井下地电阻率观测的探测深度初步研究

毛先进, 杨玲英, 赵晋民, 段炜, 庄儒新

毛先进, 杨玲英, 赵晋民, 段炜, 庄儒新. 2017: 井下地电阻率观测的探测深度初步研究. 地震学报, 39(2): 230-238. DOI: 10.11939/jass.2017.02.006
引用本文: 毛先进, 杨玲英, 赵晋民, 段炜, 庄儒新. 2017: 井下地电阻率观测的探测深度初步研究. 地震学报, 39(2): 230-238. DOI: 10.11939/jass.2017.02.006
Mao Xianjin, Yang Lingying, Zhao Jinmin, Duan Wei, Zhuang Ruxin. 2017: Preliminary research on probing depth of borehole geoelectrical resistivity observation. Acta Seismologica Sinica, 39(2): 230-238. DOI: 10.11939/jass.2017.02.006
Citation: Mao Xianjin, Yang Lingying, Zhao Jinmin, Duan Wei, Zhuang Ruxin. 2017: Preliminary research on probing depth of borehole geoelectrical resistivity observation. Acta Seismologica Sinica, 39(2): 230-238. DOI: 10.11939/jass.2017.02.006

井下地电阻率观测的探测深度初步研究

基金项目: 

中国地震局地震科技星火计划 XH16034

中国地震局地震科技星火计划 (XH16034) 资助

详细信息
    通讯作者:

    毛先进, e-mail: maoxj87@163.com

  • 中图分类号: P315.72+2

Preliminary research on probing depth of borehole geoelectrical resistivity observation

  • 摘要: 对井下地电阻率观测的探测深度进行了研究,计算了均匀半空间和给定结构参数的水平层状介质模型在不同装置电极埋深下的探测深度,分析了探测深度与装置电极埋深和介质电阻率结构之间的关系,得到如下结果:①与地表观测相比,在供电极距为1 km左右时,探测深度随装置电极埋深的增大而增大,且增大的速度与装置电极埋深密切相关;当装置电极埋深h < 100 m时,探测深度的增大速度远小于装置电极埋深h≥100 m时. ②当装置电极埋深h < 50 m时,与地表观测相比探测深度增加很小,不超过10 m;当装置电极埋深相同时,供电极距越大,与地表观测相比探测深度增加得越小. ③对于水平层状电阻率均匀分层结构,在装置电极埋深相同的情况下,下伏低阻结构的探测深度显著大于下伏高阻结构.本文的研究结果表明,为了观测到深部电阻率的变化情况,首先需要查明测区电性结构,再进行综合分析,以确定井下地电阻率观测的装置电极埋深,其结果为深部电阻率变化研究提供了理论基础.
    Abstract: In this paper, we studied probing depths of borehole geoelectrical resistivity observation by homogeneous half-space model and horizontally layered model with given structure parameters, and analyzed the relationship among probing depth, electrode buried depth of configuration and medium resistivity structure. The results are as follows: ① Compared with surface observation, when electrode distance is about 1 km, probing depth increases with electrode buried depth of configuration, and the increasing rate is closely related with electrode buried depth, as the increasing rate of electrode buried depth less than 100 m is much smaller than that greater than 100 m. ② When electrode buried depth of configuration is within 50 m, probing depth has a slow increase which is less than 10 m, compared with surface observation. For the same electrode buried depth, the greater electrode distance is, the smaller probing depth increases. ③ For the horizontally layered structure of homogeneous resistivity, probing depth in underlying low resistivity structure is significantly larger than that in underlying high resistivity structure under the condition of same electrode buried depth of configurations. Therefore, in order to observe the resistivity variations of deep medium, it is necessary to firstly identify the electrical structure parameters of observation area, and then determine electrode buried depth of borehole geoelectrical resistivity observation through comprehensive analyses.
  • 图  1   几种常用观测装置的探测深度z随电极埋深h的变化 (均匀半空间)

    Figure  1.   The variation curves of probing depths z along with electrode buried depths h of several common observation configurations (homogeneous half-space)

    图  2   几种常用观测装置的探测深度z随电极埋深h的变化

    (a) 下伏低阻; (b) 下伏高阻

    Figure  2.   The variation curves of probing depths z along with electrode buried depths h of several common observation configurations

    (a) Underlying low resistivity structure; (b) Underlying high resistivity structure

    表  1   几种常用观测装置在井下的探测深度 (均匀半空间)

    Table  1   The borehole probing depths of several common observation configurations (homogeneous half-space)

    装置电极埋深
    h/m
    C1
    (L=150 m,
    a=25 m)
    C2
    (L=300 m,
    a=75 m)
    C3
    (L=400 m,
    a=75 m)
    C4
    (L=500 m,
    a=125 m)
    C5
    (L=600 m,
    a=125 m)
    0 148.2 292.1 394.1 486.8 589.0
    10 148.8 292.3 394.3 486.9 589.1
    20 150.2 293.1 394.8 487.4 589.5
    50 160.3 298.4 398.8 490.6 592.2
    100 190.9 316.3 412.5 501.8 601.5
    200 276.5 378.1 462.5 543.9 637.3
    300 371.9 459.4 533.4 606.1 691.9
    500 569.1 644.2 705.6 765.7 838.2
    注:L=AB/2,a=MN/2,下同.
    下载: 导出CSV

    表  2   几种常见观测装置在井下的探测深度 (下伏低阻)

    Table  2   The borehole probing depths of several common observation configurations (underlying low resistivity structure)

    装置电极埋深
    h/m
    C1
    (L=150 m,
    a=25 m)
    C2
    (L=300 m,
    a=75 m)
    C3
    (L=400 m,
    a=75 m)
    C4
    (L=500 m,
    a=125 m)
    C5
    (L=600 m,
    a=125 m)
    0 184.4 344.3 458.2 551.3 645.0
    10 184.9 344.6 458.5 551.5 645.2
    20 186.2 345.3 459.0 551.8 645.6
    50 194.9 350.0 462.3 554.7 647.8
    100 221.5 365.3 473.6 563.9 655.7
    200 297.7 419.4 516.3 600.0 686.4
    300 377.9 477.6 563.2 639.6 720.6
    500 570.2 646.9 712.9 773.8 841.1
    下载: 导出CSV

    表  3   几种常见观测装置在井下的探测深度 (下伏高阻)

    Table  3   The borehole probing depths of several common observation configurations (underlying high resistivity structure)

    装置电极埋深
    h/m
    C1
    (L=150 m,
    a=25 m)
    C2
    (L=300 m,
    a=75 m)
    C3
    (L=400 m,
    a=75 m)
    C4
    (L=500 m,
    a=125 m)
    C5
    (L=600 m,
    a=125 m)
    0 104.5 162.6 238.8 305.6 388.7
    10 104.9 162.7 239.0 305.8 388.8
    20 105.8 163.3 239.5 306.2 389.2
    50 111.0 167.3 242.4 308.6 391.2
    100 124.3 180.3 252.4 317.1 398.1
    200 251.1 300.0 351.0 402.4 469.7
    300 365.5 424.3 472.5 516.3 572.1
    500 568.0 632.2 681.2 721.9 769.7
    下载: 导出CSV
  • 杜学彬, 叶青, 马占虎, 李宁, 陈军营, 谭大诚. 2008.强地震附近电阻率对称四极观测的探测深度[J].地球物理学报, 51(6): 1943-1949. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200806039.htm

    Du X B, Ye Q, Ma Z H, Li N, Chen J Y, Tan D C. 2008. The detection depth of symmetric four-electrode resistivity observation in/near the epicentral region of strong earthquakes[J]. Chinese Journal of Geophysics, 51(6): 1943-1949 (in Chinese). http://manu39.magtech.com.cn/Geophy/EN/abstract/abstract861.shtml

    杜学彬. 2010.在地震预报中的两类视电阻率变化[J].中国科学:地球科学, 40(10): 1321-1330. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201010004.htm

    Du X B. 2011. Two types of changes in apparent resistivity in earthquake prediction[J]. Science China Earth Sciences, 54(1): 145-156. doi: 10.1007/s11430-010-4031-y

    傅良魁. 1983.电法勘探教程[M].北京:地质出版社: 18-19. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm

    Fu L K. 1983. Electrical Prospecting Tutorial [M]. Beijing: Geological Publishing House: 18-19 (in Chinese).

    桂燮泰, 关华平, 戴经安. 1989.唐山、松潘地震前视电阻率短临异常图象重现性[J].西北地震学报, 11(4): 71-75. http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ198904007.htm

    Gui X T, Guan H P, Dai J A. 1989. The short-term and immediate anomalous pattern recurrences of the apparent resistivity before the Tangshan and Songpan earthquakes of 1976[J]. Northwestern Seismological Journal, 11(4): 71-75 (in Chinese).

    霍军廷, 吴信民, 李乃民. 2011.电阻率剖面法探测深度的研究[J].物探化探计算技术, 33(4): 418-423. http://www.cnki.com.cn/Article/CJFDTOTAL-WTHT201104013.htm

    Huo J T, Wu X M, Li N M. 2011. Study of investigation depth of electrical resistivity profiling method[J]. Computing Techniques for Geophysical and Geochemical Exploration, 33(4): 418-423 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTHT201104013.htm

    刘允秀, 吴国有, 王蕃树, 王邦本. 1985. 深埋电极地电阻率观测的实验结果[G]//地震预测: 地电方法论文集. 福州: 福建科学技术出版社: 206-216.

    Liu Y X, Wu G Y, Wang F S, Wang B B. 1985. Study on experimental results of buried electrode resistivity monitoring system[G]// Earthquake Prediction: Collection of Papers on Georesistivity Method. Fuzhou: Fujian Science and Technology Press: 206-216 (in Chinese).

    毛先进, 鲍光淑. 1998.一种适于电阻率成像的正演新方法[J].地球物理学报, 41(增刊): 385-393. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX1998S1040.htm

    Mao X J, Bao G S. 1998. A new modeling method for resistivity tomography[J]. Acta Geophysica Sinica, 41(Suppl): 385-393 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX1998S1040.htm

    毛先进, 杨玲英, 钱家栋. 2014.水平层状介质中深埋装置系统地电阻率影响系数特征研究[J].地震学报, 36(4): 678-685. http://www.dzxb.org/Magazine/Show?id=28994

    Mao X J, Yang L Y, Qian J D. 2014. Characteristics of the influence coefficient in the cases of deeply-buried configurations for geoelectrical resistivity observation[J]. Acta Seismologica Sinica, 36(4): 678-685 (in Chinese). http://www.dzxb.org/Magazine/Show?id=28994

    孟庆武, 阎洪朋. 1991.临沂台深井电阻率异常变化与地震的关系[J].西北地震学报, 13(4): 70-74. http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ199104010.htm

    Meng Q W, Yan H P. 1991. Anomalous changes of resistivity in deep wells observed at Linyi station and its relation to earthquakes[J]. Northwestern Seismological Journal, 13(4): 70-74 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZBDZ199104010.htm

    聂永安, 姚兰予. 2009.成层半空间深埋电极产生的电位分布[J].中国地震, 25(3): 246-255. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD200903002.htm

    Nie Y A, Yao L Y. 2009. Study on electrical potential by buried source electrode within horizontally layered half-space model[J]. Earthquake Research in China, 25(3): 246-255 (in Chinese). http://www.cqvip.com/QK/84216X/201002/34571089.html

    聂永安, 巴振宁, 聂瑶. 2010.深埋电极的地电阻率观测研究[J].地震学报, 32(1): 33-40. http://www.dzxb.org/Magazine/Show?id=27252

    Nie Y A, Ba Z N, Nie Y. 2010. Study on buried electrode resistivity monitoring system[J]. Acta Seismologica Sinica, 32(1): 33-40 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB201001005.htm

    钱复业, 赵玉林, 于谋明, 王志贤, 刘小伟, 常思敏. 1982.地震前地电阻率的异常变化[J].中国科学:化学, 12(9): 831-839. http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ198202004.htm

    Qian F Y, Zhao Y L, Yu M M, Wang Z X, Liu X W, Chang S M. 1983. Geoelectric resistivity anomalies before earthquakes[J]. Science in China: Chemistry, 26(3): 326-336. http://en.cnki.com.cn/Article_en/CJFDTOTAL-JBXG198303009.htm

    钱复业, 赵玉林, 刘婕, 黄燕妮. 1990.唐山7.8级地震地电阻率临震功率谱异常[J].地震, 10(3): 33-39. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN199003004.htm

    Qian F Y, Zhao Y L, Liu J, Huang Y N. 1990. Power spectrum anomaly of earth resistivity immediately before Tang-shan earthquake M 7.8[J]. Earthquake, 10(3): 33-39 (in Chinese).

    钱家栋, 马钦忠, 李劭秾. 2013.汶川MS8.0地震前成都台NE测线地电阻率异常的进一步研究[J].地震学报, 35(1): 4-17. http://www.dzxb.org/Magazine/Show?id=28812

    Qian J D, Ma Q Z, Li S N. 2013. Further study on the anomalies in apparent resistivity in the NE configuration at Chengdu station associated with Wenchuan MS8.0 earthquake[J]. Acta Seismologica Sinica, 35(1): 4-17 (in Chinese).

    苏鸾声, 王邦本, 夏良苗, 李验轩. 1982.井下电极观测地电阻率排除地面干扰的实验[J].地震学报, 4(3): 274-276. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB198203005.htm

    Su L S, Wang B B, Xia L M, Li Y X. 1982. Elimination of surface disturbances in earth-resistivity measurement by lowering the electrodes in shallow wells[J]. Acta Seismologica Sinica, 4(3): 274-276 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB198203005.htm

    王兰炜, 张宇, 张世中, 颜蕊, 王子影, 张兴国, 胡哲. 2015.我国井下地电阻率观测技术现状分析[J].地震地磁观测与研究, 36(2): 95-102. http://www.cnki.com.cn/Article/CJFDTOTAL-DZGJ201502019.htm

    Wang L W, Zhang Y, Zhang S Z, Yan R, Wang Z Y, Zhang X G, Hu Z. 2015. The status of deep-well geo-electrical resistivity observation in China[J]. Seismological and Geomagnetic Observation and Research, 36(2): 95-102 (in Chinese).

    解滔, 杜学彬, 陈军营, 安张辉, 谭大诚, 范莹莹, 刘君. 2012.井下地电阻率观测中地表电流干扰影响计算[J].地球物理学进展, 27(1): 112-121. doi: 10.6038/j.issn.1004-2903.2012.01.013

    Xie T, Du X B, Chen J Y, An Z H, Tan D C, Fan Y Y, Liu J. 2012. Calculation for the influence from the surface disturbance current in the deep-well geoelectrical resistivity observation[J]. Progress in Geophysics, 27(1): 112-121 (in Chinese). http://manu39.magtech.com.cn/Geoprog/EN/abstract/abstract8478.shtml

    解滔, 杜学彬, 卢军. 2016.井下视电阻率观测影响系数分析[J].中国地震, 32(1): 40-53. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD201601004.htm

    Xie T, Du X B, Lu J. 2016. Sensitivity coefficients analysis of deep-well apparent resistivity measurement[J]. Earthquake Research in China, 32(1): 40-53 (in Chinese).

    杨兴悦, 王燕, 张立红, 张俏丽, 叶媛媛. 2015.天水井下地电阻率资料应用研究[J].震灾防御技术, 10(1): 173-183. doi: 10.11899/zzfy20150118

    Yang X Y, Wang Y, Zhang L H, Zhang Q L, Ye Y Y. 2015. Analysis of geoelectrical resistivity data from underground well at Tianshui station[J]. Technology for Earthquake Disaster Prevention, 10(1): 173-183 (in Chinese).

    叶青, 杜学彬, 陈军营, 谭大成, 马占虎. 2005. 2003年大姚和民乐—山丹地震1年尺度预测[J].地震研究, 28(3): 226-230. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ200503003.htm

    Ye Q, Du X B, Chen J Y, Tan D C, Ma Z H. 2005. One-year prediction for the Dayao and Minle-Shandan earthquakes in 2003[J]. Journal of Seismological Research, 28(3): 226-230 (in Chinese).

    张国民, 傅征祥, 桂燮泰. 2001.地震预报引论[M].北京:科学出版社: 214-270. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm

    Zhang G M, Fu Z X, Gui X T. 2001. Introduction to Earthquake Prediction [M]. Beijing: Science Press: 214-270 (in Chinese).

    张磊, 乔子云, 罗娜, 张国苓, 贾立峰, 白云刚, 张波. 2015.河北大柏舍台深井与浅层地电阻率观测对比分析[J].华北地震科学, 33(4): 49-53. http://www.cnki.com.cn/Article/CJFDTOTAL-HDKD201504010.htm

    Zhang L, Qiao Z Y, Luo N, Zhang G L, Jia L F, Bai Y G, Zhang B. 2015. Contrastive analysis of georesistivity in deep-well and on ground at Dabaishe station[J]. North China Earthquake Sciences, 33(4): 49-53 (in Chinese).

    张学民, 李美, 关华平. 2009.汶川8.0级地震前的地电阻率异常分析[J].地震, 29(1): 108-115. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN200901014.htm

    Zhang X M, Li M, Guan H P. 2009. Anomaly analysis of earth resistivity observations before the Wenchuan earthquake[J]. Earthquake, 29(1): 108-115 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZN200901014.htm

    赵和云, 钱家栋. 1982.地电阻率法中勘探深度和探测范围的理论讨论和计算[J].西北地震学报, 4(1): 40-56. http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ198201003.htm

    Zhao H Y, Qian J D. 1982. Theoretical discussion and calculation about detective depth and detective range in earth resistivity method[J]. Northwestern Seismological Journal, 4(1): 40-56 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZBDZ198201003.htm

    Lu J, Qian F Y, Zhao Y L. 1999. Sensitivity analysis of the Schlumberger monitoring array: Application to changes of resistivity prior to the 1976 earthquake in Tangshan, China[J]. Tectonophysics, 307(3/4): 397-405. https://www.researchgate.net/publication/256860286_Sensitivity_analysis_of_the_Schlumberger_monitoring_array_Application_to_changes_of_resistivity_prior_to_the_1976_earthquake_in_Tangshan_China

  • 期刊类型引用(1)

    1. 李祥秀,范世凯,李小军,刘爱文. 场地地震动特征周期对高层建筑结构工程材料用量和破坏状态影响的研究. 地震科学进展. 2024(08): 497-505 . 百度学术

    其他类型引用(0)

图(2)  /  表(3)
计量
  • 文章访问数:  708
  • HTML全文浏览量:  303
  • PDF下载量:  26
  • 被引次数: 1
出版历程
  • 收稿日期:  2016-05-16
  • 修回日期:  2016-09-04
  • 发布日期:  2017-02-28

目录

    /

    返回文章
    返回