Ground motion simulation of 2013 Vrümqi MS5.6 and MS5.1 earthquakes
-
摘要: 利用基于动力学拐角频率的随机有限断层法,针对2013年3月29日和8月30日乌鲁木齐发生的MS5.6和MS5.1两次地震,选择不同机构的震源参数对23个台站的45条强震记录进行强地震动模拟,对比分析加速度时程和反应谱,并计算模型偏差.通过与实际场点记录进行对比的结果显示:选取的不同机构震源参数模型得到的模拟加速度时程在持时和形状上与实际记录有一定差距,对于近震源的台站,模拟结果的峰值加速度(PGA)比观测结果小,对于稍远的台站,结果基本能够保持一致;而加速度反应谱,模拟结果与观测结果具有较好一致性; 随机有限断层模型的误差在±0.5以内,拟合效果较好,而且高频段的拟合效果要好于低频段;采用不同机构震源参数模型得到的模拟结果与观测结果得到的PGA分布特征较为一致,但模拟结果的峰值加速度要低于观测结果.
-
关键词:
- 随机有限断层法 /
- 强地震动模拟 /
- PGA分布 /
- 2013年乌鲁木齐两次地震
Abstract: In this study, we simulated strong ground motion of two earthquakes with MS5.6 and MS5.1 occurred in Xinjiang Vrümqi in 2013 based on modified stochastic finite fault modeling with dynamic corner frequency. 45 strong ground motion records from 23 stations were chosen to simulate by different source parameters, and response spectrum and accelerograms were compared with the observed ones. The results show that simulated strong ground motion have some differences with observed data in duration and shape, and the value of simulated peak ground acceleration (PGA) is less than observed in near-source. For acceleration response spectrum, the simulated result is consistent with observed. The bias of stochastic finite fault is between ±0.5 suggesting a good agreement for high frequency. For different source parameters model, the distribution characteristic of simulated PGAs are consistent with observed, but the simulated PGAs are less than observed ones. -
-
表 1 2013年乌鲁木齐MS5.6和MS5.1两次地震的震源参数
Table 1 Source parameters of two earthquakes with MS5.6 and MS5.1 occurred in Vrümqi Xinjiang, in 2013
发震日期 MW 震中位置 震源深度/km 节面Ⅰ 节面Ⅱ 参数来源 东经/° 北纬/° 走向/° 倾向/° 滑动角/° 走向/° 倾向/° 滑动角/° 03-29 5.4 86.96 43.52 38.5 167 51 -177 75 88 39 GCMT (2013) 03-29 5.5 86.85 43.46 34.0 256 88 45 164 45 177 USGS(2013a, b) 08-30 5.3 87.64 43.79 15.3 122 3 117 275 87 88 GCMT (2013) 08-30 5.0 87.64 43.76 12.0 81 88 -54 174 36 -176 中国地震台网中心(2013b) -
刘建明, 李志海. 2014.新疆北天山非弹性衰减、场地响应及其震源参数研究[J].地震, 34(1): 77-86. http://d.wanfangdata.com.cn/Periodical/diz201401009 Liu J M, Li Z H. 2014. Non-elastic attenuation, site response and source parameters in the northern Tianshan Mountain, Xinjiang of China[J]. Earthquake, 34(4): 77-86 (in Chinese). http://d.wanfangdata.com.cn/Periodical/diz201401009
沈军, 宋和平. 2008.乌鲁木齐城市活断层探测与地震危险性评价主要成果简介[J].地震地质, 30(1): 273-288. http://d.wanfangdata.com.cn/Periodical/dzdz200801020 Shen J, Song H P. 2008. Brief introduction on the predominant results of the active fault detecting and seismic risk assessment in Urumqi city[J]. Seismology and Geology, 30(1): 273-288 (in Chinese). http://d.wanfangdata.com.cn/Periodical/dzdz200801020
孙晓丹, 陶夏新. 2013.基于动力学拐角频率的汶川主震近场地震动随机合成[J].土木工程学报, 46(增刊2): 124-129. http://d.wanfangdata.com.cn/Conference/7986621 Sun X D, Tao X X. 2013. Stochastic modelling of ground motions for the Wenchuan earthquake using dynamic corner frequency[J]. China Civil Engineering Journal, 46(S2): 124-129 (in Chinese). http://d.wanfangdata.com.cn/Conference/7986621
唐兰兰, 李志海. 2011.新疆天山中东段地区地震波衰减、场地响应及震源参数研究[J].地震学报, 33(2): 134-142. http://www.dzxb.org/Magazine/Show?id=27631 Tang L L, Li Z H. 2011. Ground motion attenuation, site response and source parameters of earthquakes in middle and eastern range of Tianshan mountain, Xinjiang of China[J]. Acta Seismologica Sinica, 33(2): 134-142 (in Chinese). http://www.dzxb.org/Magazine/Show?id=27631
王俊, 霍祝青, 詹小艳, 宋浩, 江昊琳, 徐戈. 2012.基于随机有限断层法的地震烈度计算研究[J].地震研究, 35(3): 374-380. http://d.wanfangdata.com.cn/Periodical/dzyj201203013 Wang J, Huo Z Q, Zhan X Y, Song H, Jiang H L, Xu G. 2012. Computational research on the seismic intensity based on stochastic finite faults method[J]. Journal of Seismological Research, 35(3): 374-380 (in Chinese). http://d.wanfangdata.com.cn/Periodical/dzyj201203013
杨发义. 1990.乌鲁木齐地质构造与地震活动[J].新疆师范大学学报:自然科学版, (2): 84-89. http://d.wanfangdata.com.cn/Periodical/xbdzxb201102006 Yang F Y. 1990. The geologic structure and earthquake movement in the area of Urumuqi[J]. Journal of Xinjiang Normal University: Natural Sciences Edition, (2): 84-89 (in Chinese). http://d.wanfangdata.com.cn/Periodical/xbdzxb201102006
赵翠萍, 张智强, 夏爱国, 刘杰. 2004.利用数字地震波资料研究新疆天山中东段地区的介质衰减特征[J].防灾减灾工程学报, 24(3): 300-305. http://d.wanfangdata.com.cn/Periodical/dzxk200403014 Zhao C P, Zhang Z Q, Xia A G, Liu J. 2004. Study of attenuation characteristics of the central and eastern Tianshan, Xinjiang using digital seismic waves[J]. Journal of Disaster Prevention and Mitigation Engineering, 24(3): 300-305 (in Chinese). http://d.wanfangdata.com.cn/Periodical/dzxk200403014
中国地震局地球物理研究所. 2013a. 2013年3月29日新疆维吾尔自治区昌吉回族自治州昌吉市、乌鲁木齐市乌鲁木齐县交界5. 6级地震[EB/OL]. [2017-09-07]. http://www.cea-igp.ac.cn/tpxw/266669.html. Institute of Geophysics, China Earthquake Administration. 2013a. Xinjiang Urumqi-Changji, MS5.6, earthquake on March 29, 2013[EB/OL]. [2017-09-07]. http://www.cea-igp.ac.cn/tpxw/266669.html (in Chinese).
中国地震局地球物理研究所. 2013b. 2013年8月30日新疆维吾尔自治区乌鲁木齐市5. 1级地震[EB/OL]. [2017-09-07]. http://www.cea-igp.ac.cn/tpxw/267551.html. Institute of Geophysics, China Earthquake Administration. 2013b. Xinjiang Urumqi, MS5.1, earthquake on August 30, 2013[EB/OL]. [2017-09-07]. http://www.cea-igp.ac.cn/tpxw/267551.html (in Chinese).
中国地震台网中心. 2013a. 新疆维吾尔自治区昌吉回族自治州昌吉市、乌鲁木齐市乌鲁木齐县交界5. 6级地震[EB/OL]. [2017-09-07]. http://news.ceic.ac.cn/CC20130329130110.html. China Earthquake Networks Center. 2013a. Xinjiang Urumqi-Changji MS5.6 earthquake[EB/OL]. [2017-09-07]. http://news.ceic.ac.cn/CC20130329130110.html (in Chinese).
中国地震台网中心. 2013b. 新疆维吾尔自治区乌鲁木齐市5. 1级地震[EB/OL]. [2017-09-07]. http://news.ceic.ac.cn/CC20130830132730.html. China Earthquake Networks Center. 2013b. Xinjiang Urumqi MS5.1 earthquake[EB/OL]. [2017-09-07]. http://news.ceic.ac.cn/CC20130830132730.html (in Chinese).
Anderson J G, Hough S E. 1984. A model for the shape of the fourier amplitude spectrum of acceleration at high frequencies[J]. Bull Seismol Soc Am, 74(5): 1969-1993. http://www.bssaonline.org/content/74/5/1969.short
Atkinson G M. 1984. Attenuation of strong ground motion in Canada from a random vibrations approach[J]. Bull Seismol Soc Am, 74(6): 2629-2653. http://www.bssaonline.org/content/74/6/2629.short
Atkinson G M, Boore D M. 1995. New ground motion relations for eastern North America[J]. Bull Seismol Soc Am, 85(1): 17-30. http://www.bssaonline.org/content/85/1/17.short
Atkinson G M, Boore D M. 2006. Earthquake ground-motion prediction equations for eastern North America[J]. Bull Seismol Soc Am, 96(6): 2181-2205. doi: 10.1785/0120050245
Beresnev I A, Atkinson G M. 1998. FINSIM: A FORTRAN program for simulating stochastic acceleration time histories from finite faults[J]. Seismol Res Lett, 69(1): 27-32. doi: 10.1785/gssrl.69.1.27
Boore D M. 1983. Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra[J]. Bull Seismol Soc Am, 73(6): 1865-1894. http://www.oalib.com/references/13611287
Boore D M. 2009. Comparing stochastic point-source and finite-source ground-motion simulations: SMSIM and EXSIM[J]. Bull Seismol Soc Am, 99(6): 3202-3216. doi: 10.1785/0120090056
Brune J N. 1970. Tectonic stress and the spectra of seismic shear waves from earthquakes[J]. J Geophys Res, 75(26): 4997-5009. doi: 10.1029/JB075i026p04997
GCMT. 2013. Global CMT Catalog[EB/OL]. [2017-09-07]. http://www.globalcmt.org/cgi-bin/globalcmt-cgi-bin/CMT4/form?itype=ymd&yr=2013&mo=3&day=29&otype=ymd&oyr=2013&omo=8&oday=30&jyr=1976&jday=1&ojyr=1976&ojday=1&nday=1&lmw=5&umw=10&lms=0&ums=10&lmb=0&umb=10&llat=43&ulat=45&llon=86&ulon=88&lhd=0&uhd=1000<s=-9999&uts=9999&lpe1=0&upe1=90&lpe2=0&upe2=90&list=0.
Hanks T C, McGuire R K. 1981. The character of high-frequency strong ground motion[J]. Bull Seismol Soc Am, 71(6): 2071-2095. http://www.bssaonline.org/content/71/6/2071.short
Kanamori H, Anderson D L. 1975. Theoretical basis of some empirical relations in seismology[J]. Bull Seismol Soc Am, 65(5): 1073-1095. http://www.bssaonline.org/content/65/5/1073.short
Mittal H, Kumar A. 2015. Stochastic finite-fault modeling of MW5.4 earthquake along Uttarakhand-Nepal border[J]. Nat Hazards, 75(2): 1145-1166. doi: 10.1007/s11069-014-1367-1
Motazedian D, Atkinson G M. 2005. Stochastic finite-fault modeling based on a dynamic corner frequency[J]. Bull Seismol Soc Am, 95(3): 995-1010. doi: 10.1785/0120030207
USGS. 2013a. M5.2-70 km SW of Diwopu, China[EB/OL]. [2017-09-07]. https://earthquake.usgs.gov/earthquakes/eventpage/usb000fvfx#executive.
USGS. 2013b. M5.6-1 km WNW of Benzilan, China[EB/OL]. [2017-09-07]. https://earthquake.usgs.gov/earthquakes/eventpage/usb000je5n#executive.
Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bull Seismol Soc Am, 84(4): 974-1002. http://www.academia.edu/1151208/New_Empirical_Relationships_among_Magnitude_Rupture_Length_Rupture_Width_Rupture_Area_and_Surface_Displacement
-
期刊类型引用(9)
1. 罗超,曹晓雨,高阳,徐飞,徐旸,王昊. 基于物理震源模型的跨断层隧道地震响应分析方法. 振动与冲击. 2024(22): 293-304 . 百度学术
2. 宗周红,林元铮,林津,黎雅乐. 跨断层地震动及其对桥梁结构影响研究进展. 中国公路学报. 2023(01): 80-96 . 百度学术
3. 巴振宁,赵靖轩,张郁山,梁建文,张玉洁. 基于GP14.3运动学混合震源模型和SPECFEM 3D谱元法的宽频地震动模拟. 地球物理学报. 2023(03): 1125-1138 . 百度学术
4. 王玉婕,张丽芬,孙晓丹,赵艳南,李井冈. 2022年四川泸定M_S6.8地震近场强震动模拟. 大地测量与地球动力学. 2023(05): 441-446+516 . 百度学术
5. 张凡,李帅,王景全. 跨倾滑正断层桥梁地震响应数值模拟. 建筑结构学报. 2022(05): 205-216 . 百度学术
6. 曹泽林,陶夏新,陶正如,王可意. FK法合成地震动的频带范围研究. 地震学报. 2022(01): 145-157 . 本站查看
7. 党鹏飞,刘启方,王冲,夏松林. 地震动随机有限断层模拟方法综述. 地震工程与工程振动. 2020(06): 131-139 . 百度学术
8. 曹泽林,陶夏新. 基于频率波数域格林函数的宽频带地震动合成方法综述. 地震工程与工程振动. 2018(05): 33-40 . 百度学术
9. 高阳,潘华,汪素云. 中强地震随机有限断层模型应力降参数的确定方法. 震灾防御技术. 2014(04): 733-747 . 百度学术
其他类型引用(26)