1 6.8 2013-08-28 27.80 179.67E 488.6 6.2 2000-12-18 21.18 179.12W 628.2 6.5 2013-09-30 30.88 178.38W 42.1 6.4 2002-08-19 21.70 179.51W 580.0 7.6 2013-10-11 30.75 178.44W 146.5 6.2 2002-10-04 20.99 179.02W 621.1 6.3 2014-03-05 14.73 169.82E 636.8 6.3 2002-10-22 20.63 178.39W 549.0 6.1 2014-05-04 24.64 179.08E 527.6 6.6 2012-01-24 24.96 178.61E 582.8 6.4 2014-07-03 30.53 176.53W 20.0 6.3 表 2 利用最小能量法得到的SKS-SKKS震相对的分裂参数
Table 2 Splitting parameters for SKS-SKKS phase-pairs by SC method
台站
名称事件时间
年-月-日反方位
角/°震相 φ误差
下限/°φ/° φ误差
上限/°δt误差
下限/sδt/s δt误差
上限/s有无
差异
BLUN2013-08-28 243.7 SKKS -74 -64 -64 1.1 1.3 1.4 无 SKS -64 -50 -46 1.0 1.5 2.0 BLUN 2013-09-30 240.3 SKKS -72 -62 -56 1.2 1.5 1.9 无 SKS -80 -70 -64 0.9 1.1 1.3 BLUN 2014-05-04 246.9 SKKS -74 -69 -68 1.3 1.3 1.3 有 SKS -78 -71 -70 1.4 1.5 1.7 ESPN 2012-01-24 246.6 SKKS -68 -57 -54 1.7 2.1 2.4 有 SKS -82 -73 -68 1.2 1.3 1.5 ESPN 2013-06-15 237.5 SKKS -80 -67 -62 1.3 1.6 1.9 无 SKS -78 -65 -60 1.3 1.8 2.2 ESPN 2013-08-12 240.7 SKKS -62 -53 -52 1.7 2.1 2.5 有 SKS -88 -73 -64 1.2 1.5 1.9 ESPN 2013-08-28 243.6 SKKS -76 -62 -54 1.4 2.0 2.7 无 SKS -90 -74 -68 1.1 1.4 1.8 ESPN 2013-10-11 240.4 SKKS -66 -60 -58 1.8 2.0 2.3 无 SKS -78 -64 -54 1.2 1.7 2.3 HEL 2013-05-23 250.2 SKKS -78 -50 -37 0.7 1.3 1.9 无 SKS -54 -48 -43 1.1 1.2 1.4 MATN 2012-12-21 259.1 SKKS -62 -51 -43 1.0 1.1 1.3 无 SKS -84 -59 -37 0.8 1.1 1.7 MATN 2014-03-05 258.3 SKKS -80 -60 -41 0.8 1.3 1.7 无 SKS -78 -66 -56 1.1 1.4 1.7 MATN 2014-05-04 246.8 SKKS -74 -65 -64 1.9 2.2 2.4 有 SKS -76 -69 -68 1.3 1.5 1.6 MATN 2014-07-03 240.2 SKKS -74 -62 -58 1.4 1.7 2.0 无 SKS -76 -58 -50 0.8 1.2 1.7 NNA 1994-03-09 250.1 SKKS -82 -64 -50 0.8 1.2 1.6 无 SKS -60 -50 -48 0.9 1.1 1.3 NNA 1994-03-31 245.7 SKKS -56 -44 -39 1.1 1.6 2.2 无 SKS -88 -66 -56 0.7 1.0 1.2 NNA 1996-10-19 247.5 SKKS -84 -71 -62 0.9 1.0 1.2 无 SKS -70 -53 -46 0.9 1.2 1.5 NNA 1998-03-29 250.1 SKKS -68 -60 -54 1.5 1.7 2.0 有 SKS -64 -48 -39 0.7 1.0 1.4 NNA 1998-05-16 245.5 SKKS -64 -53 -50 1.2 1.5 1.7 无 SKS -68 -59 -54 1.0 1.1 1.3 NNA 2000-12-18 246.6 SKKS -58 -47 -43 1.2 1.6 2.0 无 SKS -60 -53 -52 1.1 1.2 1.4 NNA 2002-08-19 246 SKKS -66 -54 -50 1.2 1.5 1.9 无 SKS -70 -56 -50 0.9 1.1 1.4 NNA 2002-10-04 246.8 SKKS -70 -59 -56 1.4 1.6 1.9 有 SKS -68 -55 -50 0.8 1.0 1.2 NNA 2002-10-22 247.3 SKKS -74 -55 -48 0.9 1.4 1.9 无 SKS -80 -67 -60 0.8 1.0 1.2 注: φ为快波偏振方向, δt为快慢波时间延迟. -
Kendall J M, Silver P G. 1998. Investigating causes of D″ anisotropy[G]//The Core-Mantle Boundary Region. Washington: American Geophysical Union: 97-118.
Wüstefeld A. 2007. Methods and Applications of Shear-Wave-Splitting: The East European Craton[D]. Montpellier: Univ. de Montpellier, France: 62.