Quantitative verification on satellite observational data of ionospheric structure parameters using ground-based data
-
摘要: 本文采用散点图、趋势线、相关系数及观测偏差等统计方法,利用COSMIC卫星和SPIDR提供的垂测仪观测的F2层峰值电子密度数据,开展了综合统计及按季节、地方时和纬度的分类统计.统计结果显示:地基垂测仪与卫星观测到的相应的F2层峰值电子密度数据具有很高的相关性,两者之间的相关系数高达0.95,相对偏差的平均值为-3.38%,标准差为19.54%.基于上述研究结果,提出了利用地面垂测仪观测数据验证卫星观测的电离层结构参数的方法,并给出了定性的判别依据和定量的判别标准,可在我国电磁监测试验卫星发射后,为F2层峰值电子密度观测数据的真实性和有效性提供检验方法和保障.Abstract: Based on the previous research results, we used some statistical methods such as scatter plot, trend line, correlation coefficient and deviation to process the peak electron density (NmF2) data received by COSMIC satellite and SPIDR ground ionosonde. Both total data statistics and classified data statistics by season, local time and latitude are employed in order to carry out the research on quantitative verification on ionospheric structure parameters. The results show that the NmF2 of COSMIC satellite is consistent with the measured value of ionosonde with correlation coefficient 0.95 and average relative difference -3.38%, along with the standard deviation 19.54%. Based on the study, the verification method of NmF2 observed by satellite is given, and the qualitative and quantitative criteria are also provided, which will ensure the quality of NmF2 observed by China Seismo-Electromagnetic Satellite (CSES).
-
-
表 1 筛选出的18个台站的垂测数据与COSMIC观测数据的相关系数及相对偏差统计表
Table 1 The correlation coefficients and deviations between the inosodes and COSMIC data observed by 18 stations
台站编号 N a1 r MR σR MA
/(1010m-3)σA
/(1010m-3)PSJ5J 412 0.91 0.96 -1.57% 18.75% -3.22 10.36 HE13N 281 1.01 0.99 -0.03% 13.36% -0.61 5.08 LV12P 126 1.03 0.98 -2.43% 13.26% -2.01 6.69 PRJ18 119 0.97 0.94 -4.73% 17.30% -4.69 16.76 OK426 150 0.90 0.89 -13.17% 26.99% 12.25 28.89 PA836 69 0.98 0.93 5.26% 19.68% -0.42 4.44 GM037 135 1.22 0.89 -15.71% 19.00% -13.32 20.60 WP937 230 1.05 0.94 2.07% 18.03% -1.07 9.06 AT138 244 1.24 0.94 -13.89% 17.63% -8.89 13.89 BC840 332 1.00 0.97 -0.89% 18.24% 1.01 6.68 EB040 284 1.16 0.96 -3.38% 17.76% 3.58 10.18 PQ052 431 1.00 0.96 -0.37% 16.86% -0.98 6.69 RL052 477 1.07 0.96 -1.48% 17.53% -1.58 6.35 MO155 184 0.99 0.98 -6.79% 17.79% -1.67 4.75 AS00Q 335 1.08 0.91 -12.94% 20.73% -13.03 22.53 BP440 41 1.32 0.91 -7.89% 17.71% -9.02 17.33 HAJ45 123 1.05 0.90 7.85% 25.97% 0.15 9.51 IR352 322 1.05 0.97 1.86% 21.45% 0.97 7.61 注:N为观测数据对的个数, a1为趋势线的斜率,r为观测数据对的相关系数,MR, σR, MA, σA分别为相对偏差ER和绝对偏差EA所对应的平均值和标准差,下同. 表 2 不同分类下NmF2的相关系数统计表
Table 2 Statistical results on the correlation coefficients of NmF2 in different classification
夏季 冬季 春秋季 a1 r a1 r a1 r 白天 1.04 0.92 0.93 0.93 0.97 0.93 低纬 夜间 1.33 0.91 0.88 0.95 0.98 0.91 晨昏 1.09 0.93 0.93 0.92 0.97 0.89 白天 0.96 0.97 0.83 0.93 0.89 0.94 中纬 夜间 0.99 0.96 1.00 0.96 0.93 0.96 晨昏 0.99 0.95 0.95 0.97 0.96 0.95 表 3 在不同分类下的NmF2相对偏差统计表
Table 3 The relative difference statistical results of NmF2 in different classification
N MR σR MA/(1010m-3) σA/(1010m-3) 白天 夜间 晨昏 白天 夜间 晨昏 白天 夜间 晨昏 白天 夜间 晨昏 白天 夜间 晨昏 夏季 低纬 50 38 51 -3.69% -1.84% -12.70% 20.49% 20.19% 17.01% -3.91 -0.70 -9.56 15.41 23.33 18.00 中纬 268 307 256 -2.97% -4.29% -4.45% 15.67% 17.40% 16.10% -3.03 -2.76 -2.91 8.29 7.69 7.48 冬季 低纬 53 60 57 -9.37% -16.69% -10.90% 19.83% 22.81% 22.04% -6.90 -14.71 -11.32 15.48 20.33 23.23 中纬 302 281 244 -2.26% 3.51% 0.55% 21.98% 21.80% 23.00% -3.64 0.20 -1.03 13.66 7.84 6.71 春秋季 低纬 184 109 128 -7.63% -12.39% -10.98% 17.70% 22.71% 24.06% -6.19 -14.49 -13.22 14.77 27.61 27.68 中纬 643 633 631 -3.00% -2.12% -1.97% 18.98% 18.36% 17.27% -3.93 -2.52 -2.16 12.03 9.36 8.89 -
王兰炜, 申旭辉, 张宇, 张兴国, 胡哲, 颜蕊, 袁仕耿, 朱兴鸿. 2016.中国电磁监测试验卫星工程研制进展[J].地震学报, 38(3): 376-385. doi: 10.11939/jass.2016.03.005 Wang L W, Shen X H, Zhang Y, Zhang X G, Hu Z, Yan R, Yuan S G, Zhu X H. 2016. Developing progress of China Seismo-Electromagnetic Satellite project[J]. Acta Seismologica Sinica, 38(3): 376-385 (in Chinese). doi: 10.11939/jass.2016.03.005
吴小成. 2008. 电离层无线电掩星技术研究[D]. 北京: 中国科学院研究生院空间科学与应用研究中心: 79-85. http://cdmd.cnki.com.cn/article/cdmd-80073-2009222942.htm Wu X C. 2008. Radio Occultation Technique for Ionosphere Detection[D]. Beijing: National Space Science Center, Chinese Academy of Sciences: 79-85 (in Chinese). http://cdmd.cnki.com.cn/article/cdmd-80073-2009222942.htm
徐贤胜, 洪振杰, 郭鹏, 刘荣建. 2010. COSMIC掩星电离层资料反演以及结果验证[J].物理学报, 59(3): 2163-2168. doi: 10.7498/aps.59.2163 Xu X S, Hong Z J, Guo P, Liu R J. 2010. Retrieval and validation of ionospheric measurements from COSMIC radio occultation[J]. Acta Physica Sinica, 59(3): 2163-2168 (in Chinese). doi: 10.7498/aps.59.2163
俞钟行. 1989.拉依达准则用于剔除物探数据中的坏值[J].物探与化探, 13(3): 238-240. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH198903015.htm Yu Z X. 1989. Pauta criterion for the bad data elimination in geophysical data[J]. Geophysical and Geochemical Exploration, 13(3): 238-240 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH198903015.htm
张学民, 申旭辉, 赵庶凡, 刘静, 欧阳新艳, 娄文宇, 泽仁志玛, 何建辉, 钱庚. 2016.地震电离层探测技术及其应用研究进展[J].地震学报, 38(3): 356-375. doi: 10.11939/jass.2016.03.004 Zhang X M, Shen X H, Zhao S F, Liu J, Ouyang X Y, Lou W Y, Zeren Z M, He J H, Qian G. 2016. The seismo-ionospheric monitoring technologies and their application research development[J]. Acta Seismologica Sinica, 38(3): 356-375 (in Chinese). doi: 10.11939/jass.2016.03.004
赵莹, 张小红. 2010. COSMIC掩星观测数据反演电离层电子密度廓线[J].武汉大学学报:信息科学版, 35(6): 644-648. http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201006003.htm Zhao Y, Zhang X H. 2010. Inversion of ionospheric electron density profiles with COSMIC occultation data[J]. Geoma-tics and Information Science of Wuhan University, 35(6): 644-648 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201006003.htm
赵莹. 2011. GNSS电离层掩星反演技术及应用研究[D]. 武汉: 武汉大学: 42-51. http://cdmd.cnki.com.cn/Article/CDMD-10486-1011404081.htm Zhao Y. 2011. GNSS Ionospheric Occultation Inversion and Its Application[D]. Wuhan: Wuhan University: 42-51 (in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10486-1011404081.htm
CDAAC. 2016. COSMIC data analysis and archive center[EB/OL]. [2016-07-12]. http://cdaac-www.cosmic.ucar.edu/cdaac/cgi_bin/fileFormats.cgi?type=ionPrf.
Cussac T, Clair M A, Ultré-Guerard P, Buisson F, Lassalle-Balier G, Ledu M, Elisabelar C, Passot X, Rey N. 2006. The DEMETER microsatellite and ground segment[J]. Planet Space Sci, 54(5): 413-427. doi: 10.1016/j.pss.2005.10.013
Gokhberg M B, Morgounov V A, Yoshino T, Tomizawa I. 1982. Experimental measurement of electromagnetic emissions possibly related to earthquakes in Japan[J]. J Geophys Res, 87(B9): 7824-7828. doi: 10.1029/JB087iB09p07824
Gokhberg M B, Pilipenko V A, Pokhotelov O A. 1983. Satellite observation of the electromagnetic radiation above the epicentral region of an incipient earthquake[J]. Doklady Acad Sci USSR Earth Sci Sect, 268(1): 5-7.
Guo P, Wu M J, Xu T L, Jin H L, Hu X G. 2015. An Abel inversion method assisted by background model for GPS ionospheric radio occultation data[J]. J Atmos Solar-Terrestr Phys, 123: 71-81. doi: 10.1016/j.jastp.2014.12.008
Hajj G A, Romans L J. 1998. Ionospheric electron density profiles obtained with the global positioning system: Results from the GPS/MET experiment[J]. Radio Sci, 33(1): 175-190. doi: 10.1029/97RS03183
Hayakawa M, Kawate R, Molchanov O A, Yumoto K. 1996. Results of ultra-low-frequency magnetic field measurements during the Guam earthquake of 8 August, 1993[J]. Geophys Res Lett, 23(3): 241-244. doi: 10.1029/95GL02863
Jakowski N, Wehrenpfennig A, Heise S, Reigber C, Lühr H, Grunwaldt L, Meehan T K. 2002. GPS radio occultation measurements of the ionosphere from CHAMP: Early results[J]. Geophys Res Lett, 29(10): 95-1-95-4. doi: 10.1029/2001GL014364/full
Kelley M C, Wong V K, Aponte N, Coker C, Mannucci A J, Komjathy A. 2009. Comparison of COSMIC occultation-based electron density profiles and TIP observations with Arecibo incoherent scatter radar data[J]. Radio Sci, 44(4): RS4011. doi: 10.1029/2008RS004087/full
Lei J H, Syndergaard S, Burns A G, Solomon S C, Wang W B, Zeng Z, Roble R G, Wu Q, Kuo Y H, Holt J M, Zhang S R, Hysell D L, Rodrigues F S, Lin C H. 2007. Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: Preliminary results[J]. J Geophys Res, 112(A7): A07308. http://adsabs.harvard.edu/abs/2007JGRA..112.7308L
Liu J Y, Chuo Y J, Shan S J, Tsai Y B, Chen Y I, Pulinets S A, Yu S B. 2004. Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements[J]. Ann Geophys, 22(5): 1585-1593. doi: 10.5194/angeo-22-1585-2004
Molchanov O A, Mazhaeva O A, Golyavin A N, Hayakawa M. 1993. Observation by the Intercosmos-24 satellite of ELF-VLF electromagnetic emissions associated with earthquakes[J]. Ann Geophys, 11(5): 431-440. http://adsabs.harvard.edu/abs/1993AnGeo..11..431M
Parrot M, Berthelier J J, Lebreton J P, Sauvaud J A, Santolik O, Blecki J. 2006. Examples of unusual ionospheric observations made by the DEMETER satellite over seismic regions[J]. Phys Chem Eearth A/B/C, 31(4/5/6/7/8/9): 486-495. http://www.sciencedirect.com/science/article/pii/S147470650600043X
SPIDR. 2016. Space physics interactive data resource[EB/OL]. [2016-07-12]. http://spidr.ionosonde.net/spidr/query.do?group=Iono&.
Tsai L C, Tsai W H, Schreiner W S, Berkey F T, Liu J Y. 2001. Comparisons of GPS/MET retrieved ionospheric electron density and ground based ionosonde data[J]. Earth Planets Space, 53(3): 193-205. doi: 10.1186/BF03352376