Atmospheric correction for InSAR and its application in mapping ground motion due to interseismic strain accumulation
-
摘要: 为了获取青藏高原东北缘老虎山断裂带精确的震间形变速率场,通过对短时间基线干涉图大气改正效果的评价,从3种外部大气数据(MERIS, ERA-Ⅰ, WRF)中确定出最优的大气改正方法,用于长时间基线干涉图中的大气信号改正;然后利用层叠法(stacking)累积平均经大气和轨道改正后的干涉图,获取了研究区的震间形变速率场.结果显示:海原断裂系统区域内,MERIS和ERA-Ⅰ的大气改正效果优于WRF;MERIS和ERA-Ⅰ的改正结果给出了相似的形变速率场,断层两盘相对形变速率为视线向2.5 mm/a,转换成平行于断层方向为6.5 mm/a,与GPS结果一致;在近断层5 km的范围内,出现了较大的形变梯度,揭示了浅层蠕滑的存在.Abstract: It is essential to correct the atmospheric error for measuring interseismic deformation in the order of mm/a. In this paper, Laohushan fault on the northeastern margin of the Tibetan Plateau is chosen as the study area. In order to derive the accurate interseismic deformation field, we evaluate three atmospheric correction methods (MERIS, ERA-Ⅰ, WRF) based on the corrected results on interferograms with small temporal-baselines. The optimal atmospheric correction methods and orbital correction methods are applied to correct errors in the large-temporal-baseline interferograms, then the average interseismic deformation fields are achieved by stacking the atmosphere and orbit-corrected interferograms. Our results show that the MERIS and ERA-Ⅰ are more suitable to be used to correct the atmospheric effect in ASAR interferograms than WRF in Haiyuan fault system area; on the other hand, the MERIS-corrected and ERA-Ⅰ-corrected deformation rate fields show a similar pattern of left-lateral displacement across the Laohushan fault, and the profiles across the fault show that the line-of-sight velocity across the fault is 2.5 mm/a, which is equal to 6.5 mm/a parallel to the fault and accords well with GPS observations. In addition, there is a large displacement gradient within 5 km near the fault, revealing shallow creep near the surface.
-
Keywords:
- InSAR /
- atmospheric correction /
- active fault /
- interseismic deformation /
- Laohushan fault
-
-
图 3 基于3种大气改正方法的残差相位直方图
黑色叉号表示每幅图残差的频率分布(共7幅),红色曲线表示基于7幅图残差分布拟合的正态曲线
Figure 3. Histograms of residual phase from the results corrected by three different atmospheric correction methods
Black crosses are the frequency for each interferogram (seven in total), and red curves stand for the fitted normal curve of the residuals of the seven interferogams
图 4 海原断裂带的地质构造图和试验数据分布
背景为来自SRTM (Shuttle Radar Topography Mission)的高程,黑色虚线表示Envisat ASAR数据和MERIS数据的覆盖范围,黑色实线矩形框表示WRF第三层嵌套的范围,红色方块表示ERA-Ⅰ的数据分布
Figure 4. Tectonic map of the Haiyuan fault zone and distribution of test data
Fault traces are superimposed on SRTM DEM. The black dashed rectangle shows the coverage of Envisat ASAR data and MERIS data. The black solid rectangle stands for the coverage of WRF simulation. Red squares represent data from ERA-Ⅰ. And the epicenter of two large historical earthquakes are marked as magenta points
图 5 降轨数据061条带覆盖老虎山断裂的ASAR数据时空分布
红色圆圈表示条带内的雷达数据,其中红色实心圆表示无云情况.红线表示可由MERIS数据改正的长时间基线干涉图,绿线表示可由ERA-Ⅰ数据改正的长时间基线干涉图
Figure 5. Spatio-temporal baseline plot of Envisat ASAR acquisitions for descending track 061 covering the Laohushan fault
Acquisitions are numbered time sequentially, and 11 of them marked with red solid circle are largely cloud-free. The two long-temporal-baseline inter-ferograms denoted by red line are corrected for atmospheric effects using MERIS data, and the four long-temporal-baseline interferograms marked by green lines are corrected by using ERA-Ⅰ data
图 7 以一个基于MERIS改正的干涉对(040522-100116,上)和基于ERA-Ⅰ改正的干涉对(041218-100116,下)为例展示图 6所示的形变速率场获取过程
从左至右分别为原始干涉图、湿延迟、流体静力学延迟、经过大气改正的干涉图、拟合得到的轨道误差和轨道改正后的残余误差
Figure 7. Deriving process of the deformation field from one interferogram pair (040522-100116, upper panels) corrected by MERIS data and the other one (041218-100116, lower panels) corrected by ERA-Ⅰ data as shown in Fig.6
From left to right, shown are original interferograms, the wet delay from MERIS and ERA-Ⅰ data, the hydrostatic delay from MERIS and ERA-Ⅰ data, the atmosphere-corrected interferograms, linear orbital ramp, and residual interferograms after orbital correction
图 8 InSAR震间形变场和形变场剖面线
(a)和(b)分别表示基于MERIS改正和ERA-Ⅰ改正的震间形变场,其中红色实线矩形框内的断层为老虎山断裂,红色虚线矩形框内的断层为景泰断裂;(c)和(d)分别表示速度场剖面线AA′和BB′平行于断层的水平运动速率,其中黄点和绿点分别表示基于MERIS和ERA-Ⅰ大气改正后的形变场在剖面线上的投影,而红线和黑线分别表示对应其平均值
Figure 8. Interseismic velocity field of study area and its two profiles across the fault
(a) The MERIS-corrected rate map; (b) The ERA-Ⅰ-corrected rate map. The red solid rectangle covers the Laohushan fault, and the red dashed rectangle covers the Jingtai fault; (c) The fault-parallel velocity of the AA′ profile from two rate maps; (d) The fault-parallel velocity of the BB′ profile from two rate maps. Black and green points are the projection of MERIS-corrected and ERA-Ⅰ-corrected rate map on the profile, and red line and black line are their mean values
-
崔喜爱, 曾琪明, 童庆禧, 焦健, 梁存任. 2014.重轨星载InSAR测量中的大气校正方法综述[J].遥感技术与应用, 29(1): 9-17. https://wenku.baidu.com/view/b0a587b8fab069dc51220108.html Cui X A, Zeng Q M, Tong Q X, Jiao J, Liang C R. 2014. Overview of the atmospheric correction methods in repeat-pass InSAR measurements[J]. Remote Sensing Technology and Application, 29(1): 9-17 (in Chinese). https://wenku.baidu.com/view/b0a587b8fab069dc51220108.html
代如锋. 2015. WRF模式在西北地区的适用性分析[C]//第32届中国气象学会年会: 军用数值天气预报技术及应用. 北京: 中国气象学会: 9. Dai R F. 2015. The applicability analysis of WRF model in northwest China[C]//The 32th Annual Meeting of Chinese Meteorological Society: Military Numerical Weather Forecast Techniques and Application. Beijing: Chinese Meteorological Society: 9 (in Chinese).
国家地震局地质研究所, 宁夏回族自治区地震局. 1990.海原活动断裂带[M].北京:地震出版社: 1-286. Institute of Geology of State Seismological Bureau, Seismological Bureau of Ningxia Hui Autonomous Region. 1990. The Haiyuan Active Fault Zone[M]. Beijing: Seismological Press: 1-286 (in Chinese).
王立稳, 杨军, 程菲. 2015.北天山东段一次暴雨过程的数值模拟研究:动力与微物理机制[J].科学技术与工程, 15(20): 201-211, 215 (in Chinese). doi: 10.3969/j.issn.1671-1815.2015.20.032 Wang L W, Yang J, Cheng F. 2015. Numerical study of a heavy rain process in the eastern part of North Tianshan Mountains: Kinematics and microphysical mechanism[J]. Science Technology and Engineering, 15(20): 201-211, 215. doi: 10.3969/j.issn.1671-1815.2015.20.032
Bekaert D P S, Walters R J, Wright T J, Hooper A J, Parker D J. 2015. Statistical comparison of InSAR tropospheric correction techniques[J]. Remote Sens Environ, 170: 40-47. doi: 10.1016/j.rse.2015.08.035
Bevis M, Businger S, Herring T A, Rocken C, Anthes R A, Ware R H. 1992. GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System[J]. J Geophys Res, 97(D14): 15787-15801. doi: 10.1029/92JD01517
Cavalié O, Lasserre C, Doin M P, Peltzer G, Sun J, Xu X, Shen Z K. 2008. Measurement of interseismic strain across the Haiyuan fault (Gansu, China), by InSAR[J]. Earth Planet Sci Lett, 275(3/4): 246-257. https://www.researchgate.net/publication/244540363_Measurement_of_interseismic_strain_across_the_Haiyuan_fault_Gansu_China_by_InSAR
Doin M P, Lasserre C, Peltzer G, Cavalié O, Doubre C. 2009. Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models[J]. J Appl Geophys, 69(1): 35-50. doi: 10.1016/j.jappgeo.2009.03.010
Farr T G, Rosen P A, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D. 2007. The Shuttle Radar Topography Mission[J]. Rev Geophys, 45(2): RG2004. https://en.wikipedia.org/wiki/Shuttle_Radar_Topography_Mission
Gan W J, Zhang P Z, Shen Z K, Niu Z J, Wang M, Wan Y G, Zhou D M, Cheng J. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. J Geophys Res, 112: B08416. doi: 10.1029/2005JB004120.
Gaudemer Y, Tapponnier P, Meyer B, Peltzer G, Guo S M, Chen Z T, Dai H G, Cifuentes I. 1995. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the 'Tianzhu gap', on the western Haiyuan fault, Gansu (China)[J]. Geophys J Int, 120(3): 599-645. doi: 10.1111/j.1365-246X.1995.tb01842.x
Gong W, Meyer F J, Lee C W, Lu Z, Freymueller J. 2015. Measurement and interpretation of subtle deformation signals at Unimak Island from 2003 to 2010 using weather model-assisted time series InSAR[J]. J Geophys Res, 120(2): 1175-1194. doi: 10.1002/2014JB011384
Jolivet R, Agram P S, Lin N Y, Simons M K, Doin M P, Peltzer G, Li Z H. 2014. Improving InSAR geodesy using global atmospheric models[J]. J Geophys Res, 119(3): 2324-2341. doi: 10.1002/2013JB010588
Jolivet R, Lasserre C, Doin M P, Guillaso S, Peltzer G, Dailu R, Sun J, Shen Z K, Xu X. 2012. Shallow creep on the Haiyuan fault (Gansu, China) revealed by SAR interferometry[J]. J Geophys Res, 117: B06401. doi: 10.1029/2011JB008732.
Jung J, Kim D J, Park S E. 2014. Correction of atmospheric phase screen in time series InSAR using WRF model for monitoring volcanic activities[J]. IEEE Trans Geosci Remote Sens, 52(5): 2678-2689. doi: 10.1109/TGRS.2013.2264532
Li X, Rignot E, Morlighem M, Mouginot J, Scheuchl B. 2015. Grounding line retreat of Totten Glacier, East Antarctica, 1996 to 2013[J]. Geophys Res Lett, 42(19): 8049-8056. doi: 10.1002/2015GL065701
Li Z, Muller J P, Cross P, Albert P, Fischer J, Bennartz R. 2006. Assessment of the potential of MERIS near-infrared water vapour products to correct ASAR interferometric measurements[J]. Int J Remote Sens, 27(2): 349-365. doi: 10.1080/01431160500307342
Lindsey E O, Natsuaki R, Xu X H, Shimada M, Hashimoto M, Melgar D, Sandwell D T. 2015. Line-of-sight displacement from ALOS-2 interferometry: MW7.8 Gorkha earthquake and MW7.3 aftershock[J]. Geophys Res Lett, 42(16): 6655-6661. doi: 10.1002/2015GL065385
Liu-Zeng J, Klinger Y, Xu X W, Lasserre C, Chen G H, Chen W B, Tapponnier P, Zhang B. 2007. Millennial recurrence of large earthquakes on the Haiyuan fault near Songshan, Gansu Province, China[J]. Bull Seismol Soc Am, 97(1B): 14-34. doi: 10.1785/0120050118
Massonnet D, Feigl K, Rossi M, Adragna F. 1994. Radar interferometric mapping of deformation in the year after the Landers earthquake[J]. Nature, 369(6477): 227-230. doi: 10.1038/369227a0
Ramon D, Cazier L, Santer R. 2003. The surface pressure retrieval in the MERIS O2 absorption: Validation and potential improvements[C]//Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium. Toulouse: IEEE, 5: 3126-3128.
Rosen P A, Hensley S, Peltzer G, Simons M. 2004. Updated repeat orbit interferometry package released[J]. Eos, 85(5): 47. https://www.researchgate.net/publication/248239882_Updated_Repeat_Orbit_Interferometry_Package_Released
Savage J C, Burford R O. 1973. Geodetic determination of relative plate motion in central California[J]. J Geophys Res, 78(5): 832-845. doi: 10.1029/JB078i005p00832
Su F G, Duan X L, Chen D L, Hao Z C, Cuo L. 2013. Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau[J]. J Climate, 26(10): 3187-3208. doi: 10.1175/JCLI-D-12-00321.1
Wang C C, Mao X K, Wang Q J. 2016. Landslide displacement monitoring by a fully polarimetric SAR offset tracking method[J]. Remote Sens, 8(8): 624. doi: 10.3390/rs8080624
Zebker H A, Rosen P A, Hensley S. 1997. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps[J]. J Geophys Res, 102(B4): 7547-7563. doi: 10.1029/96JB03804
Zhang Y H, Wu H A, Kang Y H, Zhu C G. 2016. Ground subsidence in the Beijing-Tianjin-Hebei region from 1992 to 2014 revealed by multiple SAR stacks[J]. Remote Sens, 8(8): 675. doi: 10.3390/rs8080675
-
期刊类型引用(1)
1. Yang Liu,Sen Han,Luyun Xiong,Ying Peng,Mengyao Gao,Caijun Xu. Interseismic deformation rate of the Haiyuan fault system based on the modified SBAS method. Geodesy and Geodynamics. 2022(05): 464-472 . 必应学术
其他类型引用(10)