地电阻率多极距观测反演初步研究

毛先进, 杨玲英, 段炜, 赵晋民, 庄儒新, 钱家栋

毛先进, 杨玲英, 段炜, 赵晋民, 庄儒新, 钱家栋. 2017: 地电阻率多极距观测反演初步研究. 地震学报, 39(4): 469-477. DOI: 10.11939/jass.2017.04.003
引用本文: 毛先进, 杨玲英, 段炜, 赵晋民, 庄儒新, 钱家栋. 2017: 地电阻率多极距观测反演初步研究. 地震学报, 39(4): 469-477. DOI: 10.11939/jass.2017.04.003
Mao Xianjin, Yang Lingying, Duan Wei, Zhao Jinmin, Zhuang Ruxin, Qian Jiadong. 2017: Inversion of geoelectrical resistivity observed with multi-separation of electrodes. Acta Seismologica Sinica, 39(4): 469-477. DOI: 10.11939/jass.2017.04.003
Citation: Mao Xianjin, Yang Lingying, Duan Wei, Zhao Jinmin, Zhuang Ruxin, Qian Jiadong. 2017: Inversion of geoelectrical resistivity observed with multi-separation of electrodes. Acta Seismologica Sinica, 39(4): 469-477. DOI: 10.11939/jass.2017.04.003

地电阻率多极距观测反演初步研究

基金项目: 

地震科技星火计划(XH16034) 资助

地震科技星火计划 XH16034

详细信息
    通讯作者:

    毛先进, e-mail: maoxj87@163.com

  • 中图分类号: P319.3+2

Inversion of geoelectrical resistivity observed with multi-separation of electrodes

  • 摘要: 地电阻率多极距观测的目的是借助对观测数据的反演获得地下介质中不同层位真电阻率的变化.本文以3层结构为例,对地电阻率多极距观测的一维反演的效果进行了初步地理论研究.首先研究了一维地电阻率结构下观测数据一维反演的模拟效果,得到了各层电阻率值,且与真电阻率值很接近,说明在地下电性结构为一维的情况下,电阻率多极距观测可以区分出不同地层的电阻率变化.其次,考虑到台址下电阻率结构的复杂性,研究了上两层界面存在起伏的情况下,多极距观测数据一维反演的效果,结果显示:当电阻率变化较小时,各层反演得到的电阻率的变化与真电阻率十分符合;当上两层介质的电阻率变化较大时,各层反演得到的电阻率出现畸变,与真实电阻率的变化情况存在一定差别,表明浅层电阻率变化达到一定程度后将会影响对深部电阻率变化情况的正确判断.一般情况下,观测的时间间隔越短,则连续两次观测时段内各层介质的电阻率变化越小,因此缩短多极距观测的时间间隔可能是避免出现上述畸变现象的有效观测手段.
    Abstract: Preliminary theoretical studies were dealt with in this paper on the efficiency of one-dimensional inversion of apparent resistivity data observed with multi-separation array, for understanding the true resistivity variations with time inside the media. To this end a three-layer model has been taken as an example. Firstly, we did the inversion of the theoretical apparent resistivity data by forward modeling calculation for each layer in one-dimensional resistivity structure. The result shows a good consistency between the true resistivity variations and that obtained with inversion of each layer, suggesting that one-dimensional inversion technology is adequate for recognizing the variations of resistivity in each layer. Secondly, more complex model was taken due to some interface fluctuation, which deviated from one-dimensional model to some extent. The same process of forward-inversion was conducted in the case of the fluctuation of interfaces of the three-layer model, the results showed that good fitting can be found only in the condition of non-large variations of resistivity of the first-and second-layers, otherwise the inverted resistivity of each layer will turn up distortion. Usually the shorter the time interval of observation, the smaller the medium resistivity change during the two consecutive observation. Therefore, to reduce the distortion, it could be available by taking short time interval of observation with multi-separation array.
  • 图  1   仅第1层电阻率ρ1变化时各层的多极距电阻率一维反演结果(虚线)与真电阻率(实线)的比较

    Figure  1.   Comparison of the resistivity by inversion with multi-separation array (dashed line) and actual resistivity (solid line) for each layer only when resistivity of the first-layer ρ1 varies with 11:11:47

    图  2   仅第3层电阻率ρ3变化时各层的多极距电阻率一维反演结果(虚线)与真电阻率(实线)的比较

    Figure  2.   Comparison of the resistivity by inversion with multi-separation array (dashed line) and actual resistivity (solid line) for each layer only when resistivity of the third-layer ρ3 varies with 11:12:03

    图  3   第1,3层电阻率ρ1ρ3变化,第2层电阻率ρ2不变时各层的多极距电阻率一维反演结果(虚线)与真电阻率(实线)的比较

    Figure  3.   Comparision of the resistivity by inversion with multi-separation array (dashed line) and the actual resistivity (solid line) for each layer when resistivity of the first-and third-layer ρ1 and ρ3 vary with time, but resistivity of the second-layer ρ2 remains unchanged

    图  4   3层电阻率ρ1ρ2ρ3均变化时各层的多极距电阻率的一维反演结果(虚线)与真电阻率(实线)的比较

    Figure  4.   Comparision of the resistivity by inversion with multi-separation array (dashed line) and the actual resistivity (solid line) for each layer when resistivity of the whole three layers ρ1, ρ2 and ρ3 all vary with 11:13:04

    图  5   用于二维正演方法准确性检验的一维模型

    Figure  5.   The one-dimensional model for the accuracy test of two-dimensional forward modeling method

    图  6   算例1,2使用的由图 5所示模型演化得到的二维电阻率模型

    Figure  6.   The two-dimensional earth resistivity model which is derived from the model shown in Fig. 5 and used in examples one and two

    图  7   图 6所示模型各层的一维电阻率的反演结果(虚线)与真电阻率(实线)的比较

    (a)算例1; (b)算例2

    Figure  7.   Comparision of the resistivity by inversion from one-dimensional model shown in Fig. 6 (dashed line) and the actual resistivity (solid line) for each layer

    (a) Example one; (b) Example two

    图  8   算例3使用的由图 5所示模型演化得到的二维电阻率模型

    Figure  8.   The two-dimensional earth resistivity model which is derived from the model shown in Fig. 5 and used in example three

    图  9   图 8所示模型各层的一维电阻率的反演结果(虚线)与真电阻率(实线)的比较

    Figure  9.   Comparision of the resistivity by inversion from one-dimensional model shown in Fig. 8 (dashed line) and the actual resistivity (solid line) for each layer

    表  1   一维电性结构下多极距观测系统的布极参数

    Table  1   The electrodes arrangement parameters of multi-separation array system in one-dimension

    AB/m MN/m
    30 2
    100 16
    270 30
    500 100
    1000 300
    下载: 导出CSV

    表  2   二维电性结构下多极距观测系统布极参数和针对图 5所示模型利用一维与二维正演方法计算得到的视电阻率结果对比

    Table  2   The electrodes arrangement parameters of multi-separation array in two dimension and the comparision of apparent resistivities calculated from one-dimensional and two-dimensional forward modeling based on the model of Fig. 5

    装置编号 AB/m MN/m 一维视电阻率
    ρ1D/(Ω·m)
    二维视电阻率
    ρ2D/(Ω·m)
    相对误差
    C1 200 50 38.38 38.20 -0.47%
    C2 400 150 50.49 50.18 -0.61%
    C3 600 150 64.24 64.64 0.62%
    C4 800 250 73.58 74.08 0.68%
    C5 1000 350 81.46 81.02 -0.32%
    注:相对误差=(ρ2D-ρ1D)/ρ1D.
    下载: 导出CSV
  • 杜学彬. 2010.在地震预报中的两类视电阻率变化[J].中国科学:地球科学, 40(10): 1321-1330. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201010004.htm

    Du X B. 2010. Two types of changes in apparent resistivity in earthquake prediction[J]. Science China Earth Sciences, 54(1): 145-156. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201010004.htm

    冯锐, 郝锦绮, 周建国. 2001.地震监测中的电阻率层析技术[J].地球物理学报, 44(6): 833-842. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200106012.htm

    Feng R, Hao J Q, Zhou J G. 2001. Resistivity tomography in earthquake monitoring[J]. Chinese Journal of Geophy-sics, 44(6): 833-842 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200106012.htm

    李艳东, 赵家骝, 庞丽娜. 2004.地电阻率多极距观测中的最佳布极方式[J].地震, 24(2): 17-24. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN200402003.htm

    Li Y D, Zhao J L, Pang L N. 2004. The optimal mode for arranging the electrodes for multi-spacing system in apparent resistivity observation[J]. Earthquake, 24(2): 17-24 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN200402003.htm

    毛先进, 鲍光淑. 1998.一种适于电阻率成像的正演新方法[J].地球物理学报, 41(增刊): 385-393. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX1998S1040.htm

    Mao X J, Bao G S. 1998. A new modeling method for resistivity tomography[J]. Acta Geophysica Sinica, 41(S): 385-393 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX1998S1040.htm

    毛先进, 钱家栋, 杨玲英. 2008.地电阻率多极距观测及研究进展[J].地震研究, 31(4): 406-412. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ200804018.htm

    Mao X J, Qian J D, Yang L Y. 2008. Progress of multi-separation array observation and research for earth resistivity[J]. Journal of Seismological Research, 31(4): 406-412 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ200804018.htm

    钱家栋, 陈有发, 金安忠. 1985.地电阻率法在地震预报中的应用[M].北京:地震出版社: 103-107.

    Qian J D, Chen Y F, Jin A Z. 1985. Application of Geoelectrical Resistivity in Earthquake Prediction[M]. Beijing: Seismological Press: 103-107 (in Chinese).

    钱家栋, 赵和云. 1988.地电阻率的数值模拟和多极距观测系统[J].地震学报, 10(1): 77-89. http://www.dzxb.org/Magazine/Show?id=28238

    Qian J D, Zhao H Y. 1988. Earth resistivity modeling and observational system with multi-separation of electrodes[J]. Acta Seismologica Sinica, 10(1): 77-89 (in Chinese). http://www.dzxb.org/Magazine/Show?id=28238

    汪雪泉, 郑兆苾, 薛维龙. 2002.安徽嘉山台的多极距电阻率观测[J].地震学刊, 22(1): 1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200201000.htm

    Wang X Q, Zheng Z B, Xue W L. 2002. Multiple polar distance resistivity observation at Jiashan, Anhui seismic station[J]. Journal of Seismology, 22(1): 1-4 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200201000.htm

    王兰炜, 朱旭, 朱涛, 张世中, 刘大鹏, 胡哲, 张宇. 2011.地电阻率多极距观测系统及试验研究[J].地震, 31(1): 20-31. http://youxian.cnki.com.cn/yxdetail.aspx?filename=NMHB201706095&dbname=CJFDPREP

    Wang L W, Zhu X, Zhu T, Zhang S Z, Liu D P, Hu Z, Zhang Y. 2011. Multi-separation array geo-electrical resistivity observation system and its experimental observation[J]. Earthquake, 31(1): 20-31 (in Chinese). http://youxian.cnki.com.cn/yxdetail.aspx?filename=NMHB201706095&dbname=CJFDPREP

    薛顺章, 温新民, 董永德, 梁子彬, 张庆渊, 赵和云. 1994.地电阻率预报地震新方法的研究[J].地震学报, 16(2): 227-234. http://www.dzxb.org/Magazine/Show?id=28607

    Xue S Z, Wen X M, Dong Y D, Liang Z B, Zhang Q Y, Zhao H Y. 1994. A new method for earthquake prediction by earth resistivity measurements[J]. Acta Seismologica Sinica, 16(2): 227-234 (in Chinese). http://www.dzxb.org/Magazine/Show?id=28607

    张国民, 傅征祥, 桂夑泰. 2001.地震预报引论[M].北京:科学出版社: 214-270.

    Zhang G M, Fu Z X, Gui X T. 2001. Introduction to Earthquake Prediction[M]. Beijing: Science Press: 214-270 (in Chinese).

    赵和云, 钱家栋. 1987.郫县台多极距观测资料的反演和分析[J].中国地震, 3(增刊): 73-78. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD1987S1008.htm

    Zhao H Y, Qian J D. 1987. Inversion and analysis of data of temporal change in apparent resistivity with multi-separations in Pixian station, Sichuan Province[J]. Earthquake Research in China, 3(S): 73-78 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD1987S1008.htm

    赵和云, 钱家栋. 1988.层状介质中膨胀球模拟力源的应力-应变场与视电阻率的关系[J].西北地震学报, 10(2): 8-21. http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ198802001.htm

    Zhao H Y, Qian J D. 1988. Relationship between apparent resistivity and stress-strain field in the layer media due to an expanding sphere as a modelling earthquake source[J]. Northwestern Seismological Journal, 10(2): 8-21 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ198802001.htm

    Lu J, Xue S Z, Qian F Y, Zhao Y L, Guang H P, Mao X J, Ruan A G, Yu S R, Xiao W J. 2004. Unexpected changes in resistivity monitoring for earthquakes of the Longmen Shan in Sichuan, China, with a fixed Schlumberger sounding array[J]. Phys Earth Planet Inter, 145(1/2/3/4): 87-97. http://www.sciencedirect.com/science/article/pii/S0031920104001621

    Mazzella A, Morrison F H. 1974. Electrical resistivity variations associated with earthquakes on the San Andreas fault[J]. Science, 185(4154): 855-857. doi: 10.1126/science.185.4154.855

图(9)  /  表(2)
计量
  • 文章访问数:  615
  • HTML全文浏览量:  264
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-04
  • 修回日期:  2017-01-09
  • 发布日期:  2017-06-30

目录

    /

    返回文章
    返回