Comparison of near-field surface and borehole ground motion observed during the Kumamoto MW7.0 earthquake
-
摘要: 选取日本熊本MW7.0地震断层距小于200 km的82个近场KiK-net台站记录到的三分量记录数据进行基线校正后,获得近场地面运动水平向的峰值加速度PGA、峰值速度PGV及周期为0.2,1,2,3,5和10 s的加速度反应谱数据,并与美国NGA-West2的地震动预测模型相比较,研究熊本地震地表和井下地震动峰值及反应谱的衰减特征,通过比较KiK-net台站地表与井下记录结果,探讨浅层场地放大效应的影响。研究结果表明:① 对于井下观测结果,NGA-West2的地震动模型对PGA和短周期0.2 s的反应谱的预测值与井下观测值相比整体偏高,而PGV和较长周期地震动(如1,2和3 s的反应谱)的预测值与井下观测值较为吻合;② 地表观测记录的PGA,PGV和周期为0.2—3 s的反应谱残差整体上随vS30对数值的增大呈线性减小的趋势,而周期为5 s和10 s的长周期部分,其场地效应的影响很小;③ 相对于井下记录,地表记录的地震动PGA,PGV和周期为0.2,1和2 s的反应谱有明显的放大,这种放大作用随浅层场地剪切波速的增大而减小;周期为3,5和10 s时长周期地震动的放大效应很小。Abstract: We used the records of 82 near-field strong motion stations (KiK-net), which are within 200 km to the rupture fault of the Kumamoto MW7.0 earthquake, as database to derive near-field horizontal peak ground acceleration PGA, peak ground velocity PGV and spectra acceleration (period T=0.2, 1, 2, 3, 5, 10 s), after baseline correction we further compared them with the NGA-West2 ground motion model predictions. We investigated the attenuation and residuals distribution characteristics of these intensity measures (IMs), and shallow site-amplification effects by comparing surface and borehole ground motion records. The following conclusions can be drawn from our study: In the boreholes, NGA-West2 predictions are obviously greater than observations of PGA and T=0.2 s spectra acceleration, but close to the measured value in long-period IMs (spectra acceleration with T=1, 2, 3 s) and PGV. On surface, the residuals of observed PGV and T=0.2–3 s spectra acceleration show linear decrease tendency with the increase ofvS30, but the site effects affect little on the long-period spectra acce-leration. Surface records are greater than borehole in PGA, PGV and T=0.2, 1, 2 s spectra acceleration, and the amplification effects decrease with the increase of shallow site shear velocity; whereas the site amplification has little effects on the long-period spectra acceleration with T=3, 5, 10 s.
-
Keywords:
- Kumamoto earthquake /
- strong motion /
- near-field /
- borehole recordings
-
-
表 1 KiK-net井下记录回归得到的熊本地震近场地震动衰减模型的参数
Table 1 Regression coefficients of the attenuation model obtained based on KiK-net borehole records
地震动参数 a b c d e PGA 8.155 − 0.651 9 − 8.413 0 0 PGV 4.337 − 0.345 9 1.427 0 0 SA02 9.894 − 0.774 2 12.77 0 0 SA1 7.097 − 0.490 9 − 3.338 0 0 SA2 6.18 − 0.416 5 4.176 0 0 SA3 5.438 − 0.357 8 − 2.024 0 0 SA5 4.537 − 0.300 4 1.718 0 0 SA10 2.406 − 0.145 8 − 0.003 876 0 0 注:SA02,SA1,SA2,SA3,SA5,SA10表示阻尼比为5%,周期分别为0.2,1,2,3,5,10 s的加速度反应谱值,单位为cm/s2,下同. 表 2 基于KiK-net地表记录得到的地震动衰减参数
Table 2 Ground motion attenuation coefficients based on KiK-net surface records
地震动参数 a b c d e PGA 10.43 – 0.310 2 – 5.649 – 0.013 79 – 0.463 6 PGV 6.873 – 0.447 8 – 2.452 0 – 0.2262 SA02 12.92 – 0.622 2 – 14.03 – 0.006 032 – 0.390 9 SA1 11.84 – 0.619 – 3.605 0 – 0.509 5 SA2 9.813 – 0.492 6 – 3.989 0 – 0.440 9 SA3 8.135 – 0.399 7 – 2.641 0 – 0.351 7 SA5 5.159 – 0.312 5 – 1.449 0 – 0.068 8 SA10 2.691 – 0.17 – 0.001 549 0 0 表 3 对比研究中选取的地震事件
Table 3 Earthquakes events chosen for comparison
地震事件 发震时间 北纬/° 东经/° 震源深度/km M 年-月-日 时:分 1 2016-04-16 01:25 32.75 130.76 12 7.3 2 2016-04-16 01:46 32.86 130.90 11 5.9 3 2016-04-16 03:03 32.96 131.09 7 5.9 4 2016-04-15 05:10 32.76 130.81 10 4.6 5 2014-08-29 04:14 32.14 132.15 18 6.0 -
李小军. 2016. 近海工程场地强地震动场模拟及地震稳定性, 国家重点基础研究发展计划(973计划)项目课题研究报告[R]. 北京: 中国地震局地球物理研究所: 14–16. Li X J. 2016. Simulation of Strong Ground Motion Field in Offshore Engineering Site and Seismic Stability, Project Research Report of National Program on Key Basic Research Project[R]. Beijing: Institute of Geophysics, China Earthquake Administration: 14–16 (in Chinese).
王国权, 周锡元. 2004. 921台湾集集地震近断层强震记录的基线校正[J]. 地震地质, 26(1): 1-14. Wang G Q, Zhou X Y. 2004. Baseline correction of near fault ground motion recordings of the 1999 CHI-CHI, Taiwan earthquake[J]. Seismology and Geology, 26(1): 1-14 (in Chinese).
谢俊举, 温增平, 高孟潭. 2013. 利用强震数据获取汶川地震近断层地面永久位移[J]. 地震学报, 35(3): 369-379. Xie J J, Wen Z P, Gao M T. 2013. Recovery of co-seismic deformation from strong motion records during the Wenchuan earthquake[J]. Acta Seismologica Sinica, 35(3): 369-379 (in Chinese).
Abrahamson N A, Silva W J, Kamai R. 2014. Summary of the ASK14 ground motion relation for active crustal regions[J]. Earthq Spectra, 30(3): 1025-1055
Boore D M. 2001. Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi-Chi, Taiwan, earthquake[J]. Bull Seismol Soc Am, 91(5): 1199-1211.
Boore D M. 2004. Estimating
${\bar V_{{S}}}$ (30)(or NEHRP Site Classes)from shallow velocity models(depths < 30 m)[J]. Bull Seismol Soc Am, 94(2): 591-597.Boore D M, Thompson E M, Cadet H. 2011. Regional correlations of VS30 and velocities averaged over depths less than and greater than 30 Meters[J]. Bull Seismol Soc Am, 101(6): 3046-3059.
Boore D M, Stewart J P, Seyhan E, Atkinson G M. 2014. NGA-West 2 equations for predicting PGA, PGV, and 5%-damped PSA for shallow crustal earthquakes[J]. Earthq Spectra, 30(3): 1057-1085.
Campbell K W, Bozorgnia Y. 2014. NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra[J]. Earthq Spectra, 30(3): 1087-1115.
Chiou B S J, Youngs R R. 2014. Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra[J]. Earthq Spectra, 30(3): 1117-1153.
Converse A M, Brady A G. 1992. BAP: Basic Strong-Motion Accelerogram Processing Software; Version 1.0, Open-File Report 92-296A[R]. Washington DC: US Geological Survey: 37–41.
Gregor N, Abrahamson N A, Atkinson G M, Boore D M, Bozorgnia Y, Campbell K W, Chiou B S J, Idriss I M, Kamai R, Seyhan E, Silva W, Stewart J P, Youngs R. 2014. Comparison of NGA-West2 GMPEs[J]. Earthq Spectra, 30(3): 1179-1197.
Idriss I M. 2014. An NGA empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes[J]. Earthq Spectra, 24(1): 217-242.
Iwan W D, Moser M A, Peng C Y. 1985. Some observations on strong-motion earthquake measurement using a digital accelerograph[J]. Bull Seismol Soc Am, 75(5): 1225-1246.
Kaklamanos J, Baise L G, Boore D M. 2011. Estimating unknown input parameters when implementing the NGA ground-motion prediction equations in engineering practice[J]. Earthq Spectra, 27(4): 1219-1235.
Kato A, Nakamura K, Hiyama Y. 2016. The 2016 Kumamoto earthquake sequence[J]. Proc Jpn Acad, Ser B, 92(8): 358-371.
Luco N, Bachman R E, Crouse C B, Harris J R, Hooper J D, Kircher C A, Caldwell P J, Rukstales K S. 2015. Updates to building-code maps for the 2015 NEHRP recommended seismic provisions[J]. Earthq Spectra, 31(S1): S245-S271.
NIED. 2016. Earthquake list[EB/OL]. [2017-06-12]. http://www.kyoshin.bosai.go.jp/kyoshin/quake/index_en.html.
Rong M S, Wang Z M, Woolery E W, Lyu Y, Li X J, Li S Y. 2016. Nonlinear site response from the strong ground-motion recordings in western china[J]. Soil Dyn Earthq Eng, 82: 99-110.
USGS. 2016. M7.0–1 km E of Kumamoto-shi, Japan[EB/OL]. [2016-12-10]. https://earthquake.usgs.gov/earthquakes/eventpage/us20005iis#finite-fault.
Wen K L, Beresnev I A, Yeh Y T. 1994. Nonlinear soil amplification inferred from downhole strong seismic motion data[J]. Geophys Res Lett, 21(24): 2625-2628.
Wu C Q, Peng Z G, Ben-Zion Y. 2010. Refined thresholds for non-linear ground motion and temporal changes of site response associated with medium-size earthquakes[J]. Geophys J Int, 182(3): 1567-1576.
Xie J J, Zimmaro P, Li X J, Wen Z P. 2017. Rupture directivity effects on strong ground motion during the 15 April 2016 Mw7.0 Kumamoto earthquake in Japan[J]. Bull Seismol Soc Am, 107(3): 1265-1276. doi: 10.1785/0120160258.