Multi-source remote sensing characteristics and mechanism analyses of building seismic damages
-
摘要: 随着遥感信息源的不断增加,多种遥感数据被用于详细判读建筑物的震害情况.为准确判读震害等级与建立震害自动识别模式,本文收集整理了汶川地震震区的震害遥感图像,通过目视判读、图像处理、统计分析,重点分析了各类震害建筑物在光学影像中的特征表现、在合成孔径雷达图像中的成像机理特征以及在激光雷达图像中的三维特征.在此基础上构建了建筑物简化模型,并联合光学影像和雷达图像对震害建筑物的影像特征剖面予以分析.结果显示:光学遥感图像色彩信息符合人眼色觉原理,具有较好的直观判读效果;合成孔径雷达图像能够记录地物侧面、表面的粗糙程度和角反射特点,信息量丰富但不直观;激光雷达图像能获取建筑物的三维信息,因此震害评估工作中需有效地综合利用多源遥感数据,才能实现最佳的判识效果.Abstract: With the increasing of remote sensing information sources, a variety of remote sensing data are used to interpret the seismic damage of buildings in seismic damage assessment. In order to accurately interpret the seismic damage grade and establish the automatic identification model, this paper focuses on the analyses of the characteristics of all kinds of buildings in the optical images, the imaging characteristics of synthetic aperture radar (SAR) images, and the three-dimensional characteristics of the light detection and ranging (LiDAR) images by means of visual interpretation, image processing, statistical analyses after collecting the remote sensing images of the MS8.0 Wenchuan earthquake in 2008 and MS7.1 Yushu earthquake in 2010. Furthermore, several simplified models of the building are constructed, and the profile features of the images involving many kinds destroyed building are analyzed in combination with the images from optical and radar sensors. The related study results show that the color information from optical remote sensing image is in accordance with the human eye color principle, which is propitious to obtain better interpretation of results; the SAR image can reflect the features of side/surface roughness and angle reflection; LiDAR image can obtain the three-dimensional information of the building. Therefore, the multi-source remote sensing data should be integrated effectively so as to achieve the best effect in seismic damage assessment.
-
-
图 3 不同分辨率SAR图像中的建筑 (区)
(a) 分辨率为20 m的ENVISAT ASAR图像; (b) 分辨率为8 m的RADARSAT-1图像; (c) 分辨率为3 m的TerraSAR-X图像;(d) 分辨率为1 m的COSMO-SkyMed图像
Figure 3. The building samples in different resolution SAR images
(a) 20 m-resolution ENVISAT ASAR image; (b) 8 m-resolution RADARSAT-1 image; (c) 3 m-resolution TerraSAR-X image; (d) 1 m-resolution COSMO-SkyMed image
图 5 汶川地震都江堰地区中等破坏建筑物光学图像与SAR图像
(a) 震前谷歌图像;(b) 震后航片;(c) 震后COSMO-SkyMed图像
Figure 5. Optical image and SAR image of moderately damaged buildings in Dujiangyan area after the Wenchuan earthquake
(a) Google image before the earthquake; (b) Aerial image after the earthquake; (c) COSMO-SkyMed image after the earthquake
图 13 平顶建筑物SAR图像特征示意图 (金鼎坚,2012)
(a) θ<arctan (h/w); (b) θ>arctan (h/w)θ表示雷达入射角,w表示建筑物侧面宽度,h表示建筑物高度,g表示地面后向散射,c表示角反射,f表示墙面后向散射,r表示屋顶后向散射,s表示阴影.第二行表示地距图像上雷达回波的组成,条带高度表示回波的相对强度
Figure 13. Schematic diagram of SAR image of flat-top buildings
(a) θ < arctan (h/w); (b) θ > arctan (h/w) θ represents incident angle of radar, w represents building side width, h represents building height, g represents ground backscattering, c represents angle reflection, f represents wall backscattering, r represents roof backscattering, s represents shadow. The second line represents the composition of radar echoes on the ground image, and the height of the strip indicates the relative intensity of the echo
图 15 θ<arctan (h/w) 时的建筑物剖面线
A为屋前地面散射部分;B为叠掩 (由地面回波、墙面回波和屋顶回波叠加形成) 部分,且存在地面和墙面形成的角反射效应;C为阴影部分;D为屋后地面散射部分
Figure 15. Building profile line on the condition of θ < arctan (h/w)
A represents ground scattering in front of house; B represent layerover (formed by ground echo, wall echo and roof echo), and there is an angle reflection effect formed by ground and wall; C represents shadow; D represents ground scattering behind the house
图 17 θ>arctan (h/w) 时的建筑物剖面线
A为屋前地面散射部分;B为叠掩 (由地面回波、墙面回波和屋顶回波叠加形成) 部分,且存在地面和墙面形成的角反射效应;C为屋顶散射部分;D为阴影部分;E为屋后地面散射部分
Figure 17. Building profile on the condition of θ > arctan (h/w)
A represents ground scattering in front of house; Brepresents layerover (formed by ground echo, wall echo and roof echo), and there is an angle reflection effect formed by ground and wall; C represents roof scattering; D represents shadow; E represents ground scattering behind the house
图 20 θ>α时建筑物剖面图
A为地面散射部分; B为叠掩 (包括地面回波、墙面回波和正面屋顶回波叠加组成) 部分,且存在地面和墙面形成的角反射效应;C为屋顶散射部分; D为阴影部分; E为屋后地面散射部分
Figure 20. Building profile on the condition of θ > α
A represents ground scattering; B represents layerover (formed by ground echo, wall echo and roof echo), and there is an angle reflection effect formed by ground and wall, C represents roof scattering, D represents shadow, E represents ground scattering behind the house
表 1 宏观地面调查与遥感震害调查的建筑物震害类型对应表
Table 1 The correspondence of seismic damage types between macroscopic ground investigation and remote sensing investigation
序号 宏观地面调查分类 遥感震害调查分类 1 基本完好 2 轻微破坏 基本完好 3 中等破坏 4 严重破坏 中等破坏 5 毁坏 毁坏 -
安立强. 2011.基于SAR影像的震害信息提取方法研究[D].北京:中国地震局地壳应力研究所: 30-37. An L Q. 2011. Seismic Damage Information Extraction From High Resolution SAR Imagery[D]. Beijing: Institute of Crustal Dynamics, China Earthquake Administration: 30-37 (in Chinese).
焦其松. 2015.基于LiDAR的建筑物震害分析[D].哈尔滨:中国地震局工程力学研究所: 43-48. http://cn.bing.com/academic/profile?id=1387c30999c57efc976ec3cbf7bf061a&encoded=0&v=paper_preview&mkt=zh-cn Jiao Q S. 2015. The Buildings Earthquake Damage Analysis Based on LiDAR[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 43-48 (in Chinese). http://cn.bing.com/academic/profile?id=680bbfcb4fe8ab4346c63a728f1b4d4b&encoded=0&v=paper_preview&mkt=zh-cn
金鼎坚. 2012.高分辨率SAR影像建筑物震害信息提取方法研究[D].北京:中国地震局地震预测研究所: 49-52. Jin D J. 2012. Methods of Extracting Building Damage From High Resolution SAR Imagery[D]. Beijing: Institute of Earthquake Science, China Earthquake Administration: 49-52 (in Chinese).
李德仁. 2009.对地观测与抗震救灾[J].测绘科学, 34(1): 8-10. http://www.cnki.com.cn/Article/CJFDTOTAL-CHKD200901004.htm Li D R. 2009. Intelligent earth observation systems and earthquake relief[J]. Science of Surveying and Mapping, 34(1): 8-10 (in Chinese). http://cn.bing.com/academic/profile?id=8d845951d5c97e2c28986e622ed90722&encoded=0&v=paper_preview&mkt=zh-cn
柳稼航. 2003.利用遥感技术进行城市建筑物震害的自动识别与分类方法研究[D].北京:中国地震局地质研究所: 12-15. http://cn.bing.com/academic/profile?id=07ddb8f33545fc0d44d6a76153d35b9a&encoded=0&v=paper_preview&mkt=zh-cn Liu J H. 2003. A Method Study on Automatic Recognition and Classification of Earthquake-Caused Building Damage in Cities Using Remote Sensing[D]. Beijing: Institute of Geology, China Earthquake Administration: 12-15 (in Chinese).
刘金玉, 张景发, 刘国林. 2013.基于高分辨率SAR图像成像机理的震害信息分析[J].国土资源遥感, 25(3): 61-65. doi: 10.6046/gtzyyg.2013.03.11 Liu J Y, Zhang J F, Liu G L. 2013. An analysis of earthquake damage information based on imaging mechanism of the high resolution SAR image[J]. Remote Sensing for Land & Resources, 25(3): 61-65 (in Chinese).
邵芸, 宫华泽, 王世昂, 张风丽, 田维. 2008.多源雷达遥感数据汶川地震灾情应急监测与评价[J].遥感学报, 12(6): 865-870. http://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200806006.htm Shao Y, Gong H Z, Wang S A, Zhang F L, Tian W. 2008. Multi-source SAR remote sensing data for rapid response to Wenchuan earthquake damage assessment[J]. Journal of Remote Sensing, 12(6): 865-870 (in Chinese).
王栋梁. 2007.遥感震害指数与地面调查震害指数关系的定量研究[D].北京:中国地震局地震预测研究所: 16-18. http://cn.bing.com/academic/profile?id=edc7c7630f40ed24ade15d0e513de21c&encoded=0&v=paper_preview&mkt=zh-cn Wang D L. 2007. Quantitative Study on the Relationship Between Seismic Damage Index of Remote Sensing and Seismic Damage Index of Ground[D]. Beijing: Institute of Earthquake Science, China Earthquake Administration: 16-18 (in Chinese).
张红, 王超, 张波, 吴樊, 闫冬梅. 2009.高分辨率SAR图像目标识别[M].北京:科学出版社: 1-3. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm Zhang H, Wang C, Zhang B, Wu F, Yan D M. 2009. Target Recognition in High Resolution SAR Image[M]. Beijing: Science Press: 1-3 (in Chinese).
张磊. 2008.遥感震害快速评估关键技术研究[D].北京:中国地震局地壳应力研究所: 19-20. Zhang L. Research on Key Technologies of Rapid Assessment of Seismic Damage of Remote Sensing[D]. Beijing: Institute of Crust Dynamics, China Earthquake Administration: 19-20 (in Chinese). http://cn.bing.com/academic/profile?id=278f79c9ca3180c4ec8feee31a08d5d7&encoded=0&v=paper_preview&mkt=zh-cn
赵福军. 2010.遥感影像震害信息提取技术研究[D].哈尔滨:中国地震局工程力学研究所: 43-44. http://cn.bing.com/academic/profile?id=631dd596b400074637f8014ab04761d8&encoded=0&v=paper_preview&mkt=zh-cn Zhao F J. 2010. Seismic Disaster Information Extraction From Remotely Sensed Imagery[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 43-44 (in Chinese). http://www.academia.edu/16045087/Geographic_Information_Systems_GIS_Techniques_Applications_and_Technologies
赵凌君. 2009.高分辨率SAR图像建筑物提取方法研究[D].长沙:国防科学技术大学: 16-18. Zhao L J. 2009. Building Extraction From High Resolution SAR Imagery[D]. Changsha: National University of Defense Technology: 16-18 (in Chinese).
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2011. GB/T 18208.3-2011地震现场工作第3部分:调查规范[S].北京:中国标准出版社: 10. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. 2011. GB/T 18208.3-2011 Post-Earthquake Field Works, Part 3: Code for Field Survey[S]. Beijing: China Standards Press: 10 (in Chinese).
Brunner D, Lemonine G, Bruzzone L. 2010. Earthquake damage assessment of buildings using VHR optical and SAR imagery[J]. IEEE Trans Geosci Remote Sens, 48(5): 2403-2420. doi: 10.1109/TGRS.2009.2038274
Gamba P, Dell′Acqua F, Trianni G. 2007. Rapid damage detection in Bam area using multitemporal SAR and exploiting ancillary data[J]. IEEE Trans Geosci Remote Sens, 45(6): 1582-1589. doi: 10.1109/TGRS.2006.885392
Matsuoka M, Yamazaki F. 2002. Application of the damage detection method using SAR intensity images to recent earthquakes[C]//Proceedings of 2002 IEEE International Geoscience and Remote Sensing Symposium. Toronto, Canada: IEEE, 4: 2042-2044.
Matsuoka M, Yamazaki F. 2004. Use of SAR intensity imagery for earthquake damage detection[C]//Proceedings of the 2nd International Workshop on Remote Sensing for Post-Disaster Response. Newport Beach, CA, USA: Beckman Center of the National Academies: 125.
Mitomi H, Yamazaki F, Matsuoka M. 2000. Automated detection of building damage due to recent earthquakes using aerial television images[C]//Proceedings of the 21st International Asian Conference on Remote Sensing.Taipei, China: Center for Space & Remote Sensing Research, Taiwan University: 401-406.
Turker M, San B T. 2004. Detection of collapsed buildings caused by the 1999 Izmit, Turkey earthquake through digital analysis of post-event aerial photographs[J]. Int J Remote Sens, 25(21): 4701-4714. doi: 10.1080/01431160410001709976
Zhu L, Shimamura H, Tachibana K, Li Y, Gong P. 2008. Building change detection based on object extraction in dense urban areas[C]//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science. Beijing: International Society for Photogrammetry and Remote Sensing, XXXVII: 905-908.
-
期刊类型引用(8)
1. 顾诗瑶,王玲,刘飞,田兵伟. 基于无人机影像的长宁地震建筑物震害提取与成因分析. 灾害学. 2021(01): 217-222 . 百度学术
2. 杜浩国,张方浩,卢永坤,曹彦波,邓树荣,和仕芳,张原硕,徐俊祖. 基于无人机影像的面向对象建筑物结构分级提取方法研究. 地震研究. 2021(02): 262-274 . 百度学术
3. 杜浩国,林旭川,张建国,杜浩标,张方浩,杜竹泉,卢永坤,代博洋. 基于改进蚁群算法与无人机影像的震害识别方法及其在漾濞地震中的应用. 地震地质. 2021(04): 1013-1029 . 百度学术
4. 于浩,于楮芃,赵明朝,冯石. 基于无人机影像的辽宁农村建筑物结构类型解译标志探索. 黑龙江科学. 2020(12): 162-164 . 百度学术
5. 肖修来,翟玮,郭晓,裴万胜,邓津. 极化SAR建筑物震害信息识别研究方法综述. 遥感技术与应用. 2020(03): 509-516 . 百度学术
6. 杜妍开,龚丽霞,李强,张景发. 基于最优分割的高分辨率遥感影像震害建筑物识别技术. 地震学报. 2020(06): 760-768+782 . 本站查看
7. 李金香,赵朔,金花,李亚芳,郭寅. 结合纹理和形态学特征的高分遥感影像建筑物震害信息提取. 地震学报. 2019(05): 658-670+681 . 本站查看
8. 高宪慧. 雷达遥感对建筑物震害信息提取方法的综述. 智能城市. 2018(03): 46-47 . 百度学术
其他类型引用(5)