新疆阿克陶MS6.7地震引起的新10井水位同震响应研究

向阳, 孙小龙, 杨朋涛

向阳, 孙小龙, 杨朋涛. 2017: 新疆阿克陶MS6.7地震引起的新10井水位同震响应研究. 地震学报, 39(6): 899-909. DOI: 10.11939/jass.2017.06.008
引用本文: 向阳, 孙小龙, 杨朋涛. 2017: 新疆阿克陶MS6.7地震引起的新10井水位同震响应研究. 地震学报, 39(6): 899-909. DOI: 10.11939/jass.2017.06.008
Xiang Yang, Sun Xiaolong, Yang Pengtao. 2017: Coseismic response of water level in Xin10 well caused by MS6.7 Akto, Xinjiang, earthquake. Acta Seismologica Sinica, 39(6): 899-909. DOI: 10.11939/jass.2017.06.008
Citation: Xiang Yang, Sun Xiaolong, Yang Pengtao. 2017: Coseismic response of water level in Xin10 well caused by MS6.7 Akto, Xinjiang, earthquake. Acta Seismologica Sinica, 39(6): 899-909. DOI: 10.11939/jass.2017.06.008

新疆阿克陶MS6.7地震引起的新10井水位同震响应研究

基金项目: 

国家自然科学基金 41502239

中国地震局监测预测科研三结合课题 CEA-JC/3JH-163102

国家自然科学基金(41502239)和中国地震局监测预测科研三结合课题(CEA-JC/3JH-163102)共同资助

详细信息
    作者简介:

    向阳  新疆维吾尔自治区地震局助理工程师,中国地震局地壳应力研究所固体地球物理学专业在读硕士研究生. 2012年喀什师范大学物理学专业毕业,获理学学士学位.现主要从事与地下流体相关的地震研究及地震监测预测工作

    通讯作者:

    孙小龙, e-mail: xlsun04@163.com

  • 中图分类号: P315.72+3

Coseismic response of water level in Xin10 well caused by MS6.7 Akto, Xinjiang, earthquake

  • 摘要: 本文根据新10井数字化高频采样水位仪记录到的2016年11月25日新疆阿克陶MS6.7地震所引起的水震波,对比分析了该井水位与地表垂向运动的相关性特征,并对二者与井-含水层系统水文参数的关系进行了深入探讨.分析结果显示:①与地震波信号相似,新疆阿克陶MS6.7地震引起的新10井水震波存在两个显著的周期,即6—10 s和15—30 s;②新10井水震波响应幅度与地表垂向运动幅度整体呈正相关,且在高频阶段(频率大于0.08 Hz)二者的振幅比随着频率的减小而增大,表明该井水位对周期大于12 s的信号放大效能较高;③利用水震波与地震波的振幅比估算新10井观测含水层渗透系数的量级为10-2 cm/s,且在地震波作用过程中含水层的水文参数也存在波动.本研究表明,井水位的同震响应机理较为复杂,在分析水位同震响应特征时,高采样率的水位数据是获得可靠结果与认识的基础.
    Abstract: A hydroseismogram induced by the Akto MS6.7 earthquake in Xinjiang on November 25, 2016 was recorded by digital high frequency sampling level gauge. We comparatively analyzed the correlation characteristics between the water level and the vertical ground motion, and the relationship between the above two and the hydrological parameters of well-aquifer system was carried out by a thorough discussion. The results suggested that: ① similar to the seismic signal, there are two significant periods, 6--10 s and 15--30 s in the hydroseismogram of Xin10 well induced by the Akto MS6.7 earthquake. ② overall, the response amplitude of hydroseismogram in Xin10 well was positively correlated to the amplitude of vertical ground motion, and the amplitude ratio of the two increased with the reduction in frequency at high frequency (greater than 0.08 Hz), which indicated that the water level of Xin10 well could enlarge signals with period more than 12 s more effectively. ③ permeability coefficient of Xin10 well-aquifer system was estimated at about 10-2 cm/s by using the amplitude ratio of the hydroseismogram and seismic waves, and the hydrogeological parameters in aquifer also fluctuated during the process of seismic wave action. The results in this paper also showed that the coseismic response mechanism of well water level is more complicated, and high sampling rate of water level data is the guarantee to obtain reliable results and knowledge in coseismic response of water level analysis.
  • 新疆维吾尔自治区地震局监测中心提供了水磨沟台的地震波形数据,审稿专家提出了修改建议,作者在此一并表示衷心的感谢.
  • 图  1   新10井构造环境(a)及其井孔结构(b)图

    F1:柴窝堡盆地南缘断裂;F2:红雁池断裂;F3:雅玛克里断裂;F4:西山断裂;F5:二道沟断裂;F6:阜康断裂; F7:兴地断裂;F8:柯坪断裂;F9:西昆仑北缘断裂;F10:布伦口断裂

    Figure  1.   Geotectonic environment (a) and borehole structure (b) of Xin10 well

    F1: Southern margin fault of Chaiwopu basin; F2: Hongyanchi fault; F3: Yama-Kerrey fault; F4: Xishan fault; F5: Erdaogou fault; F6: Fukang fault; F7: Xingdi fault; F8: Kalpin fault; F9: Northern margin fault of West Kunlun; F10: Bulunkou fault

    图  2   新10井水震波(左)与水磨沟台地震波(右)的形态(a, b)及时频特征(c, d)对比

    Figure  2.   Waveforms (a, b) and time-frequency characteristics (c, d) of hydroseismogram in the Xin10 well (left) and those of the seismic waves in Shuimogou station (right)

    图  3   时间域水位与地表运动速度垂向分量的幅度对比

    (a)水位与垂向速度散点图; (b)不同周期τ的水位幅值变化; (c)不同周期τ的垂向速度变化; (d)不同周期τ的水位与垂向速度振幅比m

    Figure  3.   Amplitude comparison between water level and vertical component of ground motion velocity in time domain

    (a) Scatter diagram of water level versus vertical velocity; (b) Amplitude of water level in different periods τ; (c) Vertical velocity changes in different periods τ; (d) Amplitude ratio m of water level to vertical velocity in different periods τ

    图  4   水位(a)与地表运动速度垂向分量(b)的频谱对比

    Figure  4.   Spectrum comparison between water level (a) and vertical component of ground motion velocity (b)

    图  5   频率域水位与地表运动速度垂向分量的散点图(a)及其振幅比m (b)

    Figure  5.   Scatter diagram (a) and amplitude ratio m (b) of water level to vertical component of ground motion velocity in frequency domain

    图  6   水震波变化幅值比R (a)和放大因子比R′ (b)

    Figure  6.   Amplitude ratio R of water level changes (a) and amplification factor ratio R′ (b) of hydroseismogram

    图  7   不同渗透系数K下新10井水震波放大因子的理论值和实测值

    (a)水位对含水层孔隙压力波动的放大因子A; (b)水位对地表垂向位移的放大因子A

    Figure  7.   Theoretical values and measured values of amplification factor for the Xin10 well under different permeability coefficients K

    (a) Amplification factor A of water level fluctuation to aquifer pore pressure; (b) Amplification factor A′ of water level to vertical displacement of ground surface

  • 刘序俨, 郑小菁, 王林, 季颖锋. 2009.承压井水位观测系统对体应变的响应机制分析[J].地球物理学报, 52(12): 3147-3157. doi: 10.3969/j.issn.0001-5733.2009.12.025.

    Liu X Y, Zheng X J, Wang L, Ji Y F. 2009. Response analysis of the well-water-level system in confined aquifer[J]. Chinese Journal of Geophysics, 52(12): 3147-3157. doi: 10.3969/j.issn.0001-5733.2009.12.025 (in Chinese).

    舒优良, 张世民, 黄辅琼. 2006.印尼8.7级和8.5级两次强震周至深井的震时效应研究[J].地震地磁观测与研究, 27(2): 16-22. http://www.cnki.com.cn/Article/CJFDTotal-FZJS200502015.htm

    Shu Y L, Zhang S M, Huang F Q. 2006. A study on earthquake-time effect of Zhouzhi deep borehole on two strong earthquakes: Magnitude 8.7 and magnitude 8.5 in Indonesia[J]. Seismological and Geomagnetic Observation and Research, 27(2): 16-22 (in Chinese). doi: 10.1007/s11589-009-0149-4

    舒优良, 张世民, 黄辅琼. 2014.汶川8.0级地震周至深井水震波的记录特征[J].震灾防御技术, 9(增刊): 572-580. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zzfy2014s1002&dbname=CJFD&dbcode=CJFQ

    Shu Y L, Zhang S M, Huang F Q. 2014. Characteristics of water level depth vibration of Zhouzhi deep well during Wenchuan M8.0 earthquake[J]. Technology for Earthquake Disaster Prevention, 9(S): 572-580 (in Chinese). https://www.sciencedirect.com/science/article/pii/S0040195116304905

    Barbour A J. 2015. Pore pressure sensitivities to dynamic strains: Observations in active tectonic regions[J]. J Geophys Res, 120(8): 5863-5883. doi: 10.1002/2015JB012201

    Blanchard F B, Byerly P. 1935. A study of a well gauge as a seismograph[J]. Bull Seismol Soc Am, 25(40): 313-321. http://bssa.geoscienceworld.org/content/25/4/313

    Brodsky E E, Roeloffs E A, Woodcock D, Gall I, Manga M. 2003. A mechanism for sustained groundwater pressure changes induced by distant earthquakes[J]. J Geophys Res, 108(B8): 2390. doi: 10.1029/2002JB002321.

    Cooper Jr H H, Bredehoeft J D, Papadopulos I S, Bennett R R. 1965. The response of well-aquifer systems to seismic waves[J]. J Geophys Res, 70(16): 3915-3926. doi: 10.1029/JZ070i016p03915.

    Eaton J P, Takasaki K J. 1959. Seismological interpretation of earthquake-induced water-level fluctuations in wells[J]. Bull Seismol Soc Am, 49(3): 227-245. http://bssa.geoscienceworld.org/content/49/3/227

    Elkhoury J E, Brodsky E E, Agnew D C. 2006. Seismic waves increase permeability[J]. Nature, 441(7097): 1135-1138. doi: 10.1038/nature04798.

    Elkhoury J E, Niemeijer A, Brodsky E E, Marone C. 2011. Laboratory observations of permeability enhancement by fluid pressure oscillation of in situ fractured rock[J]. J Geophys Res, 116(B2): B02311. doi: 10.1029/2010JB007759.

    He A H, Fan X F, Zhao G, Liu Y, Singh R P, Hu Y L. 2017. Co-seismic response of water level in the Jingle well (China) associated with the Gorkha Nepal (MW7.8) earthquake[J]. Tectonophysics, 714/715: 82-89. doi: 10.1016/j.tecto.2016.08.019.

    Hsieh P A, Bredehoeft J D, Farr J M. 1987. Determination of aquifer transmissivity from earth tide analysis[J]. Water Resour Res, 23(10): 1824-1832. doi: 10.1029/WR023i010p01824

    Liu L B, Roeloffs E, Zheng X Y. 1989. Seismically induced water level fluctuations in the Wali well, Beijing, China[J]. J Geophys Res, 94(B7): 9453-9462. doi: 10.1029/JB094iB07p09453.

    Ma Y C, Huang F Q. 2017. Coseismic water level changes induced by two distant earthquakes in multiple wells of the Chinese mainland[J]. Tectonophysics, 694: 57-68. doi: 10.1016/j.tecto.2016.11.040

    Manga M, Beresnev I, Brodsky E E, Elkhoury J E, Elsworth D, Ingebritsen S E, Mays D C, Wang C Y. 2012. Changes in permeability caused by transient stresses: Field observations, experiments, and mechanisms[J]. Rev Geophys, 50(2): RG2004. doi: 10.1029/2011RG000382.

    Manga M, Wang C Y, Shirzaei M. 2016. Increased stream discharge after the 3 September 2016 MW5.8 Pawnee, Oklahoma earthquake[J]. Geophys Res Lett, 43(22): 11588-11594. doi: 10.1002/2016GL071268.

    Mays D C. 2010. Contrasting clogging in granular media filters, soils, and dead-end membranes[J]. J Environ Eng, 136(5): 475-480. doi: 10.1061/(ASCE)EE.1943-7870.0000173.

    Montgomery D R, Manga M. 2003. Streamflow and water well responses to earthquakes[J]. Science, 300: 2047-2049. doi: 10.1126/science.1082980.

    Pride S R, Berryman J G, Harris J M. 2004. Seismic attenuation due to wave-induced flow[J]. J Geophys Res, 109(B1): B01201. doi: 10.1029/2003JB002639.

    Rexin E E, Oliver J, Prentiss D. 1962. Seismically-induced fluctuations of the water level in the Nunn-Bush Well in Milwaukee[J]. Bull Seismol Soc Am, 52(1): 17-25. https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/52/1/17/101282/seismically-induced-fluctuations-of-the-water?redirectedFrom=fulltext

    Shalev E, Kurzon I, Doan M L, Lyakhovsky V. 2015. Water-level oscillations caused by volumetric and deviatoric dynamic strains[J]. Geophys J Int, 204(2): 841-851. http://adsabs.harvard.edu/abs/2016GeoJI.204..841S

    Shi Z, Wang G, Manga M, Wang C Y. 2015. Continental-scale water-level response to a large earthquake[J]. Geofluids, 15(1/2): 310-320. doi: 10.1111/gfl.12099/abstract

    Shih D C F, Wu Y M, Chang C H. 2013. Significant coherence for groundwater and Rayleigh waves: Evidence in spectral response of groundwater level in Taiwan using 2011 Tohoku earthquake, Japan[J]. J Hydrol, 486: 57-70. doi: 10.1016/j.jhydrol.2013.01.013

    Stockwell R G, Mansinha L, Lowe R P. 1996. Localization of the complex spectrum: The S transform[J]. IEEE Trans Signal Process, 44(4): 998-1001. doi: 10.1109/78.492555

    Sun X L, Wang G C, Yang X H. 2015. Coseismic response of water level in Changping well, China, to the MW9.0 Tohoku earthquake[J]. J Hydrol, 531: 1028-1039. doi: 10.1016/j.jhydrol.2015.11.005

    Wang C Y, Wang C H, Manga M. 2004. Coseismic release of water from mountains: Evidence from the 1999 (MW7.5) Chi-Chi, Taiwan, earthquake[J]. Geology, 32(9): 769-772. doi: 10.1130/G20753.1.

    Weingarten M, Ge S M. 2014. Insights into water level response to seismic waves: A 24 year high-fidelity record of global seismicity at Devils Hole[J]. Geophys Res Lett, 41(1): 74-80. doi: 10.1002/2013GL058418

    Yan R, Woith H, Wang R J. 2014. Groundwater level changes induced by the 2011 Tohoku earthquake in China mainland[J]. Geophys J Int, 199(1): 533-548. doi: 10.1093/gji/ggu196

    Yan R, Wang G C, Shi Z M. 2016. Sensitivity of hydraulic properties to dynamic strain within a fault damage zone[J]. J Hydrol, 543: 721-728. doi: 10.1016/j.jhydrol.2016.10.043

    Zhang Y, Fu L Y, Huang F Q, Chen X Z. 2015. Coseismic water-level changes in a well induced by teleseismic waves from three large earthquakes[J]. Tectonophysics, 651: 232-241. https://www.sciencedirect.com/science/article/pii/S004019511500195X

图(7)
计量
  • 文章访问数:  1411
  • HTML全文浏览量:  665
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-16
  • 修回日期:  2017-06-26
  • 发布日期:  2017-10-31

目录

    /

    返回文章
    返回