Ability of decreasing noise and the characteristics of nearsurface wave field around Dazhai borehole in Pu'er
-
摘要: 基于2011年建立的云南普洱大寨深井台站,开展了噪声压制及附近波场特征研究.通过计算该台站的噪声功率谱概率密度函数,显示该井下台站对1 Hz以上的高频噪声具有明显的压制效果, 最高能降低40 dB,其降噪能力优于其它井下台阵,推断与该台站附近的场地条件有关.基于地表与井下地震记录的差异,应用正则化反卷积干涉方法进一步研究该台站附近的波场特征.以地表记录为参考,对井下记录进行反卷积,获取两台站之间的格林函数,直接识别出了原始记录上无法区分的上行入射波与下行地表反射波,然后利用两震相的到时差建立了一个浅层地震波速度模型,与理论模拟的结果一致.研究结果表明,相对于地表观测,井下台站在压制噪声和近地表地震波传播特征研究等方面具有很大的优势,同时该研究对其它地区开展深井观测具有参考意义.Abstract: In 2011, the Dazhai borebole station was established in Pu'er, Yunnan Province, to carry out some researches on noise suppression and the wavefield characteristics. We compute the power spectral density of continuous noise recordings within ten months to quantify the reduction in seismic noise with the station depth. The results demonstrate that the downhole station has obvious effect on decreasing noise up to 40 dB within the frequency band more than 1 Hz, which might be associated with the local site conditions. The Green's functions are then obtained between the two receivers by deconvoluting the down-hole recordings with the surface ones. From the deconvolution wavefield, the arrivals of up-going incident and down-going surface-reflection waves are directly identified that cannot be distinguished from the original seismic recordings. The two phases are utilized to set up a shallow seismic wave velocity model, which is consistent with the theoretical results. A comparison with the surface observation suggests that the borehole stations have great advantages in reducing noise and studying the propagation characteristics of near-surface seismic waves. The research here is of great significance for future down-hole observations in other sites.
-
Keywords:
- borehole /
- noise reduction /
- regularized deconvolution /
- incident wave /
- surface-reflected wave
-
云南省普洱市地震局为本文提供了数据,德国地学研究中心Stefona Parolai教授和Bojana Petrovic博士为本文计算方法和程序提供了很多帮助,作者在此一并表示感谢.
-
图 1 大寨深井台站位置及其记录到的地震分布
黑色圆圈为台站附近的地震分布,黑色实心圆圈为文中反卷积计算用到的地震事件
Figure 1. Location of the Dazhai borehole station (triangle) and distribution of local earthquakes Circles represent the location of local earthquakes and solid circles are the earthquakes used in this paper.
F1 : Wuliangshan fault; F2 : Lancangjiang fault; F3 : Honghe fault
图 5 ML3.7地震事件南北向分量的原始波形(a)及其2.0 Hz(b)和1.0 Hz(c)低通滤波结果
Figure 5. Original waveforms (a) and low-pass filtered waveforms with the cut-off frequencies of 2.0 Hz (b) and 1.0 Hz (c) of the NS component of the ML3.7 event
Black lines indicate the borehole recordings, and grey lines indicate the surface recordings
图 6 基于均方根误差方法(a)和互相关函数方法(b)得到的不同地震事件南北分裂的最佳旋转角度统计结果
黑色圆圈表示不同事件对应的角度,虚线表示不同角度的中值及均值
Figure 6. The optimal rotation angles corresponding to NS components of different events by RMS error (a) and cross-correlation (b)
Open circles indicate different angles corresponding to different events, and dashed lines indicate the median and mean value of all rotation angles
图 10 2011年11月9日ML3.2地震水平分量反卷积波场
(a)不同正则化参数ε下的反卷积波场, 线条颜色由浅变深,表示ε逐渐减小;
(b)不同迭代次数n下的反卷积波场, 线条颜色由深变浅,表示n逐渐增大Figure 10. Deconvolution wavefield of the event ML3.2 with different regularization parameters
(a) Deconvolution variation with regularization parameter ε decreasing from light to dark lines;
(b) Deconvolution variation with Landweber iterations n increasing from dark to light lines图 11 表 2中事件2(ML3.2)的原始记录(a)及其相应的反卷积波场(b)
红线表示用于进行反卷积计算的时间窗口,黑色虚线是井下与地表之间相互对称的上行波和下行波
Figure 11. The deconvolution wavefield (b) from the original records (a) of No.2 event listed in Table 2
The red lines indicate the time window used for deconvolution, and the dashed lines show the up-going wave and down-going wave from bottom to surface
图 12 表 2中地震事件的原始井下记录(a)及其对应的反卷积波场(b)
(a)中红色实线表示用于反卷积计算的时间窗口, (b)中红色虚线分别表示入射波和地表反射波的位置
Figure 12. Aligned deconvolution wavefield (b) from the original borehole records (a) of all the events listed in Table 2
Red lines indicate the time window used for deconvolution, and vertical dashed red lines indicate the arrivals of incident and surface-reflected waves
表 1 最佳旋转角度的统计结果
Table 1 The statistics of optimal rotation angles
方法 均值 中值 两者平均值 均方根误差法 -6.66° -7° -6.83° 互相关函数法 -5.36° -5° -5.18° 表 2 用于反卷积计算的事件列表
Table 2 List of the events used for deconvolution
事件序号 发震时间 ML 震中距/km 年-月-日 时:分:秒 1 2011-11-02 19:33:05.1 3.7 71.21 2 2011-11-09 09:04:23.4 3.2 124.63 3 2011-11-16 23:47:37.5 2.6 121.54 4 2011-12-28 15:16:32.3 3.5 90.64 5 2012-02-22 00:41:39.7 2.3 145.54 6 2012-03-12 01:24:19.1 2.4 68.49 7 2012-04-13 23:06:45.7 2.7 78.48 8 2012-04-29 01:33:01.3 2.7 154.29 9 2012-07-28 08:16:15.5 3.2 57.63 10 2012-07-30 00:05:32.5 4.2(MS) 41.47 注:地震目录引自中国地震台网中心(2015). 表 3 合成理论地震图所用到的地壳模型
Table 3 Velocity model for calculating the synthetic seismograms
层数 vP/(km·s-1) vS/(km·s-1) 层厚/km QP QS 1 3.75 1.10 0.375 1000 500 2 6.10 3.55 13.85 1000 500 3 6.30 3.65 12.34 1000 500 注:QP,QS表示P波和S波的地下介质品质因子. -
冯德益, 张少泉, 卫鹏飞, 王俊国. 1990.深井观测地震波典型记录与分析应用[M].北京:地震出版社: 1-2. Feng D Y, Zhang S Q, Wei P F, Wang J G. 1990. Typical Records and Application of Deep Borehole Seismic Waves[M]. Beijing: Seismological Press: 1-2 (in Chinese).
葛洪魁, 陈海潮, 欧阳飚, 杨微, 张梅, 袁松湧, 王宝善. 2013.流动地震观测背景噪声的台基响应[J].地球物理学报, 56(3): 857-868. doi: 10.6038/cjg20130315 Ge H K, Chen H C, Ouyang B, Yang W, Zhang M, Yuan S Y, Wang B S. 2013. Transportable seismometer response to seismic noise in vault[J]. Chinese Journal of Geophysics, 56(3): 857-868 (in Chinese). doi: 10.6038/cjg20130315
《工程地质手册》编委会. 2007.工程地质手册[M].第4版.北京:中国建筑工业出版社: 1-1099. Editorial Committee of Engineering Geology Manual. 2007. Engineering Geology Manual[M]. 4th ed. Beijing: China Architecture and Building Press: 1-1099 (in Chinese).
李凤杰. 1989.深井地震波观测研究[M].北京:学术期刊出版社: 1-4. Li F J. 1989. Study on Deep Borehole Seismic Wave Observation[M]. Beijing: Academic Journal Press: 1-4 (in Chinese).
李少睿, 毛国良, 王党席, 罗治国. 2016.井下地震计方位角检测技术应用研究[J].地球物理学报, 59(1): 299-310. doi: 10.6038/cjg20160125 Li S R, Mao G L, Wang D X, Luo Z G. 2016. Research on the application of borehole seismometer azimuth detection technology[J]. Chinese Journal of Geophysics, 59(1): 299-310 (in Chinese). doi: 10.6038/cjg20160125
刘渊源, 崇加军, 倪四道. 2011.基于井下摆天然地震数据测量首都圈近地表波速结构[J].地震学报, 33(3): 342-350. http://www.dzxb.org/Magazine/Show?id=27826 Liu Y Y, Chong J J, Ni S D. 2011. Near surface wave velocity structure in Chinese capital region based on borehole seismic records[J]. Acta Seismologica Sinica, 33(3): 342-350 (in Chinese). http://www.dzxb.org/Magazine/Show?id=27826
吕永清, 蔡亚先, 程骏玲. 2007.确定地震计安装方位的相干性分析法[J].大地测量与地球动力学, 27(4): 124-127. http://www.cqvip.com/QK/87801X/200801/26453603.html Lü Y Q, Cai Y X, Cheng J L. 2007. Orientation for seismometer with coherence analyzing method[J]. Journal of Geodesy and Geodynamics, 27(4): 124-127 (in Chinese). http://www.cqvip.com/QK/87801X/200801/26453603.html
仝亚博, 杨振宇, 王恒, 张旭东, 安纯志, 徐颖超, 赵越. 2014.中国西南思茅地体中部白垩纪古地磁结果及陆内地壳变形特征[J].地球物理学报, 57(1): 179-198. doi: 10.6038/cjg20140116 Tong Y B, Yang Z Y, Wang H, Zhang X D, AnC Z, Xu Y C, Zhao Y. 2014. The Creatceous paleomagnetic results from the central part of the Simao terrane in the southwest part of China and its tectonic implication[J]. Chinese Journal of Geophysics, 57(1): 179-198 (in Chinese). doi: 10.6038/cjg20140116
王林瑛, 郭永霞, 刘芳, 蒋长胜. 2008.文安地震前后首都圈分区波速比时变特征[J].地震学报, 30(3): 240-253. http://www.dzxb.org/Magazine/Show?id=26581 Wang L Y, Guo Y X, Liu F, Jiang C S. 2008. Temporal vP/vS variation characteristics in different zones of China's capital area before and after 2006 Wen'an earthquake[J]. Acta Seismologica Sinica, 30(3): 240-253 (in Chinese). http://www.dzxb.org/Magazine/Show?id=26581
谢剑波. 2014.地震记录的时间域反褶积、仿真及在地震计方位角相对测量中的应用[J].地球物理学报, 57(1): 167-178. doi: 10.6038/cjg20140115 Xie J B. 2014. Deconvolution, simulation of seismic records in the time domain and application in the relative measurements of seismometer orientation[J]. Chinese Journal of Geophysics, 57(1): 167-178 (in Chinese). doi: 10.6038/cjg20140115
徐纪人, 赵志新. 2009.深井地球物理观测的最新进展与中国大陆科学钻探长期观测[J].地球物理学进展, 24(4): 1176-1182. doi: 10.3969/j.issn.1004-2903.2009.04.003 Xu J R, Zhao Z X. 2009. Recent advance of borehole geophysical observation and Chinese continental scientific drilling long-term observatory at depth[J]. Progress in Geophysics, 24(4): 1176-1182 (in Chinese). doi: 10.3969/j.issn.1004-2903.2009.04.003
张尉, 陈棋福, 丘学林, 陈颙. 2009.首都圈数字地震台网对微弱爆破信号的检测能力[J].地球物理学报, 52(3): 681-690. http://www.irgrid.ac.cn/handle/1471x/197822 Zhang W, Chen Q F, Qiu X L, Chen Y. 2009. Weak explosion signal detection by the Beijing metropolitan digital seismic network[J]. Chinese Journal of Geophysics, 52(3): 681-690 (in Chinese). http://www.irgrid.ac.cn/handle/1471x/197822
中国地震台网中心. 2015. 历史查询[EB/OL]. [2015-08-07]. http://www.ceic.ac.cn/history. China Earthquake Network Center. 2017.History search[EB/OL]. [2015-08-07]. http://www.ceic.ac.cn/history (in Chinese).
Asai Y, Okubo M, Ishii H, Aoki H, Yamauchi T, Kitagawa Y, Koizumi N. 2005. Co-seismic strain-steps associated with the 2004 off the Kii Peninsula earthquakes-Observed with Ishii-type borehole strainmeters and quartz-tube extensometers[J]. Earth Planets Space, 57: BF03352568. doi: 10.1186/BF03352568.pdf
Aster R C, Shearer P M. 1991. High frequency borehole seismograms recorded in the San Jacinto fault zone, southern California, Part 1: Polarization[J]. Bull Seismol Soc Am, 81(4): 1081-1100. https://pubs.geoscienceworld.org/bssa/article-lookup/81/4/1057
Bertero M, Boccacci P. 1998. Introduction to Inverse Problems in Imaging[M]. Bristol: IOP Publishing: 1-347.
Bindi D, Parolai S, Spallarossa D, Catteneo M. 2000. Site effects by H/V ratio: Comparison of two different procedures[J]. J Earthq Eng, 4(1): 97-113. https://www.cambridge.org/core/books/the-italic-people-of-ancient...
Boese C, Wotherspoon L, Alvarez M, Malin P. 2015. Analysis of anthropogenic and natural noise from multilevel borehole seismometers in an urban environment, Auckland, New Zealand[J]. Bull Seismol Soc Am, 105(1): 285-299. doi: 10.1785/0120130288
Chong J J, Ni S D. 2009. Near surface velocity and QS structure of the Quaternary sediment in Bohai basin, China[J]. Earthquake Science, 22(5): 451-458. doi: 10.1007/s11589-009-0451-1
Carter J A, Barstow N, Pomeroy P W, Chael E P, Leahy P J. 1991. High-frequency seismic noise as a function of depth[J]. Bull Seismol Soc Am, 81(4): 1101-1114. https://pubs.geoscienceworld.org/bssa/article-lookup/81/4/1101
Díaz J, Villaseor A, Morales J, Pazos A, Córdoba D, Pulgar J, García-Lobón J L, Harnafi M, Carbonell R, Gallart J, TopoIberia Seismic Working Group. 2010. Background noise characteristics at the IberArray broadband seismic network[J]. Bull Seismol Soc Am, 100(2): 618-628. doi: 10.1785/0120090085
Fukao Y, Ishibashi K. 1996. Damages Caused by Osaka-Kobe-Awaji Large Earthquake and Earthquake Prediction[M]. Tokyo: Iwanami Press (in Japanese).
Fukushima Y, Kinoshita S, Sato H. 1992. Measurement of Q-1 for S waves in mudstone Chikura, Japan: Comparison of incident and reflected phases in borehole seismograms[J]. Bull Seismol Soc Am, 82(1): 148-163.
Fukushima R, Nakahara H, Nishimura T. 2016. Estimating S-wave attenuation in sediments by deconvolution analysis of KiK-net borehole seismograms[J]. Bull Seismol Soc Am, 106(2): 552-559. doi: 10.1785/0120150059
Grigoli F, Cesca S, Dahm T, Krieger L. 2012. A complex linear least-squares method to derive relative and absolute orientations of seismic sensors[J]. Geophys J Int, 188(3): 1243-1254. doi: 10.1111/gji.2012.188.issue-3
Hauksson E, Teng T L, Henyey T. 1987. Results from a 1500 m deep, three-level downhole seismometer array: Site response, low Q values, and fmax[J]. Bull Seismol Soc Am, 77(6): 1883-1904. https://www.researchgate.net/publication/317931488_Hydraulic...
Ma K F, Lin Y Y, Lee S J, Mori J, Brodsky E E. 2012. Isotropic events observed with a borehole array in the Chelungpu fault zone, Taiwan[J]. Science, 337(6093): 459-463. doi: 10.1126/science.1222119
McNamara D E, Boaz R I. 2005. Seismic Noise Analysis System, Power Spectral Density Probability Density Function: Stand-Alone Software Package[R]. USGS Open-File Report: 2005-1438.
Mehta K, Snieder R, Grazier V. 2007a. Extraction of near-surface properties for a lossy layered medium using the propagator matrix[J]. Geophys J Int, 169(1): 271-280. doi: 10.1111/gji.2007.169.issue-1
Mehta K, Snieder R, Grazier V. 2007b. Downhole receiver function: A case study[J]. Bull Seismol Soc Am, 97(5): 1396-1403. doi: 10.1785/0120060256
Nakata N, Snieder R. 2012. Estimating near-surface shear wave velocities in Japan by applying seismic interferometry to KiK-net data[J]. J Geophys Res, 177: B01308. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.705.4195
Nakata N. 2013. Combination of Hi-net and KiK-net data for deconvolution interferometry[J]. Bull Seismol Soc Am, 103(6): 3073-3082. doi: 10.1785/0120130101
Nakata N, Snieder R, Behm M. 2014. Body-wave interferometry using regional earthquakes with multidimensional deconvolution after wavefield decomposition at free surface[J]. Geophys J Int, 199(2): 1125-1137. doi: 10.1093/gji/ggu316
Wang X, Chen Q F, Li J, Wei S J. 2016. Seismic sensor misorientation measurement using P-wave particle motion: An application to the NEC saids array[J]. Seismol Res Lett, 87(4): 901-911. doi: 10.1785/0220160005.
Okubo M, Asai Y, Aoki H, Ishii H. 2005. The seismological and geodetical roles of strain seismogram suggested from the 2004 off the Kii peninsula earthquakes[J]. Earth Planets Space, 57(4): 303-308. doi: 10.1186/BF03352567
Parolai S, Ansal A, Kurtulus A, Strollo A, Wang R J, Zschau J. 2009. The Ataky vertical array (Turkey): Insights into seismic wave propagation in the shallow-most crustal layers by waveform deconvolution[J]. Geophys J Int, 178(3): 1649-1662. doi: 10.1111/gji.2009.178.issue-3
Peterson J. 1993. Observations and Modeling of Seismic Background Noise[R]. USGS Open-File Report: 93-322.
Seale S H, Archuleta R J. 1989. Site amplification and attenuation of strong ground motion[J]. Bull Seismol Soc Am, 79(6): 1673-1696.
Snieder R, Safak E. 2006. Extracting the building response using seismic interferometry: Theory and application to the Millikan library in Pasadena, California[J]. Bull Seismol Soc Am, 96(2): 586-598. doi: 10.1785/0120050109
Tikhonov A N, Arsenin V Y. 1977. Solutions of Ill-Posed Problems[M]. WashingtonD C:V.H.Winston & Sons: 1-258.
Zhu L P, Rivera L A. 2002. A note on the dynamic and static displacements from a point source in multilayered media[J]. Geophys J Int, 148(3): 619-627. doi: 10.1046/j.1365-246X.2002.01610.x
Zoback M D, Hickman S H, Ellsworth W L. 2011. Scientific drilling into the San Andreas fault zone: An overview of SAFOD's first five years[J]. Scientific Drilling, 11: 14-28. doi: 10.5194/sd-11-14-2011
-
期刊类型引用(8)
1. 张建国,赵长红,张磊,张双凤,申炫烨,杨晓冬. 基于DEMETER卫星数据研究汶川8.0级地震前ELF电磁短临异常(英文). Applied Geophysics. 2025(01): 209-219+236 . 百度学术
2. 张建国,张双凤,陈化然. 基于DEMETER卫星数据研究汶川M_S 8.0地震前ELF电磁短临异常. 地震地磁观测与研究. 2023(S1): 76-79 . 百度学术
3. 张学民,申旭辉. 地震—电离层圈层耦合机理研究进展及问题思考. 地震科学进展. 2022(05): 193-202 . 百度学术
4. 杨牧萍,钱庚,张学民,申旭辉,张萌,金艳铭. 东北亚地区M_S6.0以上地震异常电磁波动研究. 大地测量与地球动力学. 2022(07): 669-674 . 百度学术
5. 蔡润,武震,谭大诚,云欢,郭鹏. 地震前的电磁异常综述. 华南地震. 2018(01): 1-16 . 百度学术
6. 崔玉国,王元新. 地基ELF线天线在地-电离层壳体中产生的场. 电波科学学报. 2016(05): 851-857 . 百度学术
7. 张学民,申旭辉,赵庶凡,刘静,欧阳新艳,娄文宇,泽仁志玛,何建辉,钱庚. 地震电离层探测技术及其应用研究进展. 地震学报. 2016(03): 356-375 . 本站查看
8. Xuhui Shen,Xuemin Zhang,Shunying Hong,Feng Jing,Shufan Zhao. Progress and development on multi-parameters remote sensing application in earthquake monitoring in China. Earthquake Science. 2013(06): 427-437 . 必应学术
其他类型引用(9)