首都圈地区土壤气Rn, Hg, CO2地球化学特征及其成因

王喜龙, 李营, 杜建国, 陈志, 周晓成, 李新艳, 崔月菊, 王海燕, 张志宏

王喜龙, 李营, 杜建国, 陈志, 周晓成, 李新艳, 崔月菊, 王海燕, 张志宏. 2017: 首都圈地区土壤气Rn, Hg, CO2地球化学特征及其成因. 地震学报, 39(1): 85-101. DOI: 10.11939/jass.2017.01.008
引用本文: 王喜龙, 李营, 杜建国, 陈志, 周晓成, 李新艳, 崔月菊, 王海燕, 张志宏. 2017: 首都圈地区土壤气Rn, Hg, CO2地球化学特征及其成因. 地震学报, 39(1): 85-101. DOI: 10.11939/jass.2017.01.008
Wang Xilong, Li Ying, Du Jianguo, Chen Zhi, Zhou Xiaocheng, Li Xinyan, Cui Yueju, Wang Haiyan, Zhang Zhihong. 2017: Geochemical characteristics of soil gases Rn, Hg and CO2 and their genesis in the capital area of China. Acta Seismologica Sinica, 39(1): 85-101. DOI: 10.11939/jass.2017.01.008
Citation: Wang Xilong, Li Ying, Du Jianguo, Chen Zhi, Zhou Xiaocheng, Li Xinyan, Cui Yueju, Wang Haiyan, Zhang Zhihong. 2017: Geochemical characteristics of soil gases Rn, Hg and CO2 and their genesis in the capital area of China. Acta Seismologica Sinica, 39(1): 85-101. DOI: 10.11939/jass.2017.01.008

首都圈地区土壤气Rn, Hg, CO2地球化学特征及其成因

基金项目: 

中国地震局地震监测预报专项项目 20160114

中国地震局地震预测研究所基本科研业务专项 2016IES0303

国家自然科学基金(41573121)、 中国地震局地震预测研究所基本科研业务专项(2016IES0303)和中国震局地震监测预报专项项目(20160114)共同资助

国家自然科学基金 41573121

详细信息
    通讯作者:

    李营: e-mail: subduction6@hotmail.com

  • 中图分类号: P315.72+4

Geochemical characteristics of soil gases Rn, Hg and CO2 and their genesis in the capital area of China

  • 摘要: 对首都圈地区跨18条活动断裂的35条剖面进行了土壤气浓度和通量测量, 结果显示: 各测量剖面土壤气Rn, Hg和CO2的浓度平均值分别为3.2—45.0 kBq/m3, 3.9—24.9 ng/m3和0.154%—2.175%; 其通量平均值分别为3.8—152.1 mBq/(m2·s), 0.1-42.6 ng/(m2·h)和8.5—89.4 g/(m2·d). 研究区土壤气Rn, Hg和CO2的浓度和通量均呈东高西低的变化趋势, 与首都圈地区由西至东应力水平增高、 地壳厚度逐渐减薄、 沉积层厚度增大、 地震活动逐渐增强等趋势相对应, 这表明首都圈地区土壤气的区域地球化学特征主要受控于上地壳物质结构、 深部气体补给和地震活动, 同时也受到自然环境及土壤类型的影响.
    Abstract: The concentration and flux of soil gases were measured at 35 profiles across 18 faults in the capital area of China from June to July of 2015, and the geochemical characteristics and sources of soil gases Rn, Hg and CO2 in the area were also investigated. The results showed that the average concentrations of Rn, Hg and CO2 varied from 3.2 to 45.0 kBq/m3, 3.9 to 24.9 ng/m3 and 0.154% to 2.175%, respectively. The average flux values of Rn, Hg and CO2 ranged from 3.8 to 152.1 mBq/(m2·s), 0.1 to 42.6 ng/(m2·h) and 8.5 to 89.4 g/(m2·d), respectively. There is an obvious spatial distribution feature of soil gases that both the concentration and flux values in the eastern region were higher than those in the western region within the studied area, which could be attributed to the increased tectonic stress, the decreased crustal thickness, the increased thickness of sediments and earthquake activity from west to east. These spatial geochemical characteristics in the studied area might be mainly controlled by the upper crustal material structure, deep gas supply and seismic activity, and also additionally affected to some degree by the natural environment and soil types.
  • 华北克拉通是我国最古老的克拉通,位于欧亚板块东部,由西向东依次包括阿拉善地块、鄂尔多斯地块、吕梁山和太行山褶皱带,以及渤海湾盆地(图1)。进入中生代以来,华北克拉通经历了大规模的构造变形和强烈的岩浆活动,造成了大规模的拉伸盆地和岩石圈减薄(Chen,Ai,2009Zheng et al,2009Zhu et al,2011)。根据多学科的研究,朱日祥(2018)认为太平洋板片持续的西向俯冲作用是华北克拉通减薄和破坏的主要外部因素。

    图  1  研究区地震观测台站位置与区域构造背景
    TA Ⅱ和TA Ⅲ分别表示中国地震局地球物理研究所组织实施的第二期和第三期流动观测台阵;61061为位于鄂尔多斯地块内的台站
    Figure  1.  Locations of the seismic stations and regional tectonic settings in the studied area
    TA Ⅱ and TA Ⅲ represent the temporary seismic stations of ChinArray phase II and III deployments respectively organized by Institute of Geophysics,China Earthquake Administration. 61061 is the station located in Ordos block

    地幔转换带结构可以有效地约束上地幔的物质组成、热状态和地幔动力学等问题。一般而言,地幔转换带的410 km和660 km界面是地震波速度梯度变化显著的间断面。410 km界面为α相橄榄岩向β相橄榄岩转变而形成的速度间断面(Ringwood,Major,1970Katsura,Ito,1989周春银等,2010),具有正的相变克拉伯龙斜率(dP/dT);660 km界面通常认为是由γ相尖晶石分解为钙钛矿和镁质方铁矿(方镁石、方铁矿和超石英)引起的(Deuss et al,2006Frost,2008),具有负的相变克拉伯龙斜率(dP/dT)。因此,地幔转换带中温度和成分的变化可以控制410 km和660 km间断面的深度,下插的岩石圈板块或者上涌的地幔柱亦可使其偏离平衡位置。

    接收函数共转换点(common conversion point,缩写为CCP)叠加是获取地下速度间断面的有效手段,常被用来研究地幔转换带的结构特征。在华北克拉通地区,近十年来前人利用接收函数方法已经给出了一些关于地幔转换带结构的研究工作,探讨了华北克拉通地幔热物质流和太平洋板片俯冲等地学问题(Chen,Ai,2009Tian et al,2011Xu et al,2011Wang,Niu,2011王炳瑜等,2013Si et al,2016)。这些研究均表明华北克拉通410 km和660 km间断面埋深具有较强的横向变化,并观测到华北克拉通东部存在660 km双重间断面(Wang,Niu,2011王炳瑜等,2013Si et al,2016)。但是受台站分布和观测资料的限制,这些结果之间还存在着不一致,也导致对华北克拉通下方地幔热流和太平洋俯冲板片俯冲等的认识仍存在一定争议(Chen,Ai,2009Chen,2010Wang,Niu,2011Si et al,2016)。

    近年来,中国地震局地球物理研究所组织的ChinArray计划,已经在南北构造带和华北克拉通地区布设了密集的宽频带流动地震观测台阵。本研究收集了ChinArray计划中二期和三期台阵(图1)的远震波形资料,拟开展接收函数CCP叠加研究,以期获取华北克拉通中西部及其邻区的地幔转换带精细结构,并试图探讨华北克拉通上地幔构造变形和太平洋板片俯冲的地球动力学问题。

    由1 000余套宽频带流动地震观测台站组成的ChinArray计划二期和三期台阵,密集覆盖了华北克拉通中西部地区(图1)。本研究收集了台阵中所有台站记录的远震三分量波形数据。之后,对其中874个台站的观测数据进行了筛选和处理,要求震级大于MS5.0、震中距在30°—90°之间、波形数据信噪比高、同时含有三个分量和具有清晰的P波初至。经过上述处理,从第二期和第三期台阵中分别筛选出536个和287个台站,以及在2013年9月至2019年1月期间所记录的873个远震事件(图2)。由图2所示,大多地震事件分布于西太平洋俯冲带和日本爪哇海沟附近,但对整体的震中距和方位角具有较好的覆盖。

    图  2  远震震中分布
    Figure  2.  Distribution of epicenters for teleseismic events

    本研究采用频域的“水平”卷积技术(Clayton,Wiggins,1976Ammon,1991)来计算远震P波接收函数,即

    ${{RF}}\left(\omega \right) {\text{=}} \frac{{{{V}}\left(\omega \right){{{P}}^{\rm{*}}}\left(\omega \right)}}{{{\rm{max}}\{ {{\left| {{{P}}\left(\omega \right)} \right|}^2}{\text{,}}\; \gamma {{\left| {{{{P}}_{{\rm{max}}}}\left(\omega \right)} \right|}^2}}}{{\rm{exp}}\left[{ {\text{-}} {{\left({\frac{\omega }{{2\alpha }}} \right)}^2}}\right]}{\text{,}}$

    (1)

    式中,γα是定义“水平”因子和高斯低通滤波角频率的两个常数,分别设定为0.01和1.5。Pω)和Vω)是P波和SV波分量的谱,设定其时间窗长度为200 s (P波前50 s,后150 s)。在提取接收函数之前,需要对三分量波形数据的两个水平分量进行旋转,使其按照地震台站和震中位置的大圆弧路径旋转至径向(R)和切向(T)分量,那么两个水平分量的方位误差就会对旋转计算的结果产生一定的影响。为修正水平分量的方位误差,利用Niu和Li (2011)提出的P波极化运动方法来估算每个台站的方位误差,最后根据计算结果对所有已选出数据的水平分量进行误差校正处理。

    经过计算,得到了大量的接收函数波形。删除信噪比低、P波初至极性反转或者严重偏离0时刻,以及10—80 s内振幅异常大的接收函数后,共挑选出接收函数174 562条。图3所示为位于鄂尔多斯地块内部的61061台站按震中距排列的径向P波接收函数。图中清晰的莫霍面转换波Pms和PpPs表明所获取的接收函数质量高、可靠性强。图3中的410 km间断面转换波P410s和660 km间断面转换波P660s的信号,将会通过多台叠加方法进一步得到增强。

    图  3  61061台站按震中距排列的接收函数
    每条接收函数为震中距5°范围内所有接收函数的叠加结果,四条红色虚线分别表示转换震相Pms,PpPs,P410s和P660s的理论走时
    Figure  3.  Receiver functions plotted as a function of the epicentral distance at station 61061
    Each receiver function indicates the stacking of receiver functions binned every 5° in epicentral distance. Four red dashed lines represent the theoretical arrival times of Pms,PpPs,P410s and P660s phases

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    共转换点的叠加距离和该距离内转换波的数量对CCP叠加成像结果有重要的约束作用。叠加距离越小,成像的横向分辨率越高,叠加距离内转换波数量越多,叠加结果越可靠。本研究在水平方向沿叠加剖面两侧0.5°范围,深度方向350—750 km范围内进行CCP叠加成像。在接收函数CCP叠加中需要引入初始速度模型来进行射线追踪,以便计算接收函数转换波的转换点位置和走时。本研究采用IASP91速度模型(Kennett,Engdahl,1991)来计算每条接收函数在410 km和660 km间断面上的转换点位置,并进行时深转换。图4给出了研究区内410 km和660 km间断面上的转换点位置分布。

    图  4  转换点和叠加剖面位置
    红色虚线为图5中CCP叠加剖面AA′和BB′的位置,图中构造单元和构造线名称参考图1
    Figure  4.  Locations of conversion points and CCP stacking profiles
    Red dashed lines are the CCP stacking profiles AA′ and BB′ shown in Fig. 5. The names of tectonic unites and tectonic lines are referred in Fig.1 and its caption

    CCP叠加成像结果的可信度取决于挑选的接收函数质量、参与叠加的接收函数数量和时深转换时采用的速度模型(Xu et al,2011)。为了确保接收函数的质量,本研究剔除了受沉积层影响的51个台站,例如,产生多次干扰波或P波初至严重偏离0时刻等,并对接收函数进行了逐条筛选,删除了信噪比不高的数据。另外,图4所示的研究区410 km和660 km间断面上转换点的分布十分密集,可以确保绝大部分区域参与叠加的接收函数数量都在1 000条以上。在本研究中,仅选取接收函数叠加数大于200的区域来进行地幔转换带结构成像分析。

    因上地幔结构具有很强的横向不均匀性,故而与实际不符的初始速度模型会导致计算的转换点位置和走时出现偏差,例如杨毅和周蕙兰(2001)的研究得出,410 km间断面埋深增加10 km或者参考模型中速度减少3.5%均能使410 km间断面处的接收函数转换波走时增加1.1 s。但是,地幔转换带内部的横向不均匀性相对较小。上地幔结构的横向不均匀性主要影响410 km和660 km间断面的绝对深度,而对两个间断面的深度差影响不大(Chen,Ai,2009Xu et al,2011白一鸣等,2018)。基于本研究采用的初始速度模型为一维IASP91模型,本文仅着重讨论地幔转换带厚度的分布特征,而不关注410 km和660 km间断面的绝对深度变化。

    图5给出了两条横跨研究区主要构造单元的CCP叠加剖面AA′和BB′。AA′西起阿尔金断裂带东段,经过阿拉善地块北部、河套盆地和大同火山,东至南北重力梯度带(图5a),而BB′剖面从渤海湾盆地西南端向北跨过太行山、大同火山和汉诺坝火山,进入内蒙古褶皱带(图5b)。总的来说,剖面AA′和BB′的410 km和660 km间断面都表现出了明显的强间断面结构特征。在剖面AA′和BB′中,410 km和660 km间断面的不同埋深导致了地幔转换带厚度的趋势分布。因此,通过追踪连续的410 km和660 km间断面,可以获取地幔转换带厚度的变化特征。在剖面AA′中,地幔转换带厚度自西向东横向变化明显(图5a),具有东西两端较厚、中间较薄的特点。从图中可以看出:在阿尔金断裂带附近,转换带厚度接近260 km;在阿拉善地块北部,转换带厚度恢复全球平均值250 km;在河套盆地地区,转换带厚度则小于240 km;在大同火山下方,转换带厚度再次接近260 km。在剖面BB′中,地幔转换带厚度自南向北的横向变化相对平缓(图5b),只是在北段进入内蒙古褶皱带后,转换带厚度显著变厚(达270 km),但沿该剖面的转换带厚度整体大于全球平均水平。

    图  5  剖面AA′和BB′的CCP叠加结果
    Figure  5.  CCP stacking results of profiles AA′ and BB

    华北克拉通中西部及其邻区地幔转换带厚度的起伏变化具有明显的横向不均匀性(图6)。研究区西部和东部地区的地幔转换带较厚,中南部则与全球平均厚度齐平,而北部河套盆地和阴山地区的厚度相对较薄。研究区最厚的地幔转换带位于汉诺坝火山以北的内蒙古褶皱带地区,厚达280 km;而最薄的地幔转换带出现在河套盆地和阴山地区,厚约235 km。在阿尔金断裂带和北山造山带东部,地幔转换带厚度平均约为260 km,而渤海湾盆地下方的地幔转换带厚度在260—265 km范围内。阿拉善地块和鄂尔多斯地块及其以南地区的地幔转换带基本均呈现全球平均的250 km厚度分布。

    图  6  地幔转换带厚度分布
    红色椭圆和矩形分别为厚和薄的地幔转换带厚度异常区,下同
    Figure  6.  Distribution of the mantle transition zone thickness
    Red ellipses and rectangles indicate the thick or thin thickness anomalous regions of the mantle transition zone, the same below

    本研究获取的华北克拉通中西部及其邻区地幔转换带厚度介于235—280 km范围内,且具有显著的分区特征,东部和西部为转换带增厚异常区,北部的河套盆地和阴山造山带附近为转换带减薄异常区域,中南部则为近乎平坦的无异常区(图6)。地幔转换带厚度异常分布区域的转换点位置分布均十分密集(图4),这确保了所获得的转换带厚度异常结果真实可靠。本文将着重对地幔转换带厚度存在异常的区域进行讨论。

    在地幔热动力平衡中,若地幔转换带的温度变高时,地幔转换带的厚度将随之变薄;反之当地幔转换带处于较冷的状态时,地幔转换带将增厚(Bina,Helffrich,1994Helffrich,2000Cammarano et al,2003)。在只考虑温度对转换带厚度有影响的情况下,每100 K的温度异常会引起约10 km的厚度变化(Helffrich,2000Kind et al,2002)。Cammarano等(2003)指出P波速度相对于温度的敏感度约在−0.43%/100 K。在本研究区,最大和最小的地幔转换带厚度变化分别为约30 km和−15 km,那么所对应的P波速度异常约为+1.3%和−0.65%,这与图7所示的P波速度异常强度有很好对应(Tao et al,2018)。

    图  7  520 km深度的P波速度结构 (引自Tao et al,2018
    Figure  7.  P wave velocity structure at 520 km depth (after Tao et al,2018

    在阿尔金断裂带和北山造山带东部区域,地幔转换带厚度较正常值大10 km左右(图5a图6)。在体波层析成像的结果中,该区域的地幔转换带显示为相对高速的异常(郭慧丽等,2017高翔等,2018Tao et al,2018Zhang et al,2018)。邹长桥等(2017)的研究指出阿拉善地块岩石圈南向俯冲,并在祁连造山带下方与北向俯冲的柴达木岩石圈发生面对面碰撞。郭慧丽等(2017)高翔等(2018)推测,该区域300 km至地幔转换带深度上的大范围高速异常可能是岩石圈的拆离体。在本研究中,该区域较厚的地幔转换带可能与这种低温的岩石圈拆离体有关。

    较薄的地幔转换带厚度出现在鄂尔多斯地块北部的河套盆地和阴山造山带附近,最薄处相对正常的厚度小约15 km。Chen和Ai (2009)Chen (2010)Xu等(2011)的研究结果同样显示该地区地幔转换带厚度变化介于235—240 km范围内,但受数据资料的限制,仅覆盖了108°以东地区。最近的层析成像结果(郭慧丽等,2017高翔等,2018Tao et al,2018Xu et al,2018)在鄂尔多斯地块以北地区均观测到向下一直延伸至地幔转换带的低速异常。郭慧丽等(2017)认为该低速异常是源于地幔转换带的深部热物质上涌所致,而高翔等(2018)结合数值模拟(Liu et al,2004)推测青藏高原地幔物质运移导致了鄂尔多斯地块北部岩石圈减薄和岩浆活动,此处的低速异常体现了热的地幔物质运移。另外,Xu等(2018)Tao等(2018)的结果显示该低速异常还与大同火山有很好的空间对应关系。因此,河套盆地和阴山造山带下方薄的地幔转换带厚度(图67)与此处的热地幔物质环境相吻合。

    本文中,最厚的地幔转换带(达30 km)位于汉诺坝火山以北的内蒙古褶皱带地区(图6)。汉诺坝玄武岩是华北克拉通北缘广泛出露的碱性玄武岩和拉斑玄武岩,地质和地球化学研究(Xu et al,2005张文慧,韩宝福,2006张玉生,2018)认为其成因于地幔柱,上涌的热地幔物质在底侵作用下使得岩石圈底部的部分碎块拆沉,从而导致新生代岩石圈持续减薄。在该区域,前人利用接收函数方法获取的地幔转换带厚度均存在大于30 km的厚度异常(Chen,Ai,2009Liu et al,2015Zhang et al,2016)。Liu等(2015)Zhang等(2016)的结果显示,该厚度异常主要体现的是汉诺坝火山以北地区410 km间断面的明显上浮,与本文的结果一致(图5b)。Zhang等(2016)分析认为地幔物质上涌致冷的岩石圈发生拆沉并滞留于410 km间断面附近是地幔转换带增厚的原因。综上所述,本文在汉诺坝火山以北地区的地幔转换带厚度异常支持Zhang等(2016)给出的推断。

    渤海湾盆地的地幔转换带厚度比正常的幅值大10—15 km (图6),与Chen和Ai (2009)观测的结果相似,但与以稀疏的固定台站获取的转换带厚度结果存在一定差异(Wang,Niu,2001;Si et al,2016)。朱日祥(2018)认为太平洋板片俯冲引发的地幔非稳态流动导致了华北克拉通东部的整体破坏,使得岩石圈减薄至60—80 km (Chen,Ai,2009)。地震层析成像研究(Huang,Zhao,2006Wei et al,2012Liu et al,2017Tao et al,2018Xu et al,2018)观测到了由太平洋板片西向俯冲并停留在华北克拉通东部地幔转换带而产生的高速异常。Wei等(2012)Liu等(2017)的结果甚至认为太平洋板片在地幔转换带中的前缘位置部分已越过南北重力梯度带。本文得到的渤海湾盆地下方较厚的地幔转换带进一步佐证了冷的太平洋板片俯冲到华北克拉通东部地幔转换带的事实。

    根据密集的ChinArray计划二期和三期的台阵资料,本文在华北克拉通中西部及其邻区利用接收函数CCP叠加方法开展了地幔转换带结构的研究,结果显示地幔转换带厚度分布具有明显的分区特征。阿尔金断裂带和北山造山带东部较厚的地幔转换带可能与阿拉善地块南向俯冲的岩石圈拆离体有关。河套盆地和阴山造山带附近观测到相对薄的地幔转换带,表明该区域为热的地幔环境,可能暗示了地幔物质上涌和岩浆活动的存在。汉诺坝火山以北地区超出正常幅值30 km的地幔转换带厚度和明显上浮的410 km间断面与冷的岩石圈拆沉并滞留于410 km间断面附近的推断相吻合。在渤海湾盆地下方观测到厚的地幔转换带异常证实了冷的太平洋板片西向俯冲并滞留于地幔转换带。

    中国地震局地球物理研究所“中国地震科学探测台阵数据中心”为本研究提供了地震波形数据,本文的数据处理和绘图采用了SAC (Seismic Analysis Code)和GMT (Wessel et al,2013)软件包,作者在此一并表示感谢。

  • 图  1   首都圈地区构造和历史中强震分布(公元前780年—2015年1月1日)

    F1: 口泉断裂; F2: 六棱山断裂; F3: 大同火山断裂; F4: 阳高—天镇断裂; F5: 蔚县—广灵断裂; F6: 阳原盆地断裂;F7: 怀安盆地北缘断裂; F8: 张家口断裂; F9: 沙城断裂; F10: 怀来—涿鹿断裂; F11: 延庆—矾山断裂; F12: 夏垫断裂; F13: 蓟县山前断裂; F14: 宝坻断裂; F15: 天津北断裂; F16: 沧东断裂; F17: 海河断裂; F18: 唐山断裂,下同

    Figure  1.   Sketch map showing tectonic settings and historical moderate-strong earthquakes of the capital area of China from 780 BC to January 1,2015

    The inverse triangles denote the measuring sites of soil gas,and the black lines denote fault,the same below. F1: Kouquan fault; F2: Liulengshan fault; F3: Datong volcanic fault; F4: Yanggao-Tianzhen fault;F5: Yuxian-Guangling fault; F6: Yangyuan basin fault ; F7: Northern marginal fault of Huaian basin; F8: Zhangjiakou fault; F9: Shacheng fault; F10: Huailai-Zhuolu fault; F11: Yanqing-Fanshan fault; F12: Xiadian fault; F13: Jixian piedmont fault; F14: Baodi fault; F15: Nor-thern Tianjin fault; F16: Cangdong fault; F17: Haihe fault; F18: Tangshan fault

    图  2   首都圈地区土壤气浓度和通量布点示意图

    Figure  2.   Measuring sites for the concentration (dots)and flux(inverse triangles)of soil gases in the capital area of China

    图  3   首都圈地区土壤气浓度C及通量F平均值分布

    Figure  3.   Distribution of average concentration C(squares)and flux F(dots)for soil gases Rn,CO2 and Hg in the capital area of China

    图  4   首都圈地区土壤气测点布设及浓度平均值示意图

    Figure  4.   Arrangement of measuring sites and the average concentration of soil gases in the capital area of China

    图  5   首都圈地区土壤气通量平均值示意图

    Figure  5.   Average flux of soil gases in the capital area of China

    图  6   2014年5月1日—2015年5月1日首都圈地区小震活动空间分布图

    Figure  6.   Distribution of small earthquakes in the capital area of China from May 1,2014 to May 1,2015

    表  1   首都圈地区土壤气Rn,Hg和CO2 的组分浓度C和通量F

    Table  1   Flux F and constituent concentration C for soil gases Rn,Hg and CO2 in the capital area of China

    地点测点
    代号
    CRn/(kBq·m-3)CHg/(ng·m-3)CCO2FRn/(mBq·m-2·s-1)FHg/(ng·m-2·h-1)FCO2/(g·m-2·d-1)
    最大值最小值平均值最大值最小值平均值最大值最小值平均值最大值最小值平均值最大值最小值平均值最大值最小值平均值
    石井村SJC18.45.48.329612.80.515%0.082%0.203%27.440.227.420.68.113.438.68.027.1
    上皇庄SHZ11.01.07.460824.91.242%0.087%0.182%31.548.431.546.64.823.413.64.28.5
    大同火山DTHS13.75.27.91236.60.442%0.179%0.243%35.244.035.23.61.02.137.60.117.9
    东后子口DHZC5.91.13.230312.20.369%0.146%0.204%13.024.213.014.21.56.828.911.321.3
    阎家窑YJY9.52.84.82049.20.216%0.107%0.154%26.449.926.415.47.710.034.58.323.3
    宜兴庄YXZ11.82.05.71669.00.479%0.070%0.173%8.514.18.520.95.112.038.38.924.4
    北口村BKC11.32.95.6936.11.116%0.373%0.570%4.98.74.94.71.73.115.68.212.4
    榆林口YLK9.32.54.71247.10.482%0.208%0.346%13.317.513.34.04.04.040.427.934.1
    张仲口ZZK10.53.97.23449.70.302%0.108%0.193%25.840.525.88.30.12.931.522.527.3
    南口村NKC7.52.25.91357.80.870%0.124%0.491%7.114.17.69.54.26.369.922.040.7
    羊窑沟YJG7.43.65.520510.60.276%0.152%0.201%25.636.425.60.10.10.131.115.723.8
    张家窑ZJY6.92.14.3633.90.864%0.349%0.597%14.422.414.40.40.20.353.08.526.3
    万全县WQX14.06.810.61847.40.295%0.220%0.258%18.024.718.01.501.116.59.114.0
    青边口QBK11.84.28.01045.60.503%0.317%0.393%31.548.431.510.71.33.846.518.928.9
    郝家坡HJP16.74.38.91235.71.340%0.174%0.604%8.913.28.920.14.27.733.510.024.8
    西洪站XHZ12.83.26.2924.90.561%0.243%0.404%12.820.612.816.12.38.846.612.231.8
    东园子DYZC14.80.76.230410.46.004%0.058%2.175%10.318.110.315.61.67.557.81.432.1
    良田屯LTT10.83.07.427612.81.282%0.196%0.501%20.124.720.14.22.13.037.728.532.9
    八营村BYC7.53.96.31157.90.292%0.175%0.257%23.036.623.03.60.62.413.204.3
    蚕房营CFY21.34.410.81215.02.118%0.195%0.648%23.545.723.58.94.36.141.022.334.3
    玉皇庙YHM15.95.511.41124.30.477%0.303%0.399%24.748.724.721.80.37.451.023.036.0
    大东关DDG40.220.95.61846.10.783%0.406%0.570%5.91.73.81.00.60.85.12.53.8
    潘各庄PGZ63.434.245.02046.91.516%0.091%0.904%148.129.471.117.17.412.0154.653.689.4
    齐心庄QXZ44.410.425.91638.22.160%0.646%1.394%25.48.017.54.01.02.167.416.841.6
    王家口WJK71.50.66.295713.81.393%0.054%0.333%76.515.748.343.68.429.068.349.961.3
    八户村BHC40.06.416.030611.43.790%0.333%1.103%50.724.040.09.42.45.9113.066.184.5
    陈家庵CJA56.81.029.927713.82.438%0.073%0.851%97.648.074.526.113.121.043.135.276.9
    北怀淀BHD28.50.36.326613.30.544%0.058%0.206%159.078.7110.734.219.929.469.239.750.5
    何家洼HJW30.40.56.1135619.90.889%0.075%0.326%73.441.456.045.139.142.686.436.964.0
    邓善沽DSG40.60.420.724612.43.347%0.072%1.386%294.93.2152.110.84.87.8136.128.681.8
    朱头淀ZTD82.80.39.920611.33.908%0.056%0.364%50.54.324.141.725.434.057.530.942.3
    南营村NYC53.53.419.524411.21.548%0.059%0.828%33.59.521.522.613.518.765.453.459.4
    吴家庄WJZ37.01.213.986721.52.049%0.148%0.826%94.749.064.33.20.61.952.623.142.0
    丰南FN31.13.715.834815.97.212%0.398%1.851%38.916.524.224.89.216.343.533.337.2
    巍峰山WFS28.20.59.2221013.70.791%0.080%0.301%35.022.327.618.22.29.064.027.242.8
    下载: 导出CSV

    表  2   山西地震带北段和张渤地震带陆地段的地震活动性参数与活动习性(武敏捷等,2013)

    Table  2   The seismic activity parameters and characteristics in north section of Shanxi seismic belt and the land area of Zhangjiakou-Bohai seismic belt(after Wu et al,2013)

    地震带段落名称b断裂活动习性
    山西地震带北段 赤城—张家口0.87相对闭锁
    张家口—大同0.84中等频度中小地震
    张渤地震带陆地段尚义—张家口0.57中等频度中小地震
    涿鹿—延庆 0.72小震活动
    延庆—怀柔 0.72相对闭锁
    三河—玉田 0.89频繁小震活动
    玉田—唐山 0.81中等频度中小地震
    下载: 导出CSV

    表  3   张渤地震带部分台站h-k扫描结果(张莹莹等,2015)

    Table  3   h-k searching results for some stations in Zhangjiakou-Bohai seismic belt(after Zhang et al,2015)

    序号台站h/km波速比k
    1CHC40±1.281.74±0.044
    2LBP37±0.071.84±0.022
    3MIY34±1.171.85±0.039
    4XIL34±0.921.79±0.035
    5XLD33±1.061.79±0.038
    6QIX30±0.921.86±0.045
    7CLI32±1.431.76±0.062
    注: 台站按张渤地震带自西向东排序,h为莫霍面深度.
    下载: 导出CSV
  • 车用太, 刘成龙, 鱼金子, 官致君, 李军. 2008. 汶川MS8.0地震的地下流体与宏观异常及地震预测问题的思考[J]. 地震地质, 30(4): 828-838. http://www.baidu.com/link?url=ectduOFZ2B1TijMLS2IwRGCcEccMszNmrHEdvYYpaCaNo_Xdpq9LoM8zcgJRvmqPAoGN02UgUbtLfLpddAwmvjCxQ29rLU9qiRnO2lOguDX9DfdrVS-D55iNiEcyGtIBDfeotN_LFMmgVmt3TNipNgSuih-zJmr1gp-P_W-EF4io4SIQ4lczxY1tndlCku2OaBo8cIFcpn-n5UgZ5sIWMMqzokMsZA3Fg8jCKF-n1NpaqWPTD_teFF3GyNHHRySJO8im8HRPYKMxoxLrf4KXMMCbu9XjSap4HhtdOURQDZB8NKLPKglTCA4A-25sJiI6gsnrIjBLhEns99idVsgYsyfP0AwmIBBBQ7htm4w7OjbEbLCLsstTsVbL8tui4aoPZ4lWRfad4CIiSkCzGRgYmW2lGKayFUopzUYKHiOWMBUzacIRCJkaVRssleIDh0cTL5QpUCUA9E0lFCMiFUKcb90vpRNgTuxyETVvWGEJ7KDcz_5eRbWZfHv1rYLE8V2iXRMyEYjEHY07v3BrwekCYSDYAiqfa71i-N4p1WRpcjC&wd=&eqid=d741e2a900023039000000055880856c

    Che Y T, Liu C L, Yu J Z, Guan Z J, Li J. 2008. Underground fluid anomaly and macro anomaly of MS8.0 Wenchuan earthquake and opinions about earthquake prediction[J]. Seismology and Geology, 30(4): 828-838 (in Chinese).

    杜建国, 刘连柱, 康春丽. 1997. 地震活动中地壳深部流体的作用研究进展[J]. 地球科学进展, 12(5): 416-421. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ705.002.htm

    Du J G, Liu L Z, Kang C L. 1997. The role of deep-crust fluids in earthquake activity[J]. Advance in Earth Sciences, 12(5): 416-421 (in Chinese). http://www.baidu.com/link?url=Y4xXMKxoaNMnnBr72KRiAxfn1FwFs3zZJgkGyhGbuY9cxLBQNN2nNQ5ATWnPBSKNpkoOpH7ZXuimoxp51Ufok010GKoqCsCIEENuOO0Ky5u2CfJaXshsx6ESCb-0pQIWW4m0AbXQZ7HQmqCH5fbU7uWLxq1-TiwizdRF82obs3gP9fVOv2xX2ri_s7qQk5OMoAB2-szC5SNYoxWOAQeIJoStWfP01IyB_9XuA2H79K6C5rJHVYhOlkShjTjSExrB0lf79GrSHh_hac0KJX5-1L5iA9wuwOwrYz02RBPyewoweP_GT7ls80BL0pZ0oLOs&wd=&eqid=e15541c3000283d30000000558808593

    杜建国, 康春丽. 2000. 强地震前兆异常特征与深部流体作用探讨[J]. 地震, 20(3): 95-101. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN200003014.htm

    Du J G, Kang C L. 2000. Characteristics of earthquake precursors and its geological significance[J]. Earthquake, 20(3): 95-101 (in Chinese). http://www.baidu.com/link?url=QazkjRMXiyDhxYjsHGx8-ckzlwx7MHp2Z1-n_ZAoXVyf3WEdTwJxLCsSReFh08cpBxQSSKoYmvQOe9rs1mGr3AAdrOI0GNZj797HUMQDpyqw1ih3OowAuho7dvJdnBB9NioGXko220gef-VWdET7mgsQtX4xYVgXSQF2yyD1gti6xlK77YZOdGABcD6EyJL7covOsBV8eWzRE-87xzqTsvaGFTFa0_ucGQVlfghDie-491DGq1t2xQQpB9l0QgI6Li8vkEOAyeEbMk4dlrDrtn8FERiEPiS9eutrYOV5RNjyzkBwWjEUVqy9tIfeozRd8Qsm1kse5ivfb7dgtnw3Ga&wd=&eqid=d7b5aea70002502000000005588085a7

    杜乐天. 2005. 地球排气作用的重大意义及研究进展[J]. 地质论评, 51(2): 174-180. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200502012.htm

    Du L T. 2005. Significance of earth degassing and its research progress[J]. Geological Review, 51(2): 174-180 (in Chinese). http://cn.bing.com/academic/profile?id=5de9f889ed5e3217e0ca742ef931e2b4&encoded=0&v=paper_preview&mkt=zh-cn

    宫猛, 李信富, 张素欣, 罗艳, 曾祥芳, 刘丽. 2015. 利用接收函数研究河北及邻区地壳厚度与泊松比分布特征[J]. 地震, 35(2): 34-42. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201502004.htm

    Gong M, Li X F, Zhang S X, Luo Y, Zeng X F, Liu L. 2015. Crustal thickness and Poisson’s ratio of Hebei and adjacent areas from teleseisimic receiver functions[J]. Earthquake, 35(2): 34-42 (in Chinese). http://www.baidu.com/link?url=d0P7hkX5fXneEuLRkTK-w6-ThdX9qSDjGXMonvG-DodnBg7xve8qismT5ADj2y6LYN7PnKaiT31maUx3eDTHNaY10wg2BfgvD_FEZEEiJ6l8I0tDhT8tjjC9cBOzVxJfHl0vk20s3o0NgAr3vwpbETsaQO4yMkmt2DDIUsIwDGmOnGmU2q3an2pY3mIJbs-KFW7TiLFsptWrBVMJT8GO4M1g9mmVtdD7ybpDrJzD0UfmhiG8Dda0l-vp63oJVVxlafMZCxQqzj4MAsCKmB_Zv7NsWlJnmG-Tg5sbBBjFdJEbg5d3SaDKVxdjjOR3fzREeUfvE8e5knzpBHbXY8EVawjuQfqmlwmQE2OdaJen5AteK0vZrzQXOYyPAbRbgkBu&wd=&eqid=d2afa4d500021e1c00000005588085d4

    韩晓昆, 李营, 杜建国, 周晓成, 李小强. 2013. 夏垫断裂中南段土壤气体地球化学特征[J]. 物探与化探, 37(6): 976-982. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201306003.htm

    Han X K, Li Y, Du J G, Zhou X C, Li X Q. 2013. Geochemical characteristics of soil gas in the central south segment of Xiadian fault[J]. Geophysical and Geochemical Exploration, 37(6): 976-982 (in Chinese). http://www.baidu.com/link?url=8jA0d3oaJKrS371WkOQlN8r6lMZ9OgmM7iDv_ADQl4FsbUQ7jnjSvory8DDcJuO3PAaX1f6SoN4OpMH34Rwf4ZvY3svj9_42ev5NqmUgInn1XlhQiMEwTjLZGQHcH2GgyHvYB8A8Kjfxl4BlWnf4Ybn-F98hsv6KEV0SfLuku1p75oETIuSVERjGEwJk2am2isFRHrf5VxDSCxbslRmvOXMCHRjl4Pyy2p8yoN-lo7i8qetLkXeIG9HuatA-2x7PjKGXIL_m0GxeWvPovpeQDKV9RhnCPleuQBiz14zbsyH749txKEBd8uBtYiaUJacdJoKb5DOGTNkeiBmRaDxhq-hHa5bDqSMxxlvQefmojYW&wd=&eqid=da2be4f90002d0ea00000005588085ea

    韩晓昆. 2014. 首都圈地震重点监测区土壤气体地球化学[D]. 北京: 中国地震局地震预测研究所: 10-45.

    Han X K. 2014. Soil Gas Geochemistry Across the Active Fault Zones in the Capital Area of China[D]. Beijing: Institute of Earthquake Science, China Earthquake Administration: 10-45 (in Chinese).

    黄辅琼, 邓志辉, 顾瑾平, 王慧敏, 吕培苓. 2002. 张北地震地下流体异常场的研究[J]. 地震, 22(4): 114-122. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN200204017.htm

    Huang F Q, Deng Z H, Gu J P, Wang H M, Lü P L. 2002. Research of the field of subsurface fluid anomalies before the Zhangbei earthquake[J]. Earthquake, 22(4): 114-122 (in Chinese). http://www.baidu.com/link?url=OJZo5Sa2x4f2BmC2cirptycwvr2fesNuwp2AnEGPJKNTXemVw6lPNnyYbapIIBh8zAwVna2yKs5wc94FgTc-yEn3PTyt0cgC8Nj-HExFnHMNQLQ_gY5B-YMcgb4d5noO94absOYTOmqLYWxWj7Z6qexAQRdCRvjpjXOhw0PADhlSxxD5p-fJPNe_Rb_4LJNO136BbKjhb9bSBu_XteGE8YL2NnFwubeB72bGGhJ0IJUx7XKg7R3BrzjsX2T1c1K1vH9bZUeF2RknvfHJxzENkOkFOYtFWhWulZEeJuwY8yEAqE2Qzc5_cR6cuNzeHs2vsCB4k8518lnrJvgqYQtLXvqyWiO4GXH1tARC_3hZ7JS&wd=&eqid=d69adc4f000282920000000558808605

    黄金莉, 赵大鹏. 2005. 首都圈地区地壳三维P波速度细结构与强震孕育的深部构造环境[J]. 科学通报, 50(4): 348-355. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200504008.htm

    Huang J L, Zhao D P. 2005. Fine three-dimensional P-wave velocity structure beneath the capital region and deep environment for the nucleation of strong earthquakes[J]. Chinese Science Bulletin, 50(4): 348-355 (in Chinese). http://www.baidu.com/link?url=N6UnoD7-BxAAtFG9Th5MicN_9wZ2TxQLk5kwRzUaYeuwWNYBjnrDHSmEapKptEcPbaQm8wz5fMSTnWrw0qKkzidbDKa1vHd3OQyUQVx4M-fHN58CjxIMWM8Hr5CRC7AgdQ09soCD18x6xrHNhgVCt8743gPazmLVVFFnlKm3i3mP3pRN0dzsrw_1aRXzxgccp0BbrOQeEEGY-qxk_TNKvXpU5Cgg9EMucpevuKot95zZXwwrRX_nuBfXGESpL9x3s8P5G3LqAibTwJpoQilUS3xdlDafewoereMnkBXyVJIG9da-P87ZPTH6qB3xXddmD5lyX1JVQirfchTxrAbiPm_a6dh8O0YnEGJfQ4OvVRKQh_4boP5gDMTxsRK31t3qG9MYBGpC0pWeE77c2OZrgJjxT-XdqHBoWb10s5s3apK&wd=&eqid=d7b5aea700025b9b0000000558808618

    嘉世旭, 齐诚, 王夫运, 陈棋福, 张先康, 陈颙. 2005. 首都圈地壳网格化三维结构[J]. 地球物理学报, 48(6): 1316-1324. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200506013.htm

    Jia S X, Qi C, Wang F Y, Chen Q F, Zhang X K, Chen Y. 2005. Three-dimensional crustal gridded structure of the capital area[J]. Chinese Journal of Geophysics, 48(6): 1316-1324 (in Chinese). doi: 10.1002/cjg2.779

    李营, 杜建国, 王富宽, 周晓成, 盘晓东, 魏汝庆. 2009. 延怀盆地土壤气体地球化学特征[J]. 地震学报, 31(1): 82-91. http://www.dzxb.org/Magazine/Show?id=27173

    Li Y, Du J G, Wang F K, Zhou X C, Pan X D, Wei R Q. 2009. Geochemical characteristics of soil gas in Yanqing-Huailai basin, North China[J]. Acta Seismologica Sinica, 31(1): 82-91 (in Chinese).

    刘耀炜, 陈华静, 车用太. 2006. 我国地震地下流体观测研究40年发展与展望[J]. 国际地震动态, (7): 3-12. http://www.cnki.com.cn/Article/CJFDTOTAL-GJZT200607002.htm

    Liu Y W, Chen H J, Che Y T. 2006. Retrospect and prospect of observation and study on seismic underground fluid in China[J]. Recent Developments in World Seismology, (7): 3-12 (in Chinese). http://www.baidu.com/link?url=C34vBtOYNvUi-HrlDfw5qkDJCzbL59L8rrTznGjuKDaPdMjlS0jVeonJCYoNp7C3YSLlbM6cXYYnL1u5feK54v1LAJqS28uiLlz4LJuuIe5zZKX5W72YQNEMl6_5wQthOUBMEKifA91588mrnO_oMLlPcWK1IinhVtMWU-8NiCM9_AqXTriCW5sGwmOHKclfRN3XaTvRx7rcP3H_LkGd3wJ18i3vTlMTy7TJSohQdiB98NQyTB9C1747cf4nudMrJCuIhdUqwZ9OOG5kCmoK6bZNVLJ7ME89YHfwXtIP0z8pMWKt25kne-4wl4K3uOaLUj211YO0nPqBGbPuvOJjg0NqPVznhGpE1pC-0d3MNY_&wd=&eqid=c94a14cd000264050000000558808698

    刘耀炜, 任宏微. 2009. 汶川8.0级地震氡观测值震后效应特征初步分析[J]. 地震, 29(1): 121-131. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN200901016.htm

    Liu Y W, Ren H W. 2009. Preliminary analysis of the characteristics of post-seismic effect of radon after the Wenchuan 8.0 earthquake[J]. Earthquake, 29(1): 121-131 (in Chinese). http://www.baidu.com/link?url=Hh54xIx_gh-VyDvHt49qppcOd0cor6AW2_phcy-Al0qf1W-Xfzgb_AvoQTVReKOcO3wEWC9-JYVO1zAqLYURLgKk0IbhidsWBpuhKNqXNW6g1c4pfVl9vBnokxADUaD4ttg5uZydL7nnUvZcH4cIuJP73RfeMx3wv4Y51E_zWbawesSWTGx4MoLoEN0qLYFM3XQxvaiTkiXFr4xatnw_5nz-KyJXmZei4_ibXql9wB9j147knWYq1SLPUfvUg9Yeoa2ybmWvZFwKOr77sEpBne5P2FzpaRxcmf2kS2CQe_JBuBybTKAUThNo8M-1i_sKnXIF2eqtnrD1f5MuXosaTZ72QTb0pq_zAucRPKT-vyDm8ILAFSMYRT10dnyhsvxkwT2kZxvnI1iHyXS2vguCmq&wd=&eqid=d18a945700029b4a00000005588086ad

    罗艳, 崇加军, 倪四道, 陈棋福, 陈颙. 2008. 首都圈地区莫霍面起伏及沉积层厚度[J]. 地球物理学报, 51(4): 1135-1145. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200804024.htm

    Luo Y, Chong J J, Ni S D, Chen Q F, Chen Y. 2008. Moho depth and sedimentary thickness in capital region[J]. Chinese Journal of Geophysics, 51(4): 1135-1145 (in Chinese). http://www.baidu.com/link?url=IuHD81nUIx-el7IXFZIMd3Idb24x-8FlYSOSan3Tla7vZKg14UPBlX9DIIm1x9Ki49aWF1XCobabLg0-a-ry3jsbrC-PsOVpC5xPlmdS-g1iOteteJzd3HsJAGDJfkqAqdQJX3Z7i91VCYkSjb4hMUo2_HDoG6IT6Qp0uiR2cD8vCrIzZZMCkLskC6pxuikcIQu_F07joc_gPRNkY5w0w9T521TTqRnnOdSr82rWJKV06D1YfiOfEGIk3K6JE3PBpEDzZxKB3FsQmZqY2nYDUSjvdYgdRk6K-7hCSDPJiYXoDfnR08BUQNS0DSDbZRB6RRSz8Yf0w1uoSccUYk7KHBVRGU5BNIw7tjx4uAYW20Gaxi9rXZ9vHXifTZEYIzwcFvss5EtKOKLG0zdBwUQw0kP3FxK9lFJvPoFcPRiNaivPXdhZALEBloG6CjVC5YVswWKOAqmr88nMxX50bdmy4jN1aFrBORwfb176iviGUwcUfQONytY-kCHCUX3UN8yw&wd=&eqid=d18a945700029e2800000005588086c1

    孙进, 石玉涛, 赵博, 高原. 2013. 张家口—渤海地震活动带中东段地壳剪切波分裂研究[J]. 地震, 33(3): 24-32. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201303002.htm

    Sun J, Shi Y T, Zhao B, Gao Y. 2013. On shear wave splitting in the Zhangjiakou-Bohai seismic belt[J]. Earthquake, 33(3): 24-32 (in Chinese).

    王峻, 刘启元, 陈九辉, 李顺成, 郭飚, 李昱. 2009. 根据接收函数反演得到的首都圈地壳上地幔三维S波速度结构[J]. 地球物理学报, 52(10): 2472-2482. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200910008.htm

    Wang J, Liu Q Y, Chen J H, Li S C, Guo B, Li Y. 2009. Three-dimensional S-wave velocity structure of the crust and upper mantle beneath the capital circle region from receiver function inversion[J]. Chinese Journal of Geophysics, 52(10): 2472-2482 (in Chinese). http://www.baidu.com/link?url=RRKED6ek_DFzZsOLQSoABar9JEmj7VG8DxKYn47WP7DkRXY4ONR8P2-yk8NsskrR2qZS2bj6GQLur_0Fh5oZ9aqkJQAJcVDgtlnbxWkF_SyKUnvS41o7oV_s0-U4aJZY7pS0197OBdAtCd97thapiRpB_VcyCC9ek9gu0Vw99A6crQRkCSohw_H-SyekllhqCuv7vv35QMQU2lSI4yQEESlLsc05UE1Ncr0RWiJpmoQgHIp_ZPxorOo98vlKLTUOqP_pqkZBzfkgQK_JeqdRxYhZQK-IOUanheIVh5Nu52uxHGrZUtb2DL6rzHoVhOZsz6cJ0ty7C_MgaPZCL9_BxpTuPRm5QM6B_X-p0aAg2peAWbpRllFw138Hyy_vpPeDTbvx_EqiCZAilqbWnWBOeQOTT9__Lh_htqDw18LfPVW&wd=&eqid=ccb5b8170002529f00000005588086ea

    王乃樑. 1996. 山西地堑系新生代沉积与构造地貌[M]. 北京: 科学出版社: 15-212.

    Wang N L. 1996. Cenozoic Depositions and Tectonic Geomorphology in the Shanxi Graben[M]. Beijing: Science Press: 15-212 (in Chinese).

    王未来, 吴建平, 房立华. 2009. 唐海—商都地震台阵剖面下方的地壳上地幔S波速度结构研究[J]. 地球物理学报, 52(1): 81-89. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200901011.htm

    Wang W L, Wu J P, Fang L H. 2009. Crust and upper mantle S-wave velocity structure beneath Tanghai-Shangdu seismic array profile[J]. Chinese Journal of Geophysics, 52(1): 81-89 (in Chinese). http://www.baidu.com/link?url=_HNouICuSN9OQ4RA-4qkU7WlsrSL7XkORZBnauEVeZK5heNGPxCbg2KVXmZzHUdl5iyb3yRgXp8MfYfs3qLo2bMG3sIMEXZU2-YqRVGaThhtZ0c-I1WVWjijVrWfW391enZzNv3p97hrfuVNQOyjyk2bcrKs--wMMcn4Nt7GwyuGtbY8aW7w0K6cKZcMpU7glA-nrk4JlqBfZSMQZ3wOoPafmyX1MiJlkxQJWQCQSl_Y2rwihnrEd7PfbdgSGg0BEF71qw_k9y45vaBzb5N3ko_915u_0r2UpwmPvOuB4AneyzyZyOrRTBJjTuDIxumJx_GVXI2Gx_lec2nlBIg5EtvhRjzhhapNIioYuxNAUWK0ztRpr5sQgGGoOzgaE73lqx19_SzFhdv0i-jwkPobDqKRGsLOLs0Nb6LKk_QuMFakxLVkvEHpbdcEDloLmUWt12lW_XCI58vzGm2goLpM8mptxr-edMqYO8J94vydcF_d7o0KFFXYPImOLbdE3uHO2fjuNNHdZQw48bvU_wkLD_Ekf5BKwGPQyPY0K0M2fd5a874VcfXdMpvd-IP55DRu_Iv7W4DsEYQ1P9KNrsfwSJNTvOqGfnVsCTFJTXzehNM6Q7UEiwkb4JP-0P-ithVv5fUMgn0prJ3XECF9IoudVTXsLq4NXyst7A5k5BA5rly&wd=&eqid=d0f162f900028a7a000000055880870b

    汪一鹏, 邓起东, 朱世龙. 1989. 中国岩石圈动力学图集[M]. 北京: 中国地图出版社: 59.

    Wang Y P, Deng Q D, Zhu S L. 1989. Lithospheric Dynamics Atlas of China[M]. Beijing: China Cartographic Publishing House: 59 (in Chinese).

    吴晶, 高原, 陈运泰, 黄金莉. 2007. 首都圈西北部地区地壳介质地震各向异性特征初步研究[J]. 地球物理学报, 50(1): 209-220. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200701026.htm

    Wu J, Gao Y, Chen Y T, Huang J L. 2007. Seismic anisotropy in the crust in northwestern capital area of China[J]. Chinese Journal of Geophysics, 50(1): 209-220 (in Chinese). http://cn.bing.com/academic/profile?id=68fa1995eb0d92ebb15cb16e36be7167&encoded=0&v=paper_preview&mkt=zh-cn

    吴晶, 高原, 陈运泰. 2008. 首都圈东南部地区地壳介质各向异性[J]. 地震学报, 30(1): 1-11. http://www.dzxb.org/Magazine/Show?id=26342

    Wu J, Gao Y, Chen Y T. 2008. Crustal seismic anisotropy in southeastern capital area, China[J]. Acta Seismologica Sinica, 30(1): 1-11 (in Chinese). http://cn.bing.com/academic/profile?id=7af05f207ebf115b7f428d04daba45b5&encoded=0&v=paper_preview&mkt=zh-cn

    武敏捷, 朱红彬, 岳晓媛, 林向东, 李红. 2013. 基于多地震活动参数的首都圈地区地震危险性分析[J].华北地震科学, 31(1): 25-30. http://www.cnki.com.cn/Article/CJFDTOTAL-HDKD201301007.htm

    Wu M J, Zhu H B, Yue X Y, Lin X D, Li H. 2013. Analysis on potential earthquake risk of capital zone based on multiple seismicity parameters[J]. North China Earthquake Sciences, 31(1): 25-30 (in Chinese). http://www.baidu.com/link?url=0lv5nS1Fv6RFqvV5ptIyZgjB16Bn3rrRACEYnJ9-ma_hdZYT-oGTeO1DrefW_Tp0xC7y0qKoRBK0C7-4gxEt5NsBi6dKEGyD46JpH0I7wARiw-U-JT0r4ag2Xya1NsHYFUqimt1oI39eFK05mYYL8_B3OQRnGhhDis4Qy28zviAcNv-ghY-X6Q_QuE0hlraAv5SlDmsLnLGbGMGxDRsxxDRWIxuLheaGoAwjrVXIsvCmubE_agvt9ryYsQdHPZFL09BmMOtkGcdYLNzvoxczMc36sYcAOV4OCQS2vyjLZdn8qMYCV9unrVlJOtstrHeKTxISh4tUhGJIW4Iun7GEiRjMeHZSSi6thh2svMTquoC0Ph0COGMvVnic2RwrsnJF&wd=&eqid=b169901c0002cbe6000000055880874e

    徐杰, 宋长青, 楚全芝. 1998. 张家口—蓬莱断裂带地震构造特征的初步探讨[J]. 地震地质, 20(2): 146-154. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ802.009.htm

    Xu J, Song C Q, Chu Q Z.1998. Preliminary study on the seismotectonic characters of the Zhangjiakou-Penglai fault zone [J]. Seismology and Geology, 20(2): 146-154 (in Chinese). http://www.baidu.com/link?url=61T4pWSyDv1H6Y-PgGhMDxRVI4iebTFxXGEvlw8XWD1RX6Mj-8j2ASGjy1ErOLTYQ-I4I4GHDnbxCDtWcNuWODeaGdFPZGjIOg8eg4thW0Vsw-9YNri9VLRBOjUKOuHQf1PWz6ZrZavLtSBRatQ5SVzzESDd-9GuOC4u1PipzgtxTFZnAs_2mKpi95BdN3YGtU9P5qUCfbzMTGE4RCPa_2TNp9OJJbGUVHBR6r1J9GzT97IRO6TZdkfPjsyUAGxrqtarc4invx5ZZ3UN6FdxIzmBDf4DhxvShlBjJaC4eL_ZhWk_xTiJM6gZsINTLErK5i6mgAgMYIVWFQWKhPzD2wVBOP-LiP8HIMQYSGkMVTC&wd=&eqid=a1f31a120002affa00000005588087a9

    徐锡伟. 2002. 首都圈地区地壳最新构造变动与地震[M]. 北京: 科学出版社: 87-365.

    Xu X W. 2002. New Crustal Structure Motion and Earthquake in Capital Area[M]. Beijing: Science Press: 87-365 (in Chinese).

    张冠亚, 周晓成, 李营, 崔月菊, 韩晓昆, 孙玉涛, 孙凤霞, 杜建国. 2015. 怀安盆地北缘断裂东段土壤气体地球化学特征[J]. 地震, 35(3): 113-122. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201503012.htm

    Zhang G Y, Zhou X C, Li Y, Cui Y J, Han X K, Sun Y T, Sun F X, Du J G. 2015. Geochemical characteristics of soil gas in the eastern segment of the north margin fault of the Huaian basin, Hebei Province[J]. Earthquake, 35(3):113-122 (in Chinese). http://www.baidu.com/link?url=XSr754QVkTj9UXe18pKq4E3Adq1LgJRk1wEtjKmKq1J1XiaAMWaho5tbfg9mp_ymht3p-YyYrT-T8QaQYO2RAfCgyQnKs046OpYR0KCVKOG6ijxqir3QGtzcVFnXgtSNagy2dy_HPrkh9wGBOJ1_RolZ5-9Nsc7Io7aXTxQoBoIu2A3lBgcoAk2l05Ey_jQhLGFeJQZS1DdouwJfyIWE8j0i1ptjhSH7XmKInzbo7fno1eft-lHiOXroQsodC62-tjlQJKHCK6ud6cHjYMLD663UCFwKFGeOzelV67bsjT2Fa1J5vqoVOWASM4sndUs-jZbigPnU020yVyjD8ICV2FXJhpJg4qHe6QVUpXgrjFUs8TSIHxuonN9bKciJuKDo7KnL6Jkm_O-Eh7ImfYsvhHbKSgBhrsVsfnhtzbtOpXC&wd=&eqid=9bcaf27200027fe100000005588087bd

    张广伟, 雷建设, 谢富仁, 郭永霞, 兰从欣. 2011. 华北地区小震精定位及构造意义[J]. 地震学报, 33(6): 699-714. http://www.dzxb.org/Magazine/Show?id=28711

    Zhang G W, Lei J S, Xie F R, Guo Y X, Lan C X. 2011. Precise relocation of small earthquakes ocurred in North China and its tectonic implication[J]. Acta Seismologica Sinica, 33(6): 699-714 (in Chinese). http://www.dzxb.org/Magazine/Show?id=28711

    张国民, 马宏生, 王辉, 李丽. 2004. 中国大陆活动地块与强震活动关系[J]. 中国科学: D辑, 34(7): 591-599. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200407000.htm

    Zhang G M, Ma H S, Wang H, Li L. 2004. The relation between active blocks and strong earthquakes in China[J]. Science in China: Series D, 34(7): 591-599 (in Chinese).

    张红艳, 谢富仁, 崔效锋, 李瑞莎. 2009. 张渤带陆地段现代构造应力场的非均匀特征[J].中国地震, 25(3): 314-324. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD200903009.htm

    Zhang H Y, Xie F R, Cui X F, Li R S. 2009. Research on heterogeneity of the present tectonic stress field at the overland part of the Zhangjiakou-Bohai fault zone[J]. Earthquake Research in China, 25(3): 314-324 (in Chinese). http://www.baidu.com/link?url=1Q9Ci36PjXjl8WWuzq5kM4ZeJGZJFqXGZtd8dAZoFZ--A10wzXcYxjA2NTT4wpK2qnP97mMD3a1XhDwCc1Sdk7W4q-dDOzhILGrZtX2-vLotQiE1CHqGBTFSVY-fbMFoeUFUapN2H3QgGcaEgvpECh3NuOO5OXrfw4T_-F8WImY4RxplNgKYBSAvrKl6cEepilezcrb-GdPUbGyp_UxiaqXl550jlB6Gr18nHhPqzMIlhjGJ2KW3BQEOirQVTZnzV-0OpLKpEAWxa1y_1W0LoFlKsMSAluMphqhT_SCH1jgs2e6Gb2AEbPH7ahho-JqKoahD7x9pT7dAIOt4byAvQQb3R4x8LnoKo9mkpCGVwjbDHAFU3CC2mEuublVX5E_ukac_vCjMxr-xrIcB4cWh6q&wd=&eqid=cdb6827e00029b2f000000055880882a

    张莹莹, 高原, 石玉涛, Liu K. 2015. 张家口—渤海地震活动带及其邻区的地壳厚度与泊松比分布[J]. 地震学报, 34(7): 541-553. http://www.dzxb.org/Magazine/Show?id=29103

    Zhang Y Y, Gao Y, Shi Y T, Liu K. 2015. Crustal thickness and Poisson’s ratio beneath Zhangjiakou-Bohai seismic active belt and its neighboring regions[J]. Acta Seismologica Sinica, 34(7): 541-553 (in Chinese). http://www.dzxb.org/Magazine/Show?id=29103

    赵博, 高原, 石玉涛, 金红林, 孙进. 2011. 张家口—渤海地震带与山西地震带交汇区的地壳剪切波分裂[J]. 地球物理学报, 54(6): 1517-1527. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201106012.htm

    Zhao B, Gao Y, Shi Y T, Jin H L, Sun J. 2011. Shear wave splitting in the crust in the intersection zone of the Zhangjiakou-Bohai seismic belt and Shanxi seismic belt[J]. Chinese Journal of Geophysics, 54(6): 1517-1527 (in Chinese). http://www.baidu.com/link?url=BWxl1OCikZG8q6q4-9E72plQ8ZS5T1ESFy3SdVKwXQGMSQ2ERzFp6eoV0rwXTIB3NcNjsJifL1Vf5HjgFZSYCazzsq0GvRGaDB6rTmO48UB7zBCymcV_ycI68mnfEqjp2a7BLaUQmMw9dl2f40Rk0nhp7vP8ln_CRPiPnietRvZxWR5CxoIb7Oudnt_eKbYY7V5Zv1hBCWjDUG41vNQcj3S6ILdG_n6rWcbyrqkxq1BzZHLkDDrqIc8fhClqmxsIzQTbSmgpxN5P27UkKFFJbwbSjCi0xjMCMNFridq4S9JuRlKI2WIXtU-J6TMoQ18NzGElUWxmKgJ-EmrkdfIBQyMWLhgySetvruKRT3IedjDd94ROk4_vy6bc7c5T_sG6BGNL0FiabQ6mhW9-XWX7yK&wd=&eqid=d0fb8e690002c8de0000000558808852

    周晓成, 郭文生, 杜建国, 王传远, 刘雷. 2007. 呼和浩特地区隐伏断层土壤气氡、 汞地球化学特征[J]. 地震, 27(1): 70-76. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN200701009.htm

    Zhou X C, Guo W S, Du J G, Wang C Y, Liu L. 2007. The geochemical characteristics of radon and mercury in the soil gas of buried faults in the Hohhot district[J]. Earthquake, 27(1): 70-76 (in Chinese). http://www.baidu.com/link?url=52gA5UESvOxOy8UR4qvitnhC_48YCFs-Q1wGKk0RryaUDAimmpEvh1LTHoY1LQdmtAVatBmgawp3WsqpItl_EkkX92KSLMdXYxKQnJLRMIlVB8FIK5hnH_4jkQ7E0X-gn1GBc7Ub8MPvn70LZ1RItxaN3Umg1MGBlRoO7a6dxEkZm_MxFr9p8uLwJpQqFXJjnD-WK6wNXrQWeZ_Ck8mYQJOsZi-RFoZ7gAiNn-W83vjpHHG1pVuRfWLmQ_wtcpOfIKHobhx2JukclZ02dIRmmSMtD2XMqX69hhOEUdiQ16ytNsQxfMrxTaxDeORTIdc9QZDM-HHxRm1fAOEyL2a60NXeM65Xa08cWVEDk8ry_jQTYRba9y8oyWaT04bBoirc&wd=&eqid=d0fb8e690002cb3d0000000558808866

    周晓成. 2011. 汶川MS8.0地震后川西地区的气体地球化学[D]. 合肥: 中国科学技术大学地球和空间科学学院: 10-78.

    Zhou X C. 2011. Gas Geochemistry in Western Sichuan Related to 12 May 2008 Wenchuan MS8.0 Earthquake[D]. Hefei: School of Earth and Space Sciences, University of Science and Technology of China: 10-78 (in Chinese).

    周晓成, 王传远, 柴炽章, 司学芸, 雷启云, 李营, 谢超, 刘胜昌. 2011. 海原断裂带东南段土壤气体地球化学特征[J]. 地震地质, 33(1): 123-132. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201101014.htm

    Zhou X C, Wang C Y, Chai C Z, Si X Y, Lei Q Y, Li Y, Xie C, Liu S C. 2011. The geochemical characteristics of soil gas in the southeastern part of Haiyuan fault[J]. Seismology and Geology, 33(1): 123-132 (in Chinese). http://www.baidu.com/link?url=AB0fzhs6o4g0ocush-NxiQW7LRsIlsk8hOQnGvC1qtS4iK2cX8ke-6tvYOZNg3zmhfHywMKQWJctj6aNEp-hzAx0HcIKmm4rLql89QzjdrH2DTobuZo1PJj6IZPXquHYwxJpiuagFRKvZ0TGRjhy-RG-KiDYPmJr9gkcXu4R6b6ULGsALrSSu319coZrNogiTtSFfBck4ydg-sHh5fmVEC2XrygO7We8IQzcy6b8E01lhOvpzyQw6MYHZHfgSaXoWRqC-CxBEwiYSYHDUAcsfjlkIbmjRwj2rxvFPEmSj3C-gd37EY4V8HGS0TU9-uPt_GxoI_hBg3V3AoifDiXl1KRhmpc0iQsq3_ZLYYxbLuG&wd=&eqid=ce83b5c20002969e0000000558808879

    周晓成, 杜建国, 陈志, 崔月菊, 刘雷. 2012. 地震地球化学研究进展[J]. 矿物岩石地球化学通报, 31(4): 340-346. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201204004.htm

    Zhou X C, Du J G, Chen Z, Cui Y J, Liu L. 2012. Advance review of seismic geochemistry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 31(4): 340-346 (in Chinese). http://www.baidu.com/link?url=F7QvIdAhLRWo5VxAMP8284puBcP6s35vlPvGiG-L8m-7wjCCfFhNf4QEWiokeI1s5QTAnXOGGYL--dAZp4KJ5uxfdDh_Vpb9sbwf8e66Wywux1ajTqEjyd3AaSgQudtNUWllLPTjM_fX9-KzL7eIvxhqzMUexl_xcBW9eh3DmIG8XQjonilef4jjQSdb_sReCtFTGfgE5zGA6uQcL4UgYExHCYKoKM43rQUGdZug-joETOIhq7VQKS1LyVIsnRgi5XOR1KTOjcxbqleeIJo4PszV7vAANSs--6R0L1bRUma&wd=&eqid=cdb6827e0002a2fa000000055880888f

    Bagnato E, Barra M, Cardellini C, Chiodini G, Parello F, Sprovieri M. 2014. First combined flux chamber survey of mercury and CO2 emissions from soil diffuse degassing at Solfatara of Pozzuoli crater, Campi Flegrei (Italy): Mapping and quantification of gas release[J]. J Volcanol Geotherm Res, 289: 26-40. doi: 10.1016/j.jvolgeores.2014.10.017

    Baubron J C, Rigo A, Toutain J P. 2002. Soil gas profiles as a tool to characterise active tectonic areas: The Jaut Pass example (Pyrenees, France)[J]. Earth Planet Sci Lett, 196(1/2): 69-81. http://cn.bing.com/academic/profile?id=af8eeda90e8ebf219aec3d5dc9ebbff4&encoded=0&v=paper_preview&mkt=zh-cn

    Bernard P. 2001. From the search of ‘precursors’ to the research on ‘crustal transients’[J]. Tectonophysics, 338(3/4): 225-232. http://cn.bing.com/academic/profile?id=71070ab09f3136f719e43dac4f385df9&encoded=0&v=paper_preview&mkt=zh-cn

    Ciotoli G, Lombardi S, Annunziatellis A. 2007. Geostatistical analysis of soil gas data in a high seismic intermontane basin: Fucino Plain, central Italy[J]. J Geophys Res, 112(B5): B05407. http://cn.bing.com/academic/profile?id=39ad367b36c6bc859fe3491154929f92&encoded=0&v=paper_preview&mkt=zh-cn

    Cui Y J, Du J G, Zhang D, Sun Y. 2013. Anomalies of total column CO and O3 associated with great earthquakes in recent years[J]. Nat Hazards Earth Syst Sci, 13(10): 2513-2519. doi: 10.5194/nhess-13-2513-2013

    Etiope G, Lombardi S. 1995. Evidence for radon transport by carrier gas through faulted clays in Italy[J]. J Radioanal Nucl Chem, 193(2): 291-300. doi: 10.1007/BF02039886

    Etiope G, Martinelli G. 2002. Migration of carrier and trace gases in the geosphere: An overview[J]. Phys Earth Planet Inter, 129(3/4): 185-204. http://cn.bing.com/academic/profile?id=f40c5eb109c7bea4d16f5447cee67813&encoded=0&v=paper_preview&mkt=zh-cn

    Evans W C, Sorey M L, Kennedy B M, Stonestrom D A, Rogie J D, Shuster D L. 2001. High CO2 emissions through porous media: Transport mechanisms and implications for flux measurement and fractionation[J]. Chem Geol, 177(1/2): 15-29.

    Fu C C, Yang T F, Du J, Walia V, Chen Y G, Liu T K, Chen C H. 2008. Variations of helium and radon concentrations in soil gases from an active fault zone in southern Taiwan[J]. Radiat Meas, 43(S1): S348-S352. http://cn.bing.com/academic/profile?id=402ae510b7c09315229d24773945c39d&encoded=0&v=paper_preview&mkt=zh-cn

    Gerlach T M, Doukas M P, McGee K A, Kessler R. 2001. Soil efflux and total emission rates of magmatic CO2 at the Horseshoe Lake tree kill, Mammoth Mountain, California, 1995-1999[J]. Chem Geol, 177(1/2): 101-116. http://www.baidu.com/link?url=JWPV_Df7MwTqCtuzysXw2Ujl9pfEFbxisKBU8W4FclrKZ5bvYuaMfk9il6vwXv9334OQljjrqfvZAk_7A6aGUt0jPirtqySf7bfykzg15vn13ET1XZSoEjQJhnob4UHRKNQ2MJAyR5C99k3Kl7ZxqEWQ8vftbKW1C_KBVVoPe9uKzGtIDYoMk1TzlNyZjUjC-MZtTpdIdACbOK2P5EQ2q5M2gkqOUECEv7O3LFnmqGZKyy-YB6tvUDeqz6KfbUK8Ptwngs_42siFADyHFJ0W612QgKedb_IY_UAeN-M41tyxy83zHBsb2pLkIyD1q4WOmDf9BBZyQA-Ip0o8-e8IyMyxn5ZRn6hH56ReTGvVHpOTFpR_ersAInFE3IH1T7lDm5l-0h5wvg8JLq12QMf7ubkOefCYIA1eTZIbL0gLXa1uULSukvE-wPCdN6W90win&wd=&eqid=cffa593f0002b71800000005588088dd

    Han X K, Li Y, Du J, Zhou X C, Xie C, Zhang W B. 2014. Rn and CO2 geochemistry of soil gas across the active fault zones in the capital area of China[J]. Nat Hazards Earth Syst Sci, 14(10): 2803-2815. doi: 10.5194/nhess-14-2803-2014

    King C Y, Zhang W, Zhang Z C. 2006. Earthquake-induced groundwater and gas changes[J]. Pure Appl Geophys, 163(4): 633-645. doi: 10.1007/s00024-006-0049-7

    Kumar A, Singh S, Mahajan S, Bajwa B S, Kalia R, Dhar S. 2009. Earthquake precursory studies in Kangra valley of North West Himalayas, India, with special emphasis on radon emission[J]. Appl Radiat Isot, 67(10): 1904-1911. doi: 10.1016/j.apradiso.2009.05.016

    Lehmann B E, Ihly B, Salzmann S, Conen F, Simon E. 2004. An automatic static chamber for continuous 220Rn and 222Rn flux measurements from soil[J]. Radiat Meas, 38(1): 43-50. doi: 10.1016/j.radmeas.2003.08.001

    Li Y, Du J G, Wang X, Zhou X C, Xie C, Cui Y J. 2013. Spatial variations of soil gas geochemistry in the Tangshan area of northern China[J]. Terr Atmos Oceanic Sci, 24(3): 323-332. doi: 10.3319/TAO.2012.11.26.01(TT)

    Liu M, Cut X J, Liu F T. 2004. Cenozoic rifting and volcanism in eastern China: A mantle dynamic link to the Indo-Asian collision?[J]. Tectonophysics, 393(1/2/3/4): 29-42. http://cn.bing.com/academic/profile?id=da610f736717b33caa0e4b201c0450b6&encoded=0&v=paper_preview&mkt=zh-cn

    Lombardi S, Voltattorni N. 2010. Rn, He and CO2 soil gas geochemistry for the study of active and inactive faults[J]. Appl Geochem, 25(8): 1206-1220. doi: 10.1016/j.apgeochem.2010.05.006

    Tan Y L, Xiao D T. 2013. Measuring radon exhalation rate in two cycles avoiding the effects of back-diffusion and chamber leakage[J]. Environ Monit Assess, 185(10): 8759-8765. doi: 10.1007/s10661-013-3210-7

    Toutain J P, Baubron J C. 1999. Gas geochemistry and seismotectonics: A review[J]. Tectonophysics, 304(1/2): 1-27. http://cn.bing.com/academic/profile?id=fc15bb6bb18a0d26245b51481883bd7e&encoded=0&v=paper_preview&mkt=zh-cn

    Walia V, Lin S J, Fu C C, Yang T F, Hong W L, Wen K L, Chen C H. 2010. Soil-gas monitoring: A tool for fault delineation studies along Hsinhua fault (Tainan), southern Taiwan[J]. Appl Geochem, 25(4): 602-607. doi: 10.1016/j.apgeochem.2010.01.017

    Walia V, Yang T F, Lin S J, Kumar A, Fu C C, Chiu J M, Chang H H, Wen K L, Chen C H. 2013. Temporal variation of soil gas compositions for earthquake surveillance in Taiwan[J]. Radiat Meas, 50: 154-159. doi: 10.1016/j.radmeas.2012.11.007

    Wiersberg T, Erzinger J. 2008. Origin and spatial distribution of gas at seismogenic depths of the San Andreas fault from drill-mud gas analysis[J]. Appl Geochem, 23(6): 1675-1690. doi: 10.1016/j.apgeochem.2008.01.012

    Woodruff L G, Cannon W F, Eberl D D, Smith D B, Kilburn J E, Horton J D, Garrett R G, Klassen R A. 2009. Continental-scale patterns in soil geochemistry and mineralogy: Results from two transects across the United States and Canada[J]. Appl Geochem, 24(8): 1369-1381. doi: 10.1016/j.apgeochem.2009.04.009

    Yang T F, Chou C Y, Chen C H, Chyi L L, Jiang J H. 2003. Exhalation of radon and its carrier gases in SW Taiwan[J]. Radiat Meas, 36(1/2/3/4/5/6): 425-429. http://cn.bing.com/academic/profile?id=a6993d50af079b04945b6f333c3eb22d&encoded=0&v=paper_preview&mkt=zh-cn

    Yang T F, Walia V, Chyi L L, Fu C C, Chen C H, Liu T K, Song S R, Lee C Y, Lee M. 2005. Variations of soil radon and thoron concentrations in a fault zone and prospective earthquakes in SW Taiwan[J]. Radiat Meas, 40(2/3/4/5/6): 496-502. http://cn.bing.com/academic/profile?id=277f2d8a45a68f159da867df11d217c8&encoded=0&v=paper_preview&mkt=zh-cn

    Zhang W B, Du J G, Zhou X C, Wang F. 2016. Mantle volatiles in spring gases in the Basin and Range Province on the west of Beijing, China: Constraints from helium and carbon isotopes[J]. J Volcanol Geotherm Res, 309: 45-52. doi: 10.1016/j.jvolgeores.2015.10.024

    Zhao D P. 2004. Global tomographic images of mantle plumes and subducting slabs: Insight into deep Earth dynamics[J]. Phys Earth Planet Inter, 146(1/2): 3-34. http://cn.bing.com/academic/profile?id=f70ef57ec7bcb02fc6d83aa4f8b11406&encoded=0&v=paper_preview&mkt=zh-cn

    Zhou X C, Chen Z, Cui Y J. 2016. Environmental impact of CO2, Rn, Hg degassing from the rupture zones produced by Wenchuan MS8.0 earthquake in western Sichuan, China[J]. Environ Geochem Health, 38(5): 1067-1082. doi: 10.1007/s10653-015-9773-1

    Zhuo W H, Furukawa M, Guo Q J, Kim Y S. 2005. Soil radon flux and outdoor radon concentrations in East Asia[J]. Int Congr Ser, 1276: 285-286. doi: 10.1016/j.ics.2004.10.002

图(6)  /  表(3)
计量
  • 文章访问数:  857
  • HTML全文浏览量:  277
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-05
  • 修回日期:  2016-09-28
  • 发布日期:  2016-12-31

目录

/

返回文章
返回