熊本MW7.0地震近场地表与井下地震动对比研究

罗诚, 谢俊举, 温增平

罗诚, 谢俊举, 温增平. 2018: 熊本MW7.0地震近场地表与井下地震动对比研究. 地震学报, 40(1): 108-120. DOI: 10.11939/jass.20170111
引用本文: 罗诚, 谢俊举, 温增平. 2018: 熊本MW7.0地震近场地表与井下地震动对比研究. 地震学报, 40(1): 108-120. DOI: 10.11939/jass.20170111
Luo Cheng, Xie Junju, Wen Zengping. 2018: Comparison of near-field surface and borehole ground motion observed during the Kumamoto MW7.0 earthquake. Acta Seismologica Sinica, 40(1): 108-120. DOI: 10.11939/jass.20170111
Citation: Luo Cheng, Xie Junju, Wen Zengping. 2018: Comparison of near-field surface and borehole ground motion observed during the Kumamoto MW7.0 earthquake. Acta Seismologica Sinica, 40(1): 108-120. DOI: 10.11939/jass.20170111

熊本MW7.0地震近场地表与井下地震动对比研究

详细信息
    通讯作者:

    谢俊举: e-mail: xiejunjv05@mails.ucas.ac.cn

  • 中图分类号: P315.9

Comparison of near-field surface and borehole ground motion observed during the Kumamoto MW7.0 earthquake

  • 摘要: 选取日本熊本MW7.0地震断层距小于200 km的82个近场KiK-net台站记录到的三分量记录数据进行基线校正后,获得近场地面运动水平向的峰值加速度PGA、峰值速度PGV及周期为0.2,1,2,3,5和10 s的加速度反应谱数据,并与美国NGA-West2的地震动预测模型相比较,研究熊本地震地表和井下地震动峰值及反应谱的衰减特征,通过比较KiK-net台站地表与井下记录结果,探讨浅层场地放大效应的影响。研究结果表明:① 对于井下观测结果,NGA-West2的地震动模型对PGA和短周期0.2 s的反应谱的预测值与井下观测值相比整体偏高,而PGV和较长周期地震动(如1,2和3 s的反应谱)的预测值与井下观测值较为吻合;② 地表观测记录的PGA,PGV和周期为0.2—3 s的反应谱残差整体上随vS30对数值的增大呈线性减小的趋势,而周期为5 s和10 s的长周期部分,其场地效应的影响很小;③ 相对于井下记录,地表记录的地震动PGA,PGV和周期为0.2,1和2 s的反应谱有明显的放大,这种放大作用随浅层场地剪切波速的增大而减小;周期为3,5和10 s时长周期地震动的放大效应很小。
    Abstract: We used the records of 82 near-field strong motion stations (KiK-net), which are within 200 km to the rupture fault of the Kumamoto MW7.0 earthquake, as database to derive near-field horizontal peak ground acceleration PGA, peak ground velocity PGV and spectra acceleration (period T=0.2, 1, 2, 3, 5, 10 s), after baseline correction we further compared them with the NGA-West2 ground motion model predictions. We investigated the attenuation and residuals distribution characteristics of these intensity measures (IMs), and shallow site-amplification effects by comparing surface and borehole ground motion records. The following conclusions can be drawn from our study: In the boreholes, NGA-West2 predictions are obviously greater than observations of PGA and T=0.2 s spectra acceleration, but close to the measured value in long-period IMs (spectra acceleration with T=1, 2, 3 s) and PGV. On surface, the residuals of observed PGV and T=0.2–3 s spectra acceleration show linear decrease tendency with the increase ofvS30, but the site effects affect little on the long-period spectra acce-leration. Surface records are greater than borehole in PGA, PGV and T=0.2, 1, 2 s spectra acceleration, and the amplification effects decrease with the increase of shallow site shear velocity; whereas the site amplification has little effects on the long-period spectra acceleration with T=3, 5, 10 s.
  • 图  1   本文所选用近场台站的分布图

    Figure  1.   Distribution of near-field stations used in this study

    图  2   本文以KMMH14台站地表的东西向记录为例进行的基线校正方法图解

    Figure  2.   Graphical illustration of baseline correction method used in this study taking east-west ground motion recordings of the station KMMH14 as an example

    图  3   KMMH14台站地表记录经过基线校正后的三分向加速度和速度时程

    Figure  3.   Three-component acceleration and velocity time histories obtained after baseline correction from surface recordings of the station KMMH14

    图  4   KiK-net井下记录的水平向地震动衰减特征

    Figure  4.   The attenuation of horizontal ground motion of KiK-net borehole records

    图  5   KiK-net地表记录的水平向地震动衰减特征

    Figure  5.   The attenuation of horizontal ground motion of KiK-net surface records

    图  6   KiK-net地表与井下地震动对比

    Figure  6.   Comparison of surface and borehole ground motion records from KiK-net stations

    图  7   Kik-net台站记录井下与地表的地震动比值随vS30的变化

    Figure  7.   Variation of borehole to surface ratio for various intensity measures with vS30 of KiK-net records

    图  8   按照测井深度h分组的井下与地表地震动比值分布

    Figure  8.   Variation of borehole to surface ground motion ratio (grouped by logging depth h) with vS30

    图  9   近断层台站地表与井下记录的反应谱值对比(阻尼比为5%)

    Figure  9.   Comparisons of observed surface-to-borehole acceleration spectrum ratio from near-fault stations

    图  10   依据剪切波速vS30分组的地表与井下平均谱比曲线对比

    Figure  10.   Comparison of average surface-to-borehole spectra ratio curve for five grouped vS30 bins

    图  11   B,C和D类场地的地表与井下平均谱比曲线对比

    Figure  11.   Comparison of surface-to-borehole spectrum ratio curves for site classes B,C and D

    图  12   强震动与弱震动作用下地表与井下平均反应谱比曲线的对比

    Figure  12.   Comparison of surface-to-borehole spectrum ratio curve for strong and weak motions

    表  1   KiK-net井下记录回归得到的熊本地震近场地震动衰减模型的参数

    Table  1   Regression coefficients of the attenuation model obtained based on KiK-net borehole records

    地震动参数 a b c d e
    PGA 8.155 − 0.651 9 − 8.413 0 0
    PGV 4.337 − 0.345 9 1.427 0 0
    SA02 9.894 − 0.774 2 12.77 0 0
    SA1 7.097 − 0.490 9 − 3.338 0 0
    SA2 6.18 − 0.416 5 4.176 0 0
    SA3 5.438 − 0.357 8 − 2.024 0 0
    SA5 4.537 − 0.300 4 1.718 0 0
    SA10 2.406 − 0.145 8 − 0.003 876 0 0
     注:SA02,SA1,SA2,SA3,SA5,SA10表示阻尼比为5%,周期分别为0.2,1,2,3,5,10 s的加速度反应谱值,单位为cm/s2,下同.
    下载: 导出CSV

    表  2   基于KiK-net地表记录得到的地震动衰减参数

    Table  2   Ground motion attenuation coefficients based on KiK-net surface records

    地震动参数 a b c d e
    PGA 10.43 – 0.310 2 – 5.649 – 0.013 79 – 0.463 6
    PGV 6.873 – 0.447 8 – 2.452 0 – 0.2262
    SA02 12.92 – 0.622 2 – 14.03 – 0.006 032 – 0.390 9
    SA1 11.84 – 0.619 – 3.605 0 – 0.509 5
    SA2 9.813 – 0.492 6 – 3.989 0 – 0.440 9
    SA3 8.135 – 0.399 7 – 2.641 0 – 0.351 7
    SA5 5.159 – 0.312 5 – 1.449 0 – 0.068 8
    SA10 2.691 – 0.17 – 0.001 549 0 0
    下载: 导出CSV

    表  3   对比研究中选取的地震事件

    Table  3   Earthquakes events chosen for comparison

    地震事件 发震时间 北纬/° 东经/° 震源深度/km M
    年-月-日 时:分
    1 2016-04-16 01:25 32.75 130.76 12 7.3
    2 2016-04-16 01:46 32.86 130.90 11 5.9
    3 2016-04-16 03:03 32.96 131.09 7 5.9
    4 2016-04-15 05:10 32.76 130.81 10 4.6
    5 2014-08-29 04:14 32.14 132.15 18 6.0
    下载: 导出CSV
  • 李小军. 2016. 近海工程场地强地震动场模拟及地震稳定性, 国家重点基础研究发展计划(973计划)项目课题研究报告[R]. 北京: 中国地震局地球物理研究所: 14–16.

    Li X J. 2016. Simulation of Strong Ground Motion Field in Offshore Engineering Site and Seismic Stability, Project Research Report of National Program on Key Basic Research Project[R]. Beijing: Institute of Geophysics, China Earthquake Administration: 14–16 (in Chinese).

    王国权, 周锡元. 2004. 921台湾集集地震近断层强震记录的基线校正[J]. 地震地质, 26(1): 1-14.

    Wang G Q, Zhou X Y. 2004. Baseline correction of near fault ground motion recordings of the 1999 CHI-CHI, Taiwan earthquake[J]. Seismology and Geology, 26(1): 1-14 (in Chinese).

    谢俊举, 温增平, 高孟潭. 2013. 利用强震数据获取汶川地震近断层地面永久位移[J]. 地震学报, 35(3): 369-379.

    Xie J J, Wen Z P, Gao M T. 2013. Recovery of co-seismic deformation from strong motion records during the Wenchuan earthquake[J]. Acta Seismologica Sinica, 35(3): 369-379 (in Chinese).

    Abrahamson N A, Silva W J, Kamai R. 2014. Summary of the ASK14 ground motion relation for active crustal regions[J]. Earthq Spectra, 30(3): 1025-1055

    Boore D M. 2001. Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi-Chi, Taiwan, earthquake[J]. Bull Seismol Soc Am, 91(5): 1199-1211.

    Boore D M. 2004. Estimating ${\bar V_{{S}}}$ (30)(or NEHRP Site Classes)from shallow velocity models(depths < 30 m)[J]. Bull Seismol Soc Am, 94(2): 591-597.

    Boore D M, Thompson E M, Cadet H. 2011. Regional correlations of VS30 and velocities averaged over depths less than and greater than 30 Meters[J]. Bull Seismol Soc Am, 101(6): 3046-3059.

    Boore D M, Stewart J P, Seyhan E, Atkinson G M. 2014. NGA-West 2 equations for predicting PGA, PGV, and 5%-damped PSA for shallow crustal earthquakes[J]. Earthq Spectra, 30(3): 1057-1085.

    Campbell K W, Bozorgnia Y. 2014. NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra[J]. Earthq Spectra, 30(3): 1087-1115.

    Chiou B S J, Youngs R R. 2014. Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra[J]. Earthq Spectra, 30(3): 1117-1153.

    Converse A M, Brady A G. 1992. BAP: Basic Strong-Motion Accelerogram Processing Software; Version 1.0, Open-File Report 92-296A[R]. Washington DC: US Geological Survey: 37–41.

    Gregor N, Abrahamson N A, Atkinson G M, Boore D M, Bozorgnia Y, Campbell K W, Chiou B S J, Idriss I M, Kamai R, Seyhan E, Silva W, Stewart J P, Youngs R. 2014. Comparison of NGA-West2 GMPEs[J]. Earthq Spectra, 30(3): 1179-1197.

    Idriss I M. 2014. An NGA empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes[J]. Earthq Spectra, 24(1): 217-242.

    Iwan W D, Moser M A, Peng C Y. 1985. Some observations on strong-motion earthquake measurement using a digital accelerograph[J]. Bull Seismol Soc Am, 75(5): 1225-1246.

    Kaklamanos J, Baise L G, Boore D M. 2011. Estimating unknown input parameters when implementing the NGA ground-motion prediction equations in engineering practice[J]. Earthq Spectra, 27(4): 1219-1235.

    Kato A, Nakamura K, Hiyama Y. 2016. The 2016 Kumamoto earthquake sequence[J]. Proc Jpn Acad, Ser B, 92(8): 358-371.

    Luco N, Bachman R E, Crouse C B, Harris J R, Hooper J D, Kircher C A, Caldwell P J, Rukstales K S. 2015. Updates to building-code maps for the 2015 NEHRP recommended seismic provisions[J]. Earthq Spectra, 31(S1): S245-S271.

    NIED. 2016. Earthquake list[EB/OL]. [2017-06-12]. http://www.kyoshin.bosai.go.jp/kyoshin/quake/index_en.html.

    Rong M S, Wang Z M, Woolery E W, Lyu Y, Li X J, Li S Y. 2016. Nonlinear site response from the strong ground-motion recordings in western china[J]. Soil Dyn Earthq Eng, 82: 99-110.

    USGS. 2016. M7.0–1 km E of Kumamoto-shi, Japan[EB/OL]. [2016-12-10]. https://earthquake.usgs.gov/earthquakes/eventpage/us20005iis#finite-fault.

    Wen K L, Beresnev I A, Yeh Y T. 1994. Nonlinear soil amplification inferred from downhole strong seismic motion data[J]. Geophys Res Lett, 21(24): 2625-2628.

    Wu C Q, Peng Z G, Ben-Zion Y. 2010. Refined thresholds for non-linear ground motion and temporal changes of site response associated with medium-size earthquakes[J]. Geophys J Int, 182(3): 1567-1576.

    Xie J J, Zimmaro P, Li X J, Wen Z P. 2017. Rupture directivity effects on strong ground motion during the 15 April 2016 Mw7.0 Kumamoto earthquake in Japan[J]. Bull Seismol Soc Am, 107(3): 1265-1276. doi: 10.1785/0120160258.

图(12)  /  表(3)
计量
  • 文章访问数:  1892
  • HTML全文浏览量:  891
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-08
  • 修回日期:  2017-06-26
  • 网络出版日期:  2018-02-07
  • 发布日期:  2017-12-31

目录

    /

    返回文章
    返回