Rupture directivity effect on the seismic ground motion parameter during Italy MW6.6 earthquake on October 30,2016
-
摘要: 2016年10月30日意大利中部发生了MW6.6地震,这是继8月24日MW6.2地震后的又一次浅源破坏性地震,意大利国家强震台网在此次地震中获得了丰富的强震动三分向加速度记录。本文从工程强震动数据中心下载了三分向加速度记录,经基线校正和滤波等常规数据处理后发现,强震动体现出明显的方向性效应。根据震源机制解将强震动台站分为破裂前方区域的NW组和破裂后方区域的SE组,采用最小二乘法回归了不同分组的地震动峰值加速度、反应谱和持时的衰减规律,得出断层破裂方向性对地震动参数的幅值影响较大,在断层距相同的情况下,破裂前方区域的加速度和加速度反应谱幅值均高于破裂后方区域,而破裂前方区域的地震动持时远小于破裂后方区域,破裂方向性显著。Abstract: On October 30, 2016, another shallow-source MW6.6 earthquake occurred in cen-tral Italy after August 24 MW6.2 earthquake. A large number of three-component acceleration recordings of strong ground motion were collected by Italian strong-motion network and were downloaded from Engineering Strong Motion database (ESM) and analyzed by the base-line correction, filtering and other conventional data processing. Strong motion observation stations were divided into two groups as front rupture area NW and rear rupture area SE according to the focal mechanism solutions. Attenuation relationships of ground motion parameters, including amplitude, response spectrum and durations, were regressed by using the least squares method in the different two groups and we found that acceleration amplitude was affected by rupture directivity remarkably, and the amplitude and response spectrum of acceleration in the NW group were greater than those in the SE group in the case of the same Joyner-Boore distance RJB, while the duration in NW group was more less than that in SE group. In conclusion, near-source ground motion recordings were much rich and the characteristics of strong ground motion were greatly influenced by rupture directivity.
-
-
图 1 2016年10月30日意大利MW6.6地震震中、台站(a)及余震(b)分布图
余震信息来自USGS(2016)发布统计结果
Figure 1. Distribution of earthquake epicenter,stations (a) and aftershocks (b) of Italy MW6.6 earthquake on October 30,2016. Aftershocks are from USGS (2016)
图 9 NW组和SE组台站记录的水平向峰值加速度反应谱PSA-H
图(a)—(d)分别为T=0.2,0.5,1.0和2.0 s时水平向峰值加速度反应谱PSA-H随RJB的变化曲线;图(e)为NW组和SE组水平向峰值加速度反应谱PSA-H的比较
Figure 9. Peak acceleration response spectrum of group NW and SE
Figs. (a)−(d) are relationships of PSA-H of NW and SE groups at 0.2,0.5,1.0 and 2.0 s versus RJB respectively,Fig. (e) is comparison of PSA-H of NW group with SE group
表 1 部分台站和强震动记录信息
Table 1 Information of partial stations and ground motion recordings
台站名称 场地类型 北纬/° 东经/° 震中距
/kmRJB/km PGA/(cm·s−2) PGA-H
/(cm·s−2)东西向 南北向 垂直向 IV.T1213 A 42.72 13.13 12.0 7.8 779.3 850.0 868.9 574.3 IV.T1214 B 42.76 13.21 11.4 7.2 593.2 413.0 632.9 416.1 IT.AMT B 42.63 13.29 26.5 21.4 521.6 393.6 317.8 382.6 IT.ACC A 42.70 13.24 18.6 14.0 425.9 384.7 546.9 340.0 IT.CLO A 42.83 13.21 7.8 3.9 418.6 571.4 782.0 326.2 IT.NRC B 42.79 13.10 4.6 0.9 476.4 365.1 367.5 307.7 IT.CNE C 42.89 13.15 7.7 3.8 466.7 288.3 536.5 286.1 IT.FOC C 43.03 12.90 27.8 22.6 372.2 335.6 219.2 264.9 表 2 峰值加速度PGA随RJB变化关系拟合系数表
Table 2 Parameters of regression equations for PGA changes versus RJB
分组 方向 C1 C2 C3 ε NW组 水平向 6.352 −2.598 20.5 0.453 垂直向 6.344 −2.607 20.5 0.501 SE组 水平向 5.892 −2.512 20.5 0.500 垂直向 5.889 −2.509 20.5 0.421 表 3 水平向地震动持时随RJB变化关系的拟合参数表
Table 3 Parameters of regression equations for durations in horizontal components versus RJB
破裂前方区域 (NW) 破裂后方向区域 (SE) 持时/s 拟合公式 平行于断层走向 垂直于断层走向 平行于断层走向 垂直于断层走向 a b ε a b ε a b ε a b ε DB (0.025g) D=aebR+ε 20.16 0.01 6.95 20.84 0.02 6.49 23.61 0.01 8.21 21.76 0.01 6.43 DB (0.05g) 16.81 0.03 2.95 18.14 0.04 2.42 15.41 0.02 3.87 16.28 0.02 3.86 DB (0.1g) 12.97 0.05 2.54 13.00 0.04 1.93 10.26 0.02 3.92 12.93 0.03 4.54 DU (0.025g) 11.74 0.04 1.52 12.37 0.04 1.39 9.80 0.03 2.36 10.53 0.04 2.60 DU (0.05g) 11.46 0.04 1.44 12.09 0.04 1.48 9.51 0.03 2.39 9.82 0.03 2.72 DU (0.1g) 11.20 0.04 1.63 11.33 0.03 1.56 8.65 0.01 2.32 9.53 0.02 3.06 DE 10.91 0.03 1.68 10.98 0.03 1.68 10.29 0.02 3.19 11.25 0.02 3.12 DS (5%—75%) D=a+bR+ε 1.27 0.16 3.08 2.34 0.13 2.84 3.50 0.17 4.15 3.83 0.17 4.31 DS (5%—95%) 2.68 0.33 6.26 4.17 0.29 5.01 6.14 0.37 9.77 7.07 0.35 9.61 表 4 峰值加速度反应谱PSA随RJB变化关系的拟合系数表
Table 4 Parameters of regression equations for PSA changes versus RJB
T/s NW组 SE组 C1 C2 C3 ε C1 C2 C3 ε 0.2 6.35 −2.58 21.2 0.45 0.2 5.68 −2.21 21.6 0.5 6.38 −2.51 20.5 0.47 0.5 5.96 −2.49 20.5 1.0 6.08 −2.51 21.5 0.50 1.0 5.89 −2.51 20.5 2.0 5.89 −2.47 20.5 0.50 2.0 5.77 −2.52 20.5 -
丁玉琴, 张永兴. 2010. 欧洲抗震设计规范Eurocode 8简介及其与我国岩土抗震设计比较[J]. 地震工程与工程振动, 30(5): 134-141. Ding Y Q, Zhang Y X. 2010. Introduction to Eurocode 8 and comparison with Chinese seismic design code for buildings focusing on geotechnical aspects[J]. Journal of Earthquake Engineering and Engineering Vibration, 30(5): 134–141 (in Chinese).
胡进军, 谢礼立. 2011. 地震破裂的方向性效应相关概念综述[J]. 地震工程与工程振动, 31(4): 1-8. Hu J J, Xie L L. 2011. Review of rupture directivity related concepts in seismology[J]. Journal of Earthquake Engineering and Engineering Vibration, 31(4): 1-8 (in Chinese).
胡聿贤. 2006. 地震工程学[M]. 北京: 地震出版社: 13–17. Hu Y X. 2006. Earthquake Engineering[M]. Beijing: Seismological Press: 13–17 (in Chinese).
霍俊荣. 1989. 近场强地面运动衰减规律的研究[D]. 哈尔滨: 中国地震局工程力学研究所: 23–25. Huo J R. 1989. Study on the Attenuation and Laws of Strong Earthquake Ground Motion Near the Source[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 23–25 (in Chinese).
姜永正, 王宏伟, 任叶飞, 温瑞智. 2017. 2016年8月24日意大利MW6.2地震近场地震动方向性效应[J]. 地震学报, 39(1): 132-142. Jiang Y Z, Wang H W, Ren Y F, Wen R Z. 2017. Rupture directivity effect of near-field ground motions in Italy MW6.2 earthquake on August 24, 2016[J]. Acta Seismologica Sinica, 39(1): 132-142 (in Chinese).
刘洁平, 李小东, 张令心. 2006. 浅谈欧洲规范Eurocode 8: 结构抗震设计[J]. 世界地震工程, 22(3): 53-59. Liu J P, Li X D, Zhang L X. 2006. Elementary introduction to Eurocode 8: Design of structures for earthquake resistance[J]. World Earthquake Engineering, 22(3): 53-59 (in Chinese).
卢建旗, 李山有, 李伟. 2009. 中强地震活动区地震动衰减关系的确定[J]. 世界地震工程, 25(4): 33-43. Lu J Q, Li S Y, Li W. 2009. Study on ground motion attenuation relationship of moderate earthquake risk areas[J]. World Earthquake Engineering, 25(4): 33-43 (in Chinese).
任叶飞, 温瑞智, 山中浩明, 鹿嶋俊英. 2013. 运用广义反演法研究汶川地震场地效应[J]. 土木工程学报, 46(增刊2): 146-151. Ren Y F, Wen R Z, Hiroaki Y, Toshihide K. 2013. Research on site effect of Wenchuan earthquake by using generalized inversion technique[J]. China Civil Engineering Journal, 46(S2): 146-151 (in Chinese).
任叶飞, 温瑞智, 周宝峰, 黄旭涛. 2014. 2013年4月20日四川芦山地震强地面运动三要素特征分析[J]. 地球物理学报, 57(6): 1836-1846. Ren Y F, Wen R Z, Zhou B F, Huang X T. 2014. The characteristics of strong ground motion of Lushan earthquake on April 20, 2013[J]. Chinese Journal of Geophysics, 57(6): 1836-1846 (in Chinese).
王倩. 2015. 水平地震动持时的特征研究[D]. 哈尔滨: 中国地震局工程力学研究所: 7–15. Wang Q. 2015. Study on Characteristics of the Duration of Horizontal Components of Ground Motions[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 7–15 (in Chinese).
于海英, 王栋, 杨永强, 解全才, 江汶乡, 周宝峰. 2009. 汶川8.0级地震强震动加速度记录的初步分析[J]. 地震工程与工程振动, 29(1): 1-13. Yu H Y, Wang D, Yang Y Q, Xie Q C, Jiang W X, Zhou B F. 2009. The preliminary analysis of strong ground motion records from the MS8.0 Wenchuan earthquake[J]. Journal of Earthquake Engineering and Engineering Vibration, 29(1): 1-13 (in Chinese).
俞言祥. 2002. 长周期地震动衰减关系研究[D]. 北京: 中国地震局地球物理研究所: 96–100. Yu Y X. 2002. Study on Attenuation Relationships of Long Period Ground Motions[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 96–100 (in Chinese).
Akinci A, Malagnini L, Sabetta F. 2010. Characteristics of the strong ground motions from the 6 April 2009 L’Aquila earthquake, Italy[J]. Soil Dyn Earthq Eng, 30(5): 320-335.
Amato A, Galli P, Mucciarelli M. 2011. Introducing the special issue on the 2009 L’Aquila earthquake[J]. Boll Geof Teor Appl, 52(3): 357-365.
Anzidei M, Baldi P, Serpelloni E. 2008. The coseismic ground deformations of the 1997 Umbria-Marche earthquakes: A lesson for the development of new GPS networks[J]. Ann Geophys, 51(2/3): 343-359.
Bindi D, Luzi L, Massa M, Pacor F. 2010. Horizontal and vertical ground motion prediction equations derived from the Italian Accelerometric Archive (ITACA)[J]. Bull Earthq Eng, 8(5): 1209-1230
Bindi D, Pacor F, Luzi L, Puglia R, Massa M, Ameri G, Paolucci R, 2011. Ground motion prediction equations derived from the Italian strong motion database[J]. Bull Earthq Eng, 9(6): 1899-1920.
Bommer J J, Stafford P J, Alarcón J E. 2009. Empirical equations for the prediction of the significant, bracketed, and uniform duration of earthquake ground motion[J]. Bull Seismol Soc Am, 99(6): 3217-3233.
Boore D M, Joyner W B, Fumal T E. 1997. Equations for estimating horizontal response spectra and peak acceleration from Western North American earthquakes: A summary of recent work[J]. Seismol Res Lett, 68(1): 28-153.
Boore D M, Atkinson G M. 2008. Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01s and 10.0s[J]. Earthq Spectra, 24(1): 99-138.
BSI. 2004. EN 1998-1 Eurocode 8: Design of Structures for Earthquake Resistance, Part 1: General rules, Seismic Actions and Rules for Buildings[S]. Brussel: European Committee for Standardization: 20–21. Chiou B S J, Darragh R, Gregor N, Silva W. 2008. NGA project strong-motion database[J]. Earthq Spectra, 24(1): 23-44.
Cinti F R, Cucci L, Marra F, Montone P. 2000. The 1997 Umbria-Marche earthquakes (Italy): Relation between the surface tectonic breaks and the area of deformation[J]. J Seismol, 4(4): 333-343.
Emolo A, Zollo A. 2001. Accelerometric radiation simulation for the September 26, 1997 Umbria-Marche (Central Italy) main shocks[J]. Ann Geophys, 44(3): 605-617.
EMS. 2016. EMS engineering strong motion[EB/OL]. [2016−08−24]. http://esm.mi.ingv.it/DYNA-stage/CadmoDriver?_action_do_single=1&_criteria=CZ001%3d%20AZ014itaca_event_idIAZ021EMSC-20160824_0000013%27&_page=ACC_Events_D&_rock=INVALID&_state=find&_tabber=3&_token=NULLNULLNULLNULL.
Luzi L, Puglia R, Russo E, ORFEUS WG5. 2016. Engineering Strong Motion Database, version 1.0. Istituto Nazionale di Geofisica e Vulcanologia, Observatories & Research Facilities for European Seismology[EB/OL]. [2013–08–01]. http://esm.mi.ingv.it/DYNA-stage/CadmoDriver?_action_do=1&_page=ACC_redirect_home_page&_rock=INVALID&_state=initial&_tabber=0&_token=NULLNULLNULLNULL.
Pacor F, Paolucci R, Ameri G, Massa M, Puglia R. 2011. Italian strong motion records in ITACA: Overview and record processing[J]. Bull Earthq Eng, 9(6): 1741-1759.
Peresan A, Kossobokov V, Romashkova L, Magrin A, Soloviev A, Panza G F. 2016. Time-dependent neo-deterministic seismic hazard scenarios: Preliminary report on the M6.2 Central Italy earthquake, 24th August 2016[J]. New Concepts Global Tectonics J, 4(3): 487-493.
Samsonov S V, González P J, Tiampo K F. 2014. Anthropogenic and natural ground deformation near Bologna, Italy, observed by Radarsat-2 InSAR during 2008−2013[G]// Mathematics of Planet Earth: Proceedings of the 15th Annual Conference of the International for Mathematical Geosciences. Berlin: Springer: 383–386.
Somerville P, Irikurak K, Graves R, Sawada S, Wald D, Abrahamson N, Iwasaki Y, Kagawa T, Smith N, Kowada A. 1999. Characterizing crustal earthquake slip models for the prediction of strong ground motion[J]. Seismol Res Lett, 1999, 70(1): 59-80.
Trifunac M D, Brady A G. 1974. A study on the duration of strong earthquake ground motion[J]. Bull Seismol Soc Am, 65(3): 581-626.
USGS. 2016. Italy earthquakes[EB/OL]. [2017−03−07]. https://earthquake.usgs.gov/earthquakes/search/.
USGS. 2017. W-phase moment tensor[EB/OL]. [2017−03−07]. https://earthquake.usgs.gov/earthquakes/eventpage/us1000731j#moment-tensor.
Wen R Z, Wang H W, Ren Y F. 2015. Rupture directivity from strong-motion recordings of the 2013 Lushan aftershocks[J]. Bull Seismol Soc Am, 105(6): 3068-3082.
Wessel P, Smith W H F. 1998. New, improved version of generic mapping tools released[J]. Eos Trans Am Geophys Union, 79(47): 579.
Zambonelli E, De Nardis R, Filippi L, Nicoletti M, Dolce M. 2011. Performance of the Italian strong motion network during the 2009, L’Aquila seismic sequence (Central Italy)[J]. Bull Earthq Eng, 9(1): 39-65.