Abstract:
In this study, we simulated strong ground motion of two earthquakes with
MS5.6 and
MS5.1 occurred in Xinjiang Vrümqi in 2013 based on modified stochastic finite fault modeling with dynamic corner frequency. 45 strong ground motion records from 23 stations were chosen to simulate by different source parameters, and response spectrum and accelerograms were compared with the observed ones. The results show that simulated strong ground motion have some differences with observed data in duration and shape, and the value of simulated peak ground acceleration (PGA) is less than observed in near-source. For acceleration response spectrum, the simulated result is consistent with observed. The bias of stochastic finite fault is between ±0.5 suggesting a good agreement for high frequency. For different source parameters model, the distribution characteristic of simulated PGAs are consistent with observed, but the simulated PGAs are less than observed ones.