Inversion of multi-mode surface waves extracted from the shallow seismic reflection data
-
摘要: 浅层地震反射波法和面波方法是两种相互独立发展的地震勘探方法,在各自的数据采集和处理中,对方都是作为干扰信号而存在. 本文利用浅层地震反射资料中被视为干扰的面波信号,通过成熟的多道面波勘探技术处理浅层地震反射资料,在频率-波数域中提取多阶振型面波的频散曲线,并基于该曲线反演浅地表S波速度结构. 这种方法充分开发利用了已有数据,无需单独的面波数据采集系统,同时为解释浅层地震反射资料提供了额外的信息约束. 结果表明:浅层地震反射资料中可提取出可靠的多阶振型面波频散曲线,并能给出稳定的反演结果,同时,面波反演的多解性可以通过高阶振型反演得以进一步约束;低速层的存在是观测频散曲线出现振型跳跃或呈“之”字形回折的必要条件而非充分条件.Abstract: Shallow seismic reflection and surface wave are two seismic exploration methods which are developing independently. In their respective data collection and processing, the concerned signal in one method is usually thought as the disturbed one in the other method. In this paper, the " disturbed” surface wave occurred in the data collected by shallow seismic reflection survey was reused. The dispersion curves of multi-mode surface waves were extracted in the frequency-wave number domain based on these data by applying the multi-channel surface wave technology. The S-wave velocity profiles were then inversed by taking the fundamental and/or first-order modes into account. This method fully exploited the existing data. Therefore, the special data collection for surface waves is not needed, and additional constraint is offered to the interpretation of shallow seismic reflection data. The results indicate that the reliable multi-mode dispersion curves of surface waves can be extracted from the shallow seismic reflection data, and stable S-wave velocity profile can be obtained. Meanwhile, it is concluded that the existence of low-velocity layer is the necessary rather than the sufficient condition to make the observed dispersion curve exhibit the mode-jumping among the mode branches.
-
-
图 5 同时考虑基阶和1阶高振型下S波的反演结果
(a) 由初始模型经30次迭代收敛至最终反演模型;(b) 观测的基阶振型与反演模型的频散曲线拟合
Figure 5. The inversion results considering the fundamental and first-mode Rayleigh waves
(a) The process of the initial model converged to the final model after 30 iterations; (b) The fitting of the dispersions of observed one and inversed model
表 1 初始模型参数和反演结果
Table 1 The parameters of the final and initial model
层数 层厚/m ρ/(g·cm−3) vP/(m·s−1) 初始vS/(m·s−1) 反演vS/(m·s−1) 1 1.0 1.60 300 150 137.2 2 1.5 1.66 350 150 159.9 3 0.5 1.73 400 156 192.7 4 0.5 1.77 450 163 217.0 5 0.5 1.79 500 165 228.8 6 0.5 1.79 550 165 232.2 7 0.5 1.78 560 168 234.7 8 0.5 1.78 570 170 233.7 9 0.5 1.79 580 175 233.5 10 0.5 1.79 590 180 232.1 11 0.5 1.79 600 185 230.3 12 1.0 1.79 700 190 228.1 13 2.0 1.79 800 200 230.7 14 3.0 1.79 900 210 232.9 15 4.0 1.80 1 100 220 235.3 半空间 1.80 1 200 230 237.7 -
陈文超, 王伟, 高静怀, 姜呈馥, 雷江莉. 2013. 基于地震信号波形形态差异的面波噪声稀疏优化分离方法[J]. 地球物理学报, 56(8): 2771-2782. Chen W C, Wang W, Gao J H, Jiang C F, Lei J L. 2013. Sparsity optimized separation of Ground-roll noise based on morphological diversity of seismic waveform components[J]. Chinese Journal of Geophysics, 56(8): 2771-2782(in Chinese).
方盛明, 张先康, 刘保金, 徐锡伟, 白登海, 姬继法. 2002. 探测大城市活断层的地球物理方法[J]. 地震地质, 24(4): 606-613. Fang S M, Zhang X K, Liu B J, Xu X W, Bai D H, Ji J F. 2002. Geophysical methods for the exploration of urban active faults[J]. Seismology and Geology, 24(4): 606-613(in Chinese).
关小平, 黄嘉正, 周鸿秋. 1993. 工程勘察中稳态瑞利面波法解释理论的探讨[J]. 地球物理学报, 36(1): 96-105. Guan X P, Huang J Z, Zhou H Q. 1993. Probe the interpretation theory of steady-state Rayleigh wave method in engineering exploration[J]. Chinese Journal of Geophysics, 36(1): 96-105(in Chinese).
刘庆华, 鲁来玉, 王凯明. 2015. 主动源和被动源面波浅勘方法综述[J]. 地球物理学进展, 30(6): 2906-2922. Liu Q H, Lu L Y, Wang K M. 2015. Review on the active and passive surface wave exploration method for the near-surface structure[J]. Progress in Geophysics, 30(6): 2906-2922(in Chinese).
刘云祯, 王振东. 1996. 瞬态面波法的数据采集处理系统及其应用实例[J]. 物探与化探, 20(1): 28-34. Liu Y Z, Wang Z D. 1996. Data collection and processing system of transient surface wave method and examples of its application[J]. Geophysical and Geochemical Exploration, 20(1): 28-34(in Chinese).
鲁来玉, 张碧星, 汪承灏. 2006. 基于瑞利波高阶模式反演的实验研究[J]. 地球物理学报, 49(4): 1082-1091. Lu L Y, Zhang B X, Wang C H. 2006. Experiment and inversion studies on Rayleigh wave considering higher modes[J]. Chinese Journal of Geophysics, 49(4): 1082-1091(in Chinese).
罗银河, 夏江海, 刘江平, 刘庆生. 2008. 基阶与高阶瑞利波联合反演研究[J]. 地球物理学报, 51(1): 242-249. Luo Y H, Xia J H, Liu J P, Liu Q S. 2008. Joint inversion of fundamental and higher mode Rayleigh waves[J]. Chinese Journal of Geophysics, 51(1): 242-249(in Chinese).
王辉, 丁志峰. 2006. 浅层地震勘探资料处理中的速度分析参数选取[J]. 地震地质, 28(4): 597-603. Wang H, Ding Z F. 2006. Parameters selection for velocity analysis in shallow seismic data processing[J]. Seismology and Geology, 28(4): 597-603(in Chinese).
夏江海, 高玲利, 潘雨迪, 沈超, 尹晓菲. 2015. 高频面波方法的若干新进展[J]. 地球物理学报, 58(8): 2591-2605. Xia J H, Gao L L, Pan Y D, Shen C, Yin X F. 2015. New findings in high-frequency surface wave method[J]. Chinese Journal of Geophysics, 58(8): 2591-2605(in Chinese).
杨成林. 1989. 瑞雷波法勘探原理及其应用[J]. 物探与化探, 13(6): 465-468. Yang C L. 1989. The principle and application of Rayleigh wave exploration method[J]. Geophysical and Geochemical Exploration, 13(6): 465-468(in Chinese).
张碧星, 鲁来玉, 鲍光淑. 2002. 瑞利波勘探中" 之”字形频散曲线研究[J]. 地球物理学报, 45(2): 263-274. Zhang B X, Lu L Y, Bao G S. 2002. A study on zigzag dispersion curves in Rayleigh wave exploration[J]. Chinese Journal of Geophysics, 45(2): 263-274(in Chinese).
Al-Hunaidi M O. 1992. Difficulties with phase spectrum unwrapping in spectral analysis of surface waves nondestructive testing of pavements[J]. Can Geotech J, 29(3): 506-511.
Alleyne D, Cawley P. 1990. A two-dimensional Fourier transform method for the measurement of propagating multimode signals[J]. J Acoust Soc Am, 89(3): 1159-1168.
Forchap E A, Schmid G. 1998. Experimental determination of Rayleigh-wave mode velocities using the method of wave number analysis[J]. Soil Dyn Earthq Eng, 17(3): 177-183.
Gabriels P, Snieder R, Nolet G. 1987. In situ measurements of shear-wave velocity in sediments with higher-mode Rayleigh waves[J]. Geophys Prospect, 35(2): 187-196.
Lu L Y, Zhang B X. 2004. Analysis of dispersion curves of Rayleigh waves in the frequency-wavenumber domain[J]. Can Geotech J, 41(4): 583-598.
Lu L Y, Wang C H, Zhang B X. 2007. Inversion of multimode Rayleigh waves in the presence of a low-velocity layer: numerical and laboratory study[J]. Geophys J Int, 168(3): 1235-1246.
McMechan G A, Yedlin M J. 1981. Analysis of dispersive waves by wave field transformation[J]. Geophysics, 46(6): 869-874.
Nazarian S, Stokoe II K H. 1986. In Situ Determination of Elastic Moduli of Pavement Systems by Spectral-Analysis-of-Surface-Waves Method (practical aspects)[R]. Austin: Center for Transportation Research, the University of Texas at Austin: 1123-1.
Park C B, Miller R D, Xia J J. 1999. Multichannel analysis of surface waves[J]. Geophysics, 64(3): 800-808.
Socco L V, Foti S, Boiero D. 2010. Surface-wave analysis for building near-surface velocity models-established approaches and new perspectives[J]. Geophysics, 75(5): 75A83-75A102.
Xia J H, Miller R D, Park C B. 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh wave[J]. Geophysics, 64(3): 691-700.
-
期刊类型引用(1)
1. 高雅婧,孙云强,罗纲. 1999年集集地震前后台湾地区地震b值及应力场时空演化特征. 地球物理学报. 2022(06): 2137-2152 . 百度学术
其他类型引用(1)