Coseismic displacement field and slip model derived from near-source strong motion records of MW7.0 Kumamoto, Japan, earthquake
-
摘要: 利用2016年4月16日日本熊本MW7.0地震震中周围94个近场强震动台的观测资料和新近改进的强震经验基线校正方法SMBLOC,尝试解算并绘制了一个内陆M7左右走滑型地震的同震位移场全貌,并反演了其震源滑动模型.与日本国土地理院(GSI)公布的该地震57个GPS同震位移结果的比较显示,两种完全不同资料、不同解算方法给出的水平同震位移场的最大幅值均为100 cm左右,均呈右旋走滑为主兼具部分正断分量的震源机制.强震最大水平和垂直永久位移分别为104.5 cm和58.0 cm, 分别出现在震中东北侧的KMMH162台和KMM005台.两种资料单独以及联合反演的震源滑动模型均表明,此次地震为北东侧破裂为主并呈双事件特征,且主要滑动均不在初始破裂点附近, 而是集中于第二次事件周围,即距离初始破裂点东北侧约20 km处的走向长约40 km、倾向宽约20 km的范围内.基于强震和GPS模型所得的最大滑动量分别为5.10 m和5.87 m,量级一致,反演矩震级均为MW7.1左右;主破裂区近地表滑动量比野外调查结果略微偏大,可能与数值效应有关.此外,还利用不同方法得到的解算结果比较了熊本地震特有的12组台间距在3 km以内的GPS-强震台站对各自的三分量同震位移,其结果表明对于M7左右的地震而言,SMBLOC方法解算同震位移时方向和幅值的可靠性下限约为2 cm.
-
关键词:
- 内陆走滑型地震 /
- 自动经验基线校正 /
- 同震位移 /
- 滑动模型 /
- 2016年4月16日熊本MW7.0地震
Abstract: Near-source coseismic displacement field of the 16 April 2016 MW7.0 Kumamoto, Japan, earthquake is estimated from 94 digital strong motion records after correction for their baseline errors using an improved empirical method SMBLOG, and compared with that from 57 GPS observations published by Geospatial Information Authority of Japan (GSI). Furthermore, three slip models of the earthquake are inverted from the displacement data of the GPS, strong motion and their combination, suggesting the results are in good agreement. The three models all show that the earthquake is dominated by the right-lateral strike-slip mechanism (also a few normal-fault dislocations). The maximum horizontal and vertical coseismic displacements reached 104.5 cm and 58.0 cm, and occurred at the stations KMMH162 and KMM005, respectively. The fault slips are mainly distributed around the second event (about 20 km northeastward from epicenter) and in an area of about 40 km along the strike and 20 km along the dip. The moment magnitude is estimated to be MW7.1, and the peak slip is about 5.10 m for strong motion data and 5.87 m for GPS. The surface rupture should be obvious. Moreover, the comparison of the three-component coseismic displacements derived from 12 GPS-strong motion station-pairs with interval less than 3 km also indicates that the lower limit is about 2 cm for earthquakes of magnitude about 7 when SMBLOC method is used. -
日本K-NET和KiK-net提供了强震动波形资料,日本国土地理院提供了GPS数据,两位审稿人提出了建设性意见,作者在此表示诚挚的感谢.
-
图 1 2016年4月16日日本熊本MW7.0地震震中周围强震台站和GPS台站分布图
Figure 1. Distribution of strong motion and GPS stations around the 2016 Kumamoto MW7.0 earthquake
F1: Futagawa fault; F2: Hinagu fault; F3: Midorikawa fault. The red triangles are the K-NET strong motion stations, the purple triangles are the KiK-net strong motion stations, and the blue diamonds are the GSI continuous GPS stations. The purple line is the intersecting line of the given fault plane (the purple dashed rectangle) with the ground
图 3 熊本地震基于强震(红色)和GPS(蓝色)记录所得的水平(a)和垂直(b)位移场的对比
Figure 3. Comparison of coseismic horizontal (a) and vertical (b) displacement fields based on the strong motion (red) with those from GPS (blue) The purple line is the intersecting line of the given fault plane (the purple dashed rectangle) and the ground
表 1 反演所用的熊本地区Crust1.0地壳速度模型
Table 1 Crustal velocity model Crust1.0 for slip model inversion in Kumamoto
地壳分层/km vP/(km·s-1) vS/(km·s-1) 密度/(g·cm-3) 0—1 2.50 1.20 2.10 1—11 6.00 3.40 2.70 11—21 6.60 3.70 2.90 21—31 7.20 4.00 3.10 ≥31 8.08 4.47 3.38 表 2 基于相同断层面参数使用不同资料反演所得滑动模型结果比较
Table 2 Comparison of slip models inverted by GPS, strong motion and their combination based on the same fault parameters
MW 数-模相关系数 平均滑动/m 最大滑动/m 平均应力降/MPa 最大应力降/MPa GPS 7.09 0.99 0.70 5.87 5.84 22.18 强震 7.12 0.99 0.78 5.10 3.53 18.89 GPS-强震 7.11 0.99 0.75 5.56 4.83 21.19 -
金明培, 汪荣江. 2013.用近场强震动记录快速估计同震位移并反演震源滑动分布[J].地球物理学报, 56(4): 1207-1215. doi: 10.6038/cjg20130415. Jin M P, Wang R J. 2013. Rapid slip inversion using co-seismic displacement data derived from near-source strong motion records[J]. Chinese Journal of Geophysics, 56(4): 1207-1215. doi: 10.6038/cjg20130415 (in Chinese).
金明培, 汪荣江, 屠泓为. 2014.芦山7级地震的同震位移估计和震源滑动模型反演尝试[J].地球物理学报, 57(1): 129-137. doi: 10.6038/cjg20140112. Jin M P, Wang R J, Tu H W. 2014. Slip model and co-seismic displacement field derived from near-source strong motion records of the Lushan MS7.0 earthquake on 20 April 2013[J]. Chinese Journal of Geophysics, 57(1): 129-137. doi: 10.6038/cjg20140112 (in Chinese).
屠泓为, 汪荣江, 刁法启, 张勇, 万永革, 金明培. 2016.运用SDM方法研究2001年昆仑山口西MS8.1地震破裂分布: GPS和InSAR联合反演的结果[J].地球物理学报, 59(6): 2103-2112. doi: 10.6038/cjg20160616. Tu H W, Wang R J, Diao F Q, Zhang Y, Wan Y G, Jin M P. 2016. Slip model of the 2001 Kunlun mountain MS8.1 earthquake by SDM: Joint inversion from GPS and InSAR data[J]. Chinese Journal of Geophysics, 59(6): 2103-2112. doi: 10.6038/cjg20160616 (in Chinese).
Aoi S. 2000. New strong-motion observation network: KiK-net[J]. EOS Trans Am Geophys Union, 4(3): 329.
Aoi S, Kunugi T, Fujiwara H. 2004. Strong-motion seismograph network operated by NIED: K-NET and KiK-net[J]. J Japan Assoc Earthq Eng, 4(3): 65-74. https://www.researchgate.net/publication/237240490_Strong-motion...
Asano K, Iwata T. 2016. Source rupture processes of the foreshock and mainshock in the 2016 Kumamoto earthquake sequence estimated from the kinematic waveform inversion of strong motion data[J]. Earth Planet Space, 68(1): 147. doi: 10.1186/s40623-016-0519-9
Boore D M. 2001. Effect of baseline corrections on displacement and response spectra for several recordings of the 1999 Chi-Chi, Taiwan, earthquake[J]. Bull Seismol Soc Am, 91(5): 1199-1211.
Boore D M, Bommer J J. 2005. Processing of strong-motion accelerograms: Needs, options and consequences[J]. Soil Dyn Earthq Eng, 25(2): 93-115. doi: 10.1016/j.soildyn.2004.10.007
Chao W A, Wu Y M, Zhao L. 2010. An automatic scheme for baseline correction of strong-motion records in coseismic deformation determination[J]. J Seismol, 14(3): 495-504. doi: 10.1007/s10950-009-9178-7
Diao F Q, Xiong X, Wang R J. 2011. Mechanisms of transient postseismic deformation following the 2001 MW7.8 Kunlun (China) earthquake[J]. Pure Appl Geophys, 168(5): 767-779. doi: 10.1007/s00024-010-0154-5
F-net. 2016. Earthquake mechanism information[EB/OL]. [2016-04-28]. http://www.fnet.bosai.go.jp/event/tdmt.php?_id=20160415162400&LANG=en.
Geospatial Information Authority of Japan. 2016a. Horizontal crust deformation before and after 16 April 2016, Kumamoto, Japan, Mj7.3 earthquake[EB/OL]. [2016-04-28]. http://www.gsi.go.jp/common/000193379.jpg(in Japanese).
Geospatial Information Authority of Japan. 2016b. Vertical crust deformation before and after 16 April 2016, Kumamoto, Japan, Mj7.3 earthquake[EB/OL]. [2016-04-28]. http://www.gsi.go.jp/common/000193382.jpg(in Japanese).
Geospatial Information Authority of Japan. 2016c. Distribution map (2016-09-12) of continuous GPS stations for 16 April 2016, Kumamoto, Japan Mj7.3 earthquake, renewed on 12 September 2016[EB/OL]. [2016-04-28]. http://www.gsi.go.jp/sokuchikijun/H28-kumamoto-earthquake-seika.html(in Japanese).
Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology of Japan. 2016. 4th report (May 3, 2016): Emergency survey report for surface earthquake faults associated with the 2016 Kumamoto earthquake[EB/OL]. [2016-06-17]. https://www.gsj.jp/hazards/earthquake/kumamoto2016/kumamoto20160513-1.html (in Japanese).
Graizer V M. 1979. Determination of the true ground displacement by using strong motion records[J]. Izvestiya Phys Solid Earth, 15(12): 875-885. https://www.researchgate.net/publication/285707520_Determination...
Graizer V M. 2005. Effect of tilt on strong motion data processing[J]. Soil Dyn Earthq Eng, 25(3): 197-204. doi: 10.1016/j.soildyn.2004.10.008
Graizer V M. 2006. Tilts in strong ground motion[J]. Bull Seismol Soc Am, 96(6): 2090-2102. doi: 10.1785/0120060065
Graizer V M. 2010. Strong motion recordings and residual displacements: What are we actually recording in strong motion seismology?[J]. Seismol Res Lett, 81(4): 635-639. doi: 10.1785/gssrl.81.4.635
Iwan W D, Moser M A, Peng C Y. 1985. Some observations on strong-motion earthquake measurement using a digital acceleration[J]. Bull Seismol Soc Am, 75(5): 1225-1246. https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/75/5/...
Kinoshita S. 1998. Kyoshin net (K-NET)[J]. Seismol Res Lett, 69(4): 309-332. doi: 10.1785/gssrl.69.4.309
Kubo H, Suzuki W, Aoi S, Sekiguchi H. 2016. Source rupture processes of the 2016 Kumamoto, Japan, earthquakes estimated from strong-motion waveforms[J]. Earth Planet Space, 68(1): 161. doi: 10.1186/s40623-016-0536-8
Laske G, Masters G, Ma Z T, Pasyanos M. 2013. Update on CRUST1.0: A 1-degree global model of Earth's crust[J]. Geophys Res Abstracts, 15: Abstract EGU 2013-2658. https://www.researchgate.net/publication/312371085_Update_on_CRUST1...
McComb H E, Ruge A C, Neumann F. 1943. The determination of true ground motion by integration of strong-motion records: A symposium[J]. Bull Seismol Soc Am, 33(1): 1.
Moya L, Yamazaki F, Liu W. 2016. Comparison of coseismic displacement obtained from GEONET and seismic networks[J]. J Earthquake Tsunami, 10(2): 1640002. doi: 10.1142/S1793431116400029
Nishimura T, Munekane H, Yarai H. 2011. The 2011 off the Pacific coast of Tohoku earthquake and its aftershocks observed by GEONET[J]. Earth Planet Space, 63(7): 631-636. doi: 10.5047/eps.2011.06.025
Sagiya T. 2004. A decade of GEONET: 1994-2003 The continuous GPS observation in Japan and its impact on earthquake studies[J]. Earth Planet Space, 56(8): 29-41. doi: 10.1186/BF03353077
Shirahama Y, Yoshimi M, Awata Y, Maruyama T, Azuma T, Miyashita Y, Mori H, Imanishi K, Takeda N, Ochi T, Otsubo M, Asahina D, Miyakawa A. 2016. Characteristics of the surface ruptures associated with the 2016 Kumamoto earthquake sequence, central Kyushu, Japan[J]. Earth Planet Space, 68(1): 191. doi: 10.1186/s40623-016-0559-1
Trifunac M D 1971. Zero baseline correction of strong-motion accelerograms[J]. Bull Seismol Soc Am, 61(5): 1201-1211.
USGS. 2016. M7.0-1 km E of Kumamoto-shi, Japan[EB/OL]. [2016-06-27].https://earthquake.usgs.gov/earthquakes/eventpage/us20005iis#moment-tensor.
Wang G Q, Boore D M, Igel H, Zhou X Y. 2003. Some observations on colocated and closely spaced strong ground-motion records of the 1999 Chi-Chi, Taiwan, earthquake[J]. Bull Seismol Soc Am, 93(2): 674-693. doi: 10.1785/0120020045
Wang G Q, Boore D M, Tang G, Zhou X. 2007. Comparisons of ground motions from colocated and closely spaced one-sample-per-second global positioning system and accelerograph recordings of the 2003 M6.5 San Simeon, California, earthquake in the Parkfield region[J]. Bull Seismol Soc Am, 97(1B): 76-90. doi: 10.1785/0120060053
Wang R J, Schurr B, Milkereit C, Shao Z G, Jin M P. 2011. An improved automatic scheme for empirical baseline correction of digital strong-motion records[J]. Bull Seismol Soc Am, 101(5): 2029-2044. doi: 10.1785/0120110039
Wang R J, Parolai S, Ge M R, Jin M P, Walter T R, Zschau J. 2013. The 2011 MW9.0 Tohoku earthquake: Comparison of GPS and strong-motion data[J]. Bull Seismol Soc Am, 103(2B): 1336-1347. doi: 10.1785/0120110264
Wu Y M, Wu C F. 2007. Approximate recovery of coseismic deformation from Taiwan strong-motion records[J]. J Seismol, 11(2): 159-170. doi: 10.1007/s10950-006-9043-x
Yagi Y, Okuwaki R, Enescu B, Kasahara A, Miyakawa A, Otsubo M. 2016. Rupture process of the 2016 Kumamoto earthquake in relation to the thermal structure around Aso volcano[J]. Earth Planet Space, 68(1): 118. doi: 10.1186/s40623-016-0492-3
Zhang G H, Qu C Y, Shan X J, Song X G, Zhang G F, Wang C S, Hu J C, Wang R J. 2011. Slip distribution of the 2008 Wenchuan MS7.9 earthquake by joint inversion from GPS and InSAR measurements: A resolution test study[J]. Geophys J Int, 186(1): 207-220. doi: 10.1111/gji.2011.186.issue-1