3-D modeling of velocity structure for the Yuxi basin
-
摘要: 本文以玉溪盆地为例,提出了一种包含数据预处理、模型建立、模型修正和模型检验的建模方法.基于各类数据间不同的可信度,给出了消除各类数据间速度偏差的折减函数.为避免以往模型修正过程中对地震波形数据的依赖以及对地脉动H/V谱进行模拟等复杂问题,本文提出了一种改进的模型修正方法,即根据基阶瑞雷波H/V谱与实测地脉动H/V谱形状变化相似的原则,对模型进行修正.修正依据为:在玉溪盆地中,单个地脉动测点所在位置处的地下速度结构中各沉积层面的深度均增加约15 m时,由该点的地下速度结构得到的基阶瑞雷波H/V谱的波峰周期和波谷周期均增加约0.1 s,且二者分别由盆地内沉积层的深层和浅层的速度结构所控制.由于地脉动数据的获取较方便,因此该模型修正方法具有广泛的适用性,由该方法修正后的玉溪盆地三维速度结构模型经检验具有较高的准确度.Abstract: To achieve ground motion prediction, it is necessary to build a 3-D velocity structure model of sedimentary basin. Taking the Yuxi basin as an example, we provide a modeling procedure, including data preprocessing, model building, model updating and model testing. Based on the different credibility of various data, we propose a function that can eliminate the velocity deviation among various data. In this paper, an improved model updating method is proposed in order to avoid the dependence on the seismic waveform data and the simulation of the microtremors spectral ratio of horizontal to vertical component (H/V spectra). We apply the theory that the H/V spectral shape of the fundamental-mode Rayleigh, including its peak and trough periods, is similar to that of the microtremors to update the 3-D velocity structure model. When the depth of each sedimentary layer in the velocity structure under a single microtremors measuring point is increased by about 15 m, the H/V spectral peak and trough periods of the fundamental-mode Rayleigh wave will both increase about 0.1 s, moreover, the two periods are controlled by deep or shallow velocity structures of the sedimentary layers in basin respectively. Because of the convenient acquisition of the microtremors data, the model updating method has extensive applicability. The 3-D velocity structure model of the Yuxi basin modified by the model updating method has been confirmed a high accuracy after inspection.
-
Keywords:
- ground motion prediction /
- Yuxi basin /
- 3-D velocity structure /
- model updating /
- H/V spectra
-
中国地震局地球物理研究所鲁来玉研究员和陈石研究员分别在面波频散曲线计算和速度结构模型三维可视化展示方面给予了指导,中央级公益性科研院所业务专项(021904)提供了本文所用玉溪盆地的建模数据,作者在此一并表示感谢.
-
-
陈棋福, 刘澜波, 王伟君, Rohrbach E. 2008.利用地脉动探测北京城区的地震动场地响应[J].科学通报, 53(18): 2229-2235. doi: 10.3321/j.issn:0023-074X.2008.18.013 Chen Q F, Liu L B, Wang W J, Rohrbach E. 2009. Site effects on earthquake ground motion based on microtremors measurements for metropolitan Beijing[J]. Chinese Science Bulletin, 54(2): 280-287. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxtw200902014&dbname=CJFD&dbcode=CJFQ
高孟潭, 俞言祥, 张晓梅, 吴健, 胡平, 丁彦慧. 2002.北京地区地震动的三维有限差分模拟[J].中国地震, 18(4): 356-364. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgzd200204004&dbname=CJFD&dbcode=CJFQ Gao M T, Yu Y X, Zhang X M, Wu J, Hu P, Ding Y H. 2002. Three-dimensional finite-difference simulations of ground motions in the Beijing area[J]. Earthquake Research in China, 18(4): 356-364 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGZD200204004.htm
郭明珠, 谢礼立, 凌贤长. 2004.弹性介质面波地脉动单点谱比法研究[J].岩土工程学报, 26(4): 450-453. http://www.oalib.com/paper/4370280 Guo M Z, Xie L L, Ling X Z. 2004. Research on spectral ratio of horizontal to vertical component for elastic model and surface microtremors[J]. Chinese Journal of Geotechnical Engineering, 26(4): 450-453 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-YTGC200404003.htm
何正勤, 丁志峰, 贾辉, 叶太兰. 2007.用微动中的面波信息探测地壳浅部的速度结构[J].地球物理学报, 50(2): 492-498. http://www.doc88.com/p-9512110300275.html He Z Q, Ding Z F, Jia H, Ye T L. 2007. To determine the velocity structure of shallow crust with surface wave information in microtremors[J]. Chinese Journal of Geophysics, 50(2): 492-498 (in Chinese). http://en.cnki.com.cn/article_en/cjfdtotal-dqwx200702020.htm
何正勤, 安好收, 沈坤, 鲁来玉, 胡刚, 叶太兰. 2013.用地震反射法对玉溪盆地普渡河断裂的探测[J].地震学报, 35(6): 836-847. http://www.dzxb.org/Magazine/Show?id=28891 He Z Q, An H S, Shen K, Lu L Y, Hu G, Ye T L. 2013. Detection of Puduhe fault in Yuxi basin of Yunnan by seismic reflection method[J]. Acta Seismologica Sinica, 35(6): 836-847 (in Chinese). http://www.dzxb.org/Magazine/Show?id=28891
王伟君, 刘澜波, 陈棋福, 张杰. 2009.应用微动H/V谱比法和台阵技术探测场地响应和浅层速度结构[J].地球物理学报, 52(6): 1515-1525. https://es.scribd.com/document/265808204/I Wang W J, Liu L B, Chen Q F, Zhang J. 2009. Applications of microtremor H/V spectral ratio and array techniques in assessing the site effect and near surface velocity structure[J]. Chinese Journal of Geophysics, 52(6): 1515-1525 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX200906014.htm
王伟君, 陈棋福, 齐诚, 谭毅培, 张项, 周青云. 2011.利用噪声HVSR方法探测近地表结构的可能性和局限性:以保定地区为例[J].地球物理学报, 54(7): 1783-1797. http://d.wanfangdata.com.cn/Periodical_dqwlxb201107012.aspx Wang W J, Chen Q F, Qi C, Tan Y P, Zhang X, Zhou Q Y. 2011. The feasibilities and limitations to explore the near-surface structure with microtremor HVSR method: A case in Baoding area of Hebei Province, China[J]. Chinese Journal of Geophysics, 54(7): 1783-1797 (in Chinese). http://manu39.magtech.com.cn/Geophy/EN/abstract/abstract8060.shtml
徐佩芬, 侍文, 凌苏群, 郭慧丽, 李志华. 2012.二维微动剖面探测"孤石":以深圳地铁7号线为例[J].地球物理学报, 55(6): 2120-2128. doi: 10.6038/j.issn.0001-5733.2012.06.034 Xu P F, Shi W, Ling S Q, Guo H L, Li Z H. 2012. Mapping spherically weathered "Boulders" using 2D microtremor profiling method: A case study along subway line 7 in Shenzhen[J]. Chinese Journal of Geophysics, 55(6): 2120-2128 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201206033.htm
朱广生, 桂志先, 熊新斌, 段天友, 唐宗黄, 吴永刚. 1995.密度与纵横波速度关系[J].地球物理学报, 38(增刊1): 260-264. http://www.cqvip.com/QK/94718X/1995A01/1668153.html Zhu G S, Gui Z X, Xiong X B, Duan T Y, Tang Z H, Wu Y G. 1995. Relationship between density and P-wave, S-wave velocities[J]. Acta Geophysica Sinica, 38(S1): 260-264 (in Chinese). http://www.cqvip.com/QK/94718X/1995A01/1668153.html
Aoi S, Honda R, Morikawa N, Sekiguchi H, Suzuki H, Hayakawa Y, Kunugi T, Fujiwara H. 2008. Three-dimensional finite difference simulation of long-period ground motions for the 2003 Tokachi-oki, Japan, earthquake[J]. J Geophys Res Solid Earth, 113(B7): B07302. doi: 10.1029/2007JB005452/citedby
Arai H, Tokimatsu K. 2004. S-wave velocity profiling by inversion of microtremor H/V spectrum[J]. Bull Seismol Soc Am, 94(1): 53-63. doi: 10.1785/0120030028
Arai H, Tokimatsu K. 2005. S-wave velocity profiling by joint inversion of microtremor dispersion curve and horizontal-to-vertical (H/V) spectrum[J]. Bull Seismol Soc Am, 95(5): 1766-1778. doi: 10.1785/0120040243
Barnaba C, Marello L, Vuan A, Palmieri F, Romanelli M, Priolo E, Braitenberg C. 2010. The buried shape of an alpine valley from gravity surveys, seismic and ambient noise analysis[J]. Geophys J Int, 180(2): 715-733. doi: 10.1111/gji.2010.180.issue-2
Claprood M, Asten M W. 2010. Statistical validity control on SPAC microtremor observations recorded with a restricted number of sensors[J]. Bull Seismol Soc Am, 100(2): 776-791. doi: 10.1785/0120090133
Claprood M, Asten M W, Kristek J. 2011. Using the SPAC microtremor method to identify 2D effects and evaluate 1D shear-wave velocity profile in valleys[J]. Bull Seismol Soc Am, 101(2): 826-847. doi: 10.1785/0120090232
Delgado J, Casado C L, Giner J, Estévez A, Cuenca A, Molina S. 2000. Microtremors as a geophysical exploration tool: Applications and limitations[J]. Pure Appl Geophys, 157(9): 1445-1462. doi: 10.1007/PL00001128
Dhakal Y P, Sasatani T, Takai N. 2011. Validation of the deep velocity structure of the Tokachi basin based on 3-D simulation of long-period ground motions[J]. Pure Appl Geophys, 168(10): 1599-1620. doi: 10.1007/s00024-010-0237-3
Dhakal Y P, Yamanaka H. 2013. An evaluation of 3-D velocity models of the Kanto basin for long-period ground motion simulations[J]. J Seismol, 17(3): 1073-1102. doi: 10.1007/s10950-013-9373-4
Dolenc D. 2005. Microseisms observations in the Santa Clara Valley, California[J]. Bull Seismol Soc Am, 95(3): 1137-1149. doi: 10.1785/0120040060
Graves R W, Pitarka A, Somerville P G. 1998. Ground-motion amplification in the Santa Monica area: Effects of shallow basin-edge structure[J]. Bull Seismol Soc Am, 88(5): 1224-1242. https://pubs.geoscienceworld.org/bssa/article-lookup/88/5/1224
Guéguen P, Cornou C, Garambois S, Banton J. 2007. On the limitation of the H/V spectral ratio using seismic noise as an exploration tool: Application to the Grenoble Valley (France), a small apex ratio basin[J]. Pure Appl Geophys, 164(1): 115-134. doi: 10.1007/s00024-006-0151-x
Harkrider D G. 1964. Surface waves in multilayered elastic media. 1. Rayleigh and Love waves from buried sources in a multilayered elastic half-space[J]. Bull Seismol Soc Am, 54(2): 627-679. https://pubs.geoscienceworld.org/bssa/article-lookup/54/2/627
Harkrider D G. 1970. Surface waves in multilayered elastic media. Part Ⅱ. Higher mode spectra and spectral ratios from point sources in plane layered Earth models[J]. Bull Seismol Soc Am, 60(6): 1937-1987. http://authors.library.caltech.edu/60571
Haskell N A. 1953. The dispersion of surface waves on multilayered media[J]. Bull Seismol Soc Am, 43(1): 17-34. doi: 10.1029/SP030p0086/summary
Huang H C, Wu C F. 2006. Estimations of the S-wave velocity structures in Chia-Yi City, Taiwan, using the array records of microtremors[J]. Earth Planets Space, 58(11): 1455-1462. doi: 10.1186/BF03352644
Iwaki A, Iwata T. 2010. Simulation of long-period ground motion in the Osaka sedimentary basin: Performance estimation and the basin structure effects[J]. Geophys J Int, 181(2): 1062-1076. http://adsabs.harvard.edu/abs/2010geoji.181.1062i
Iwata T, Kagawa T, Petukhin A, Ohnishi Y. 2008. Basin and crustal velocity structure models for the simulation of strong ground motions in the Kinki area, Japan[J]. J Seismol, 12(2): 223-234. doi: 10.1007/s10950-007-9086-7
Kawase H. 1996. The cause of the damage belt in Kobe: "The basin-edge effect" constructive interference of the direct S-wave with the basin-induced diffracted/Rayleigh waves[J]. Seismol Res Lett, 67(5): 25-34. doi: 10.1785/gssrl.67.5.25
Kohler M D, Magistrale H, Clayton R W. 2003. Mantle heterogeneities and the SCEC reference three-dimensional seismic velocity model version 3[J]. Bull Seismol Soc Am, 93(2): 757-774. doi: 10.1785/0120020017
Koketsu K, Miyake H, Afnimar, Tanaka Y. 2009. A proposal for a standard procedure of modeling 3-D velocity structures and its application to the Tokyo metropolitan area, Japan[J]. Tectonophysics, 472(1/4): 290-300. http://www.sciencedirect.com/science/article/pii/S0040195108002539
Komatitsch D, Liu Q Y, Tromp J, Süss P, Stidham C, Shaw J H. 2004. Simulations of ground motion in the Los Angeles basin based upon the spectral-element method[J]. Bull Seismol Soc Am, 94(1): 187-206. doi: 10.1785/0120030077
Lunedei E, Albarello D. 2010. Theoretical HVSR curves from full wavefield modelling of ambient vibrations in a weakly dissipative layered Earth[J]. Geophys J Int, 181(2): 1093-1108. doi: 10.1111/j.1365-246X.2010.04560.x/full
Olsen K B, Archuleta R J, Matarese J R. 1995. Three-dimensional simulation of a magnitude 7.75 earthquake on the San Andreas fault[J]. Science, 270(5242): 1628-1632. doi: 10.1126/science.270.5242.1628
Olsen K B. 2000. Site amplification in the Los Angeles basin from three-dimensional modeling of ground motion[J]. Bull Seismol Soc Am, 90(6B): S77-S94. doi: 10.1785/0120000506
Özalaybey S, Zor E, Ergintav S, Tapirdamaz M C. 2011. Investigation of 3-D basin structures in the İzmit Bay area (Turkey) by single-station microtremor and gravimetric methods[J]. Geophys J Int, 186(2): 883-894. doi: 10.1111/j.1365-246X.2011.05085.x
Reinoso E, Ordaz M. 1999. Spectral ratios for Mexico City from free-field recordings[J]. Earthq Spectra, 15(2): 273-295. doi: 10.1193/1.1586041
Rhie J, Dreger D. 2009. A simple method for simulating microseism H/V spectral ratio in 3D structure[J]. Geosci J, 13(4): 401-406. doi: 10.1007/s12303-009-0036-y
Sánchez-Sesma F J, Rodríguez M, Iturrarán-Viveros U, Luzón F, Campillo M, Margerin L, García-Jerez A, Suarez M, Santoyo M A, Rodríguez-Castellanos A. 2011. A theory for microtremor H/V spectral ratio: Application for a layered medium[J]. Geophys J Int, 186(1): 221-225. doi: 10.1111/gji.2011.186.issue-1
Shani-Kadmiel S, Tsesarsky M, Louie J N, Gvirtzman Z. 2011. Simulation of seismic-wave propagation through geome-trically complex basins: The Dead Sea basin[J]. Bull Seismol Soc Am, 102(4): 1729-1739. https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/102/4/1729/325455/simulation-of-seismic-wave-propagation-through?redirectedFrom=fulltext
Suzuki H, Morino M, Iwamoto K, Liu Y, Fujiwara H, Hayakawa Y. 2005. 3D subsurface structural model for strong motion simulation around Lake Biwa, southwest Japan[J]. Zisin, 58: 91-106 (in Japanese). doi: 10.4294/zisin1948.58.2_91
Uebayashi H, Kawabe H, Kamae K. 2012. Reproduction of microseism H/V spectral features using a three-dimensional complex topographical model of the sediment-bedrock interface in the Osaka sedimentary basin[J]. Geophys J Int, 189(2): 1060-1074. doi: 10.1111/gji.2012.189.issue-2
-
期刊类型引用(12)
1. 刘池洋,黄雷,赵红格,王建强,杨丽华,席晓东,彭恒. 大陆横向转换构造及其地质作用. 地质学报. 2024(12): 3455-3477 . 百度学术
2. 何金,许鑫,吴彪,刘晓磊,杨东辉,路彤. 汶川地区区域构造应力场特征及汶川M_S8.0地震对周围主要断层面的影响. 地震科学进展. 2022(03): 97-115 . 百度学术
3. 杨宜海,张雪梅,花茜,苏利娜,丰成君,邱玉荣,梁春涛,苏金蓉,古云鹤,金昭娣,张媛媛,关昕. 龙门山断裂带的分段性特征——来自密集震源机制解的约束. 地球物理学报. 2021(04): 1181-1205 . 百度学术
4. 苏小芸,陈丽君,王文才,季婉婧,李通,周卫东. 甘东南地区水氡浓度的临界慢化现象研究. 地震工程学报. 2020(05): 1104-1110+1140 . 百度学术
5. 李振月,万永革,盛书中. 米亚罗断裂活动与汶川地震序列活动的关系. 地震地质. 2019(01): 72-83 . 百度学术
6. 杨帆,盛书中,万永革,王晓山,刘兆才,李瑶. 网格内不满足均匀性假设对应力场反演结果的影响——以喜马拉雅东构造结及其周边地区应力场研究为例. 地球物理学进展. 2019(02): 479-488 . 百度学术
7. 江敏,陈九辉,Yasuto Kuwahara,Reiken Matsushita. 利用小震震源机制解研究汶川地震后龙门山断裂带中段应力场时空演化. 地震地质. 2018(02): 310-322 . 百度学术
8. 丰成君,戚帮申,张鹏,孙东生,孟静,牛琳琳,王苗苗,谭成轩,陈群策. 汶川Ms8.0地震后龙门山断裂带地壳应力场及其构造意义. 地质力学学报. 2018(04): 439-451 . 百度学术
9. 钟菊芳,吴海波. 多断层破裂下单双峰地震动参数对比分析. 防灾减灾工程学报. 2018(01): 193-202 . 百度学术
10. 万永魁,刘峡,沈军,王雷,李妍. 汶川地震前龙门山及其周缘断裂形变运动与应力累积的数值模拟. 地震地质. 2017(04): 853-869 . 百度学术
11. 杨雅琼,王晓山,万永革,盛书中,陈婷. 由震源机制解推断唐山地震序列发震断层的分段特征. 地震学报. 2016(04): 632-643+658 . 本站查看
12. 冯梅,张纪中,安美建. 2008年汶川地震前后震源区构造应力场变化. 地震地质. 2013(04): 701-720 . 百度学术
其他类型引用(10)