2016年10月30日意大利MW6.6地震破裂方向性效应对地震动参数的影响

冯继威, 李山有, 宋晋东

冯继威, 李山有, 宋晋东. 2018: 2016年10月30日意大利MW6.6地震破裂方向性效应对地震动参数的影响. 地震学报, 40(2): 227-240. DOI: 10.11939/jass.20170132
引用本文: 冯继威, 李山有, 宋晋东. 2018: 2016年10月30日意大利MW6.6地震破裂方向性效应对地震动参数的影响. 地震学报, 40(2): 227-240. DOI: 10.11939/jass.20170132
Feng Jiwei, Li Shanyou, Song Jindong. 2018: Rupture directivity effect on the seismic ground motion parameter during Italy MW6.6 earthquake on October 30,2016. Acta Seismologica Sinica, 40(2): 227-240. DOI: 10.11939/jass.20170132
Citation: Feng Jiwei, Li Shanyou, Song Jindong. 2018: Rupture directivity effect on the seismic ground motion parameter during Italy MW6.6 earthquake on October 30,2016. Acta Seismologica Sinica, 40(2): 227-240. DOI: 10.11939/jass.20170132

2016年10月30日意大利MW6.6地震破裂方向性效应对地震动参数的影响

基金项目: 中国地震局工程力学研究所基本科研业务费专项(2014B07,2016A03)、地震行业科研专项(201508005)和中国地震局创新团队发展计划联合资助
详细信息
    通讯作者:

    李山有: e-mail: lishanyou@vip.126.com

Rupture directivity effect on the seismic ground motion parameter during Italy MW6.6 earthquake on October 30,2016

  • 摘要: 2016年10月30日意大利中部发生了MW6.6地震,这是继8月24日MW6.2地震后的又一次浅源破坏性地震,意大利国家强震台网在此次地震中获得了丰富的强震动三分向加速度记录。本文从工程强震动数据中心下载了三分向加速度记录,经基线校正和滤波等常规数据处理后发现,强震动体现出明显的方向性效应。根据震源机制解将强震动台站分为破裂前方区域的NW组和破裂后方区域的SE组,采用最小二乘法回归了不同分组的地震动峰值加速度、反应谱和持时的衰减规律,得出断层破裂方向性对地震动参数的幅值影响较大,在断层距相同的情况下,破裂前方区域的加速度和加速度反应谱幅值均高于破裂后方区域,而破裂前方区域的地震动持时远小于破裂后方区域,破裂方向性显著。
    Abstract: On October 30, 2016, another shallow-source MW6.6 earthquake occurred in cen-tral Italy after August 24 MW6.2 earthquake. A large number of three-component acceleration recordings of strong ground motion were collected by Italian strong-motion network and were downloaded from Engineering Strong Motion database (ESM) and analyzed by the base-line correction, filtering and other conventional data processing. Strong motion observation stations were divided into two groups as front rupture area NW and rear rupture area SE according to the focal mechanism solutions. Attenuation relationships of ground motion parameters, including amplitude, response spectrum and durations, were regressed by using the least squares method in the different two groups and we found that acceleration amplitude was affected by rupture directivity remarkably, and the amplitude and response spectrum of acceleration in the NW group were greater than those in the SE group in the case of the same Joyner-Boore distance RJB, while the duration in NW group was more less than that in SE group. In conclusion, near-source ground motion recordings were much rich and the characteristics of strong ground motion were greatly influenced by rupture directivity.
  • 井下地震观测可以减少地表的噪声干扰影响。井底背景噪声的频谱幅度约为地表的数百分之一,甚至千分之一(Takahashi,Hamada,1975),可有效地提高观测波形的信噪比(徐纪人,赵志新,2009)。井下地震仪可以在高噪声背景区域观测到更多的微小近震,近距离观测的地震波更多地保留了其中的高频成分,而高频成分正是解析地球内部物理、地壳和上地幔结构不可缺少的信息,对研究断裂活动、理解地质过程等都起着极为重要的作用(Aster,Shearer,1991Yamauchi et al,2005)。井下观测地球物理状态的变化,有利于地震活动性的分析及震源机制和地震预报研究(Oye et al,2004)。目前井下地球物理观测研究已逐渐发展成为多学科的前沿性科学研究课题(Baisch et al,2002),其成果推进了现代地震学、地球物理学以及钻孔板块构造学等学科的发展(Zoback et al,2011)。由于强地面运动受到厚沉积物的显著影响,井下观测也是研究沉积平原地区强地面运动的有效途径(Zhao et al,2004)。我国井下地震观测研究始于20世纪70年代,至上世纪80年代中期已有百余个井下地震观测台,遍布全国(修济刚,1988)。

    近年来井下地震观测台站在数量及深度上都得到迅速发展,观测多使用国产地震仪,且观测质量优良。在我国1 000多个数字化测震台站中,井下观测台约200个(张明等,2019)。2001年建成的首都圈测震台网的107个台站中,58个观测台站配备有井下地震仪(张尉等,2009),已发展成为先进的井下地震观测台网,促进了我国地震事业的发展。图1给出了我国大陆地区表1中部分井下观测台站的分布。其分布与地震构造带关系密切,主要分布在我国东部沉积层覆盖比较厚的地区,目的在于监控地震活动及开展地震研究工作。增设井下观测台站,形成科学的全方位观测台网,可以提高地震观测研究能力。为了监视大断裂的构造活动和地震活动,我国在西部一些地区也增设了井下地震观测研究台站。

    图  1  中国大陆地区部分井下地震台站分布简图
    Figure  1.  A distribution diagram of some underground seismic stations in Chinese mainland
    表  1  我国部分井下观测台站基本情况
    Table  1.  Basic information of some underground observation stations in China
    台站名 井深/m 地震仪型 参考文献 台站名 井深/m 地震仪型 参考文献
    首都圈台网 150—480 宽、甚频 短周期 刘渊源等(2 011 上海东滩 421 FSS-3DBH 裴晓等(2 012
    北京市台网 宽、甚频 短周期 兰从欣等(2 005 上海金泽 305 FSS-3DBH
    首都圈白家疃 257 韦士忠和李玉萍(1 990 上海上戏 370 FSS-3DBH
    首都圈文安 266 上海南汇 280 JDF-2
    首都圈东三旗 250 上海大新中学 375 FSS-3DBH
    首都圈大兴 110 上海竹园 317 JDF-1
    首都圈雄县 358 上海虹桥 651 768
    首都圈龙门庄 447 上海八角厅 780 JDF-1
    吉林松原 384 FSS-3DBH 韦庆海等(2 015 上海张江 350 KS-2000M 裴晓等(2 013
    吉林松原 243 FSS-3DBH 陈闯等(2 022 上海崇明 463 李伟等(2 013
    大庆新台 708 JD-2 韦庆海等(2 015 江苏宝应 460 CMG-3TB 仇中阳等(2 014
    河北赵县 260 BBVS-60 郑德高等(2 018 江苏高邮 440 CMG-3TB
    河北唐海 480 短周期 郑德高等(2 018 江苏淮安 315 JDF-2
    河北涿县 320 768 李彦林和郑淑兰(1 989 江苏涟水 400 CMG-3TB
    河北邯郸 400 JD-2 张新东(2 002 江苏射阳 380 CMG-3TB
    河北肥乡 400 JD-2 江苏盐城 445 CMG-3TB
    河北临漳 440 JD-2 江苏金湖 447 GL-S60B 宫杰等(2 019
    天津静海 371 768 赵惠君等(1 991 江苏滨海 470 GL-S60B
    天津芦台 276 768 江苏丹阳 175 GL-S60B
    天津武清 450 768 江苏响水 410 GL-S60B
    内蒙赤峰 90 GL-S120B 郭延杰等(2 020 江苏高邮 458 GL-S60B
    甘肃天水 337 短周期 蔡耐芳(1 990 江苏建湖 443 GL-S60B
    新疆喀什 283 GL-S60B 赵瑞胜等(2 021 江苏启东 410 GL-S60B
    山西太原 500 JD-2 张少泉等(1 988 江苏盐城 436 GL-S60B
    陕西定边 300 BBSV-60BH 李少睿等(2 016 江苏泰兴 425 GL-S60B
    宁夏灵武 248 JDF-2 江苏东台 458 GL-S60B
    宁夏陶乐 245 JDF-2 江苏溧阳 83 CMG-DM24 mk3 胡米东(2 014
    河南安阳 393 FSS-3DBH 江苏盐城 445 CMG-DM24 mk3
    河南清丰 308 FSS-3DBH 江苏南通 105 CMG-DM24 mk3
    四川泸州 95 CMG-3TB 江苏大丰 366 短周期 徐元耀(1 994
    山东荷泽 370 768 周焕鹏(1 986 江苏淮阴 325 井下摆
    安徽六安 126 GL-S60B 石英杰等(2 021 江苏海安 420 JD-2
    安徽霍邱 150 GL-S60B 石英杰等(2 021 云南昆明 2 02 GL-S60B 李雷等(2 018
    浙江景宁 68 FSS-3DBH 张明等(2 019 云南昆明 452 JD-2 修济刚(1 988
    浙江北仑 86 FSS-3DBH 云南大寨 375 井下仪 王芳等(2 017
    浙江南麂岛 110 GL-60DBH 广东汕头 2 00 TBG-60B 郭德顺等(2 014
    上海普陀 564 768 叶世元和柳国华(1 987 江苏东海 4050 宽频 短周期 Xu等(2 016
    上海海运 600 768 叶世元和柳国华(1 987
    下载: 导出CSV 
    | 显示表格

    我国井下台网的观测技术已日趋完善成熟。在井下密封、井下定向、方位补偿、电缆应力解除等观测技术领域也取得了令人满意的进步。而适合不同井孔孔径的锁固装置的成功研制及利用反馈控制技术调节井下长周期地震仪的零位漂移、振幅效应等技术,可保持井下地震仪长期稳定工作(高龙生,1986)。通过编码遥控装置调整井下的地震仪摆体的夹紧、放松状态以及标定等多种功能,可改进井下地震仪的工作状态(陈宏水,付迺珍,1987)。规范井下地震仪安装过程以保证其良好的观测能力(胡米东,2014);规范安装观测房和井口之间的防雷设施及线路布设,使井下地震台站稳定可靠地运行(陈吉锋等,2014)。根据条件选择落底安装井下地震仪,可以提高地震仪的观测能力(宫杰等,2019)。利用波形相关方法,分析地表与井下地震仪方位角检测以及一致性对比测试,使井下地震仪方位角检测精度优于4° (李少睿等,2016)。在缆线应力释放完成后固定井下地震仪,同地表地震仪进行数据相关性分析,以确定方位角的可靠性(张明等,2019)。

    井下观测多使用我国研制的先进的短周期、宽频和甚宽频带地震观测仪器(刘瑞丰等,2008)。井下观测资料的分析方法也在不断精益求精。对比分析各种地震观测参数,研究人员提出了高效、可靠的识别与提取井下微地震信号的方法(李稳等,2016)。利用我国井下台网已经可以进行全频域、高精度、长期稳定的地震监测研究,井下台网也成为获取可靠资料的保障,为地震科学的发展提供了更坚实的基础。表1列出了本文涉及的井下观测台站的深度、观测地震仪的频段特性以及观测成果来源。

    上述先进的观测仪器和井下观测技术提高了地震观测能力和科学研究水平。地面背景噪声常导致地震波形很难被地面地震台识别,采用井下摆观测方式就可以有效抑制各种人为活动噪声的干扰。宽频地震仪安装在地下10 m的中微风化层基岩上,可有效减小噪声(郭德顺等,2014)。研究平原地面、井下与山区地震的纵、横波的运动学和动力学特征得知,井下记录比较接近设置于基岩上的地震台的记录。井下记录的地震波形的噪声功率均值较小(张阿瑶等,2018),可以更精确地记录到地脉动(裴晓等,2013)。上海张江井下台的背景噪声的均方根比地表台站要小1个数量级,而且近震、远震波形记录都很清晰。井下摆的放大倍数亦可达地面摆的十倍多(李彦林,郑淑兰,1989)。井下观测的数据精度也能提高1—2个数量级,并且井下观测系统的有效动态范围超出地面系统约10%—30%,能记录到的地震动信号的范围更宽(叶世元等,1988)。井下90 m深地震仪也能观测到比山洞中深处花岗岩台址上地震仪更远的同等大小的地震(郭延杰等,2020)。

    东海台阵深井地震仪可以检测几十至几百千米外的微小地震的清晰波形,而地表记录却识别不出这些地震的迹象(表2)。图2示出了东海台阵的日常监测屏上不同深度地震仪显示的2019年9月22日山东烟台ML3.1地震纪录图。图中地表记录识别不出地震迹象,井下400 m深处记录可看出明显地震波形。而且,地下3 km深处记录也可看出清晰的地震波形,表明监控记录可靠。井下观测填补了在高噪声区域获得高精度地震波形的空白,在提高地震监测分辨能力及观测地震波精度等方面具有明显优势(徐元耀,1994徐纪人,赵志新,2006)。

    表  2  江苏东海垂直地震台阵地面与井下观测能力比较
    Table  2.  Comparison of observation ability between surface and underground of vertical seismic array in Jiangsu Donghai
    ML 震中距
    Δ/km
    地面观测宽频
    带地震仪
    井下观测
    井深/m 仪器 观测效果
    −1.3 64 无法识别 2545 短周期 图像清晰
    −0.5 71 无法识别 2545 短周期 图像清晰
    0.8 97 无法识别 3500 短周期 图像清晰
    3.1 492 无法识别 400 宽频 图像清晰
    下载: 导出CSV 
    | 显示表格
    图  2  东海垂直地震台阵的地面及井下仪器记录的2019年9月22日烟台ML3.1地震
    G0:地表宽频地震仪;G1:400 m深宽频地震仪;G3:3 km深短周期地震仪
    Figure  2.  The September 22,2019,Yantai ML3.1 earthquake recorded by surface and underground instruments of Donghai
    vertical seismic array G0:Surface broadband seismograph;G1:400 m deep broadband seismograph; G3:3 km deep short period seismometer

    井下地震观测台网记录到的地震波形,噪声小且精度高,这些可靠的高质量资料较精确地反映了地震波路径及震源信息。在远离地面干扰环境中,长期观测地球内部的信息,所得结果客观真实。用其高分辨率记录测定地震参数,研究震源过程、地震成像和地球内部结构,可以改善研究成果的精度,有利于创新地震波理论研究,且目前已取得了可喜的新成果。

    井下观测研究避免了地表噪声和场地效应的影响,可全方位布局地震观测台,这样增用井下观测资料得到的地震定位结果更加准确(仇中阳等,2014),进而可推进对地震序列活动及震源位置的研究,以及断层构造运动等的研究。分析井下摆与地面摆测定的地震参数差异成因,并给出两者之差的适当校正值(朱雅山,李永勤,1992),可提高地震观测成果的客观性与可靠性。

    井下观测地震波形噪声小,有利于高精度测定地震P波和S波到时、振幅、周期等参数(赵惠君等,1991),推进了地震学的研究。上海南汇台用统计方法分析了井下记录地震尾波衰减与震级之间的关系,求得了垂直向地震波持续时间与对数震级Mv在近震范围内(Δ<5°)呈线性关系(李慧民等,1992)。用井下地震仪记录的最大振幅测定近震震级,误差分析表明,结果合理可靠(章纯等,1992)。吉林地区台站由井下地震仪得到的近震震级比地表地震仪的小0.12 (陈闯等,2022)。河北涿县井深350 m的短周期摆与地面同型摆记录的地震波形对比研究表明,地面S波两水平向最大地动位移平均为井下摆的4.7倍。地面摆垂直向最大地动位移平均为井下摆的2.7倍。因此,井下地震摆观测所得震级比地面摆平均低0.7。如采用波形振动持续时间测定震级,井下记录可得到与地面记录较为一致的结果。涿县地震台P波首波到时,地面地震仪摆要比井下摆滞后0.3 s (张寿康等,1986)。大庆井下地震台网不同深度各子台观测结果表明,近震震级偏差和校正与井下摆深度和介质性质等有关(袁卫红等,2012)。

    新疆喀什麦盖提台站井下宽频地震仪记录的近、远震波形比地面的更为清晰。井下地震仪得到的近震和远震震级分别比地表地震仪得到的震级小0.518和0.025,且功率谱也相对较低(赵瑞胜等,2021)。昆明基准地震台山洞内地面上的宽频带地震仪观测结果ML比井下结果平均大0.18 (李雷等,2018)。宽频带地震仪井下记录的地震波的运动学参数、地震波走时比地面的小,统计得出地面地震台的动力学参数地动振幅大约是井下振幅的10倍(王俊国等,1988),与上述短周期地震仪研究结果类似。地震矩和矩震级观测也表明井下震级较地面要小(仇中阳等,2014)。这可能是由于地面记录存在较大的地震波振幅效应,某些情形下地面振幅相对于井下振幅的放大因子可能大于1。井下观测结果是相对客观而科学的。图3显示出部分井下与地面观测的同一地震事件的震级比较。图中红线为横轴与纵轴等值参考线,横轴和纵轴数值分别表示地面地震仪与井下地震仪观测到同一事件的震级。可看出井下震级明显小于地面震级,特别是对于M4.0以下的小地震(毛华锋等,2014仇中阳等,2014赵瑞胜等,2021)。目前井下观测资料在分析地震参数、进行地震速报及监测地震活动等方面日益发挥出重要作用(修济刚,1988),推进了深井地震学研究的发展。

    图  3  同一地震井下与地面观测的震级比较
    Figure  3.  Comparison of seismic magnitude between underground and surface observation for the same earthquake

    低噪音的井下地震观测资料已用于地球内部结构研究,有益于建立高精度三维地震波速度模型(Lay et al,2020)。地表和井下台站波形资料的联合利用提高了监控区域地震波速研究精度,揭示了京津唐地区地震波速度结构明显的横向不均匀性。并且这些资料也被用于探索地震成因及地震预报,发现许多地震均发生在P波低速异常体与高速异常体的交界地带(于湘伟等,2003)。唐山震区的三次强震均发生在低速体与高速体之间(齐诚等,2006)。地震波速时间的变化显示2006年文安MS5.1大地震前一年,文安和唐山地区波速比明显出现了可信的前兆性降低过程(王林瑛等,2008)。

    井下地震观测记录到了体波的地表反射震相。这一发现促进了地震学观测的发展。井下地震仪记录的地震波震相较之地面记录更为丰富(乌统昱,赵惠君,1992)。大庆台井下708 m地震仪记录到2005年7月25日林甸M5.1地震和2003年6月26日松原M2.3地震的地表反射震相。用井下接收的地面反射震相PP,SP等可以确定井下观测站与地面之间的速度值和界面埋深(林云松,1989)。静海台井下地震仪记录到周围微震波形的4个主要震相,即P,S,地面反射波PP和SS,其中SS震相的水平分量通常较强。松原台384 m深处井下摆记录到许多地方震的地表反射波(韦庆海等,2015)。用地表反射波资料求得松原台地表到井下地震仪之间的P波速度约为2 km/s (陈闯等,2022)。新疆喀什台站用井下资料求得麦盖提下方浅层的平均S波速度为0.59 km/s (赵瑞胜等,2021)。由此结果构成的地表沉积层速度模型可有效改善地震定位精度。利用反卷积方法识别近震入射波与地表反射波,可建立高精度浅层地震波速度模型(王芳等,2017Riga et al,2019)。

    井下摆反射波形分析是一种测量深达数百米S波速度的有效方法。分析首都圈台网中58个井下摆记录的100多次M≥3.0地震的直达波及对应地表反射波的波形可知,这些台站上方厚约300 m浅地表土层P波和S波平均速度分别约为1.6—2.0 km/s和0.34—0.48 km/s,波速比约为4.0—5.3。该区域P波速度和波速比均无显著横向变化。清晰的震相图也表明,土层没有明显的速度断层(刘渊源等,2011)。首都圈地表S波平均速度梯度为0.8 m/(s·m),浅部100 m的平均S波速小于300 m/s,深度500 m处S波速度为800 m/s (沈伟森等,2010)。井下摆近震记录研究表明,华北盆地近地表P波平均速度约为1.98 km/s,S波平均速度约为0.46 km/s (朱音杰等,2020)。上述地震波速度成果对计算地球内部精细结构、地震波传播在地球内部的衰减特征以及资源评估均具有重要意义,同时也可为研究场地效应提供直接证据(罗诚等,2018)。

    研究地震记录的背景噪声功率谱可知,井下地震台在全频范围内记录数据质量明显优于地表地震仪(石英杰等,2021)。井下台网高质量的资料为研究震源和地球内部物理学奠定了坚实的基础,取得了大量可信赖的高精度成果。

    利用井下和地面观测资料求得了京津唐地区1 132次ML1.7—6.2地震的精确震源参数(于湘伟等,2003),促进了震源过程研究。用最小二乘法拟合北京地区震源参数与震级的定量表达式,证实拟合所使用资料的台网规模对震源参数结果影响程度的差异。场地响应对震源参数的计算结果影响也比较大(兰从欣等,2005)。江苏部分地震台井下观测波形拐角频率比地面观测的小0.397 Hz,井下观测的地震矩和矩震级分别比地面的小8.642×1014 N·m和0.32,断层错距和应力降分别比地面的小2.268 cm和2.033 MPa (毛华锋等,2014)。仇中阳等(2014)的结果显示,井下记录地震波拐角频率较地面约小0.28 Hz;地震矩和矩震级数值较地面分别小3.104×1014 N·m和0.32。井下测定的地震波谱高频较弱,拐角频率较低,地震矩、应力降和平均位错都比地面基岩测定的结果偏低,而震源等效半径则偏高,井下记录高频成份没有地面的丰富(韦士忠,李玉萍,1990)。接收函数正演计算和井下理论波形研究发现,井下地震仪记录P波波形垂向分量的频谱极小值随深度的增加而减小(郑德高等,2018)。首都圈西北部地区快剪切波平均偏振方向为NE方向,它暗示了该区域的主压应力水平方向;慢剪切波时间延迟急剧的梯度变化可能与地壳深部的温度变化有关(吴晶等,2007)。上述结果对于探索地震发生机制有参考意义。加之钻孔井下记录受场地效应的影响比地表地震仪小,可为研究震源提供更直接的约束(Shearer,Abercrombie,2021),其成果丰富了现代地震学研究宝库。

    强地面运动的振幅和持续时间受到厚沉积物速度结构的显著影响。研究地震波传播在沉积物中的非线性效应,以及近地表地震波衰减和场地效应对于精确预测强地面运动至关重要(Stephenson et al,2005)。

    将短周期井下摆与地面仪记录对比可知,地表土层对地震波有放大作用。北京西部地区地表基岩台的场地响应总体上比东部平原区井下台的响应大,其低频端场地响应变化平稳。东部平原区井下台的场地响应也与频率有关(兰从欣等,2005)。品质因子Q值与频率的定量关系显示,台站场地响应在低频段幅度变化亦保持稳定(蔡耐芳,1990卞真付等,2005)。将地面和井下观测场地效应资料用于波场理论计算,可减少波场解的不确定性,为工程地震提供更可靠的依据(张少泉等,1992)。

    井下强震动观测台阵中加速度仪记录是研究强地面运动的重要方法(Hollender et al,2023)。地表与井下实测数据可有效地用于研究各种土层的地震响应(丁海平等,2014)。进一步反演结果指出,土层的S波和P波速度及厚度是影响场地响应的水平与竖向谱比的重要因素(李小军等,2020)。由井下基岩记录的地震波作为输入研究土层地震动响应可知,土层对地震波的放大效应与波形主频率有关,放大倍数最高可达约20倍。该结论对软土地区的烈度区划、建筑的抗震设计有现实意义(徐永林等,2002)。

    深井地震垂直台阵观测研究有益于地壳活动性的监测及地震成因的研究,开创了高精度地震学研究的新途径(Ma,2021)。台湾车笼埔断层带上的井下垂直地震台阵中,多台波形水平分量之间的尾波互相关函数的研究结果显示,该区地震各向异性呈现出季节性变化(Hung et al,2022)。

    江苏东海大陆深孔地壳活动国家野外科学观测研究站在国际大陆科学钻探项目(ICDP)之一的中国大陆科学钻探的5000 m深井中,建设了我国大陆第一个深井垂直地震台阵,即东海大陆深井垂直地震台阵(简称东海垂直地震台阵)。除设立地面观测地震仪之外,还在井下不同深度设置了4层地震观测仪。在相距深井约500 m的另一个450 m井中进行了综合地球物理观测。2008年汶川MS8.0地震后,在汶川地震区跨断层建立了6口200—3000 m不同深度的井下观测台,深入研究大地震发生机制,监测断层活动。

    东海大陆深井垂直地震台阵及其周围处于高噪声背景区域,致使地表地震仪记录中难于识别ML0.8以下地方震波形。深井地震台阵能够观测到比地面地震仪更多的零级或负震级微小地震的清晰波形,观测资料清晰可靠。井下不同深度地震台观测的地震序列的波形信噪比随时间变化的趋势基本一致。其地震波形基本达到了70 dB以上的高信噪比。在高噪声背景区域获得了高保真度的微小地震波形(徐纪人等,2022),提高了监测地壳活动和地震活动的能力。不同深度处的记录波形的信噪比可为井下观测台站建设提供科学参考依据。低噪声高质量的地震波形研究成果可以加深对地震运动学和动力学的理解;建立精细波速模型,有助于全面清晰地揭示地球内部结构,创新地震波传播理论研究(Ma,2021)。分析低噪声的微小地震至大地震的波相特性,可为震源和震源谱的研究提供直接约束,更深刻地解释震源破裂过程和机制。利用深井地震波形研究场地效应可以提高强地面运动预测水平。未来深井垂直地震台阵观测研究或可在高精度地震学研究中发挥巨大作用。

    本文研究表明,井下观测可以在高噪声背景区域近距离观测地震活动,应科学地布局观测台站,以取得高质量地震资料,进而推进地震科学的发展。用井下资料研究波速空间分布的非均匀性,可以缩小因地面台站台基的不同而导致的各台站间的P,S波的平均速度差异,提高所建立的区域波速模型的可信度和科学性。井下观测与地面观测的震级、矩震级比地面基岩测定的结果偏低(图3),其差异可能与井下仪器上层介质的波形非线性增幅效应与波的频率有关(Zhao et al,2004)。井下观测拐角频率低于地表可能与井下仪器上层介质对不同频率波分量吸收与放大有关(周焕鹏,1986)。场地响应对震源谱参数影响也较大,在低频域,绝大多数井下台的场地响应都大于1,高频端,绝大多数井下台的场地响应都小于1(兰从欣等,2005),这些因素都可能导致井下台站观测的震级、拐角频率都低于地面观测结果。上述差异的成因也具有多重复杂性(Abercrombie,1997),仍是今后科学探索的重要课题。井下地震观测开创了我国在地下深处观测研究地球内部的新途径,提高了地震观测能力,为地球科学研究作出了巨大贡献;对资源评估、地震预报、防震减灾也具有重大的现实意义(徐纪人等,2022)。本文未能引用全国的数百个井下观测台的全部累累成果,这些论文和成果可以在相关的文献中见到。

    深井地震观测研究是现今国内外的前沿课题,提高其观测研究水平可实现高精度地震学研究,而高精度地球物理学正是创新未来的必然发展轨迹(Zeng,Yang,2021)。我国还将要沿安宁河断裂带建设12个井深300 m和两个井深1000 m的综合地震观测研究井(王晓蕾等,2021);目前已经建成8个井深300 m和两个井深1000 m的综合地震观测台阵,其中湖南2000 m深井宽频地震观测站已取得重大成果。东海大陆深孔地壳活动国家野外科学观测研究站将继续增强汶川及东海地区井下综合地球物理长期观测研究工作。随着井下台网观测研究工作的发展,我国的高精度科学研究成果将更上一层楼。

  • 图  1   2016年10月30日意大利MW6.6地震震中、台站(a)及余震(b)分布图

    余震信息来自USGS(2016)发布统计结果

    Figure  1.   Distribution of earthquake epicenter,stations (a) and aftershocks (b) of Italy MW6.6 earthquake on October 30,2016. Aftershocks are from USGS (2016)

    图  2   近震源附近不同场地条件下台站(震中距R<100 km)的分布和8个台站的三分向加速度时程图

    Figure  2.   Distribution of near-source stations with R<100 km and the acceleration time history at eight stations

    图  3   强震动记录数量与震中距RepiRJB直方图

    Figure  3.   Histogram of the strong motion recordings number and the epicentral distance Repi as well as RJB

    图  4   台站场地类别饼状图

    Figure  4.   The pie chart of station classification with different sites

    图  5   水平向(a)和垂直向(b)地震动峰值加速度PGA的空间分布

    Figure  5.   Distribution of horizontal (a) and vertical (b) peak ground motion accelerations

    图  6   NW组和SE组峰值加速度PGA随RJB的变化关系

    图(a)−(d)分别为场地A,B,C和D,E;图(e),(f)分别为NW组和SE组的PGA-H和PGA-UD

    Figure  6.   The relations of peak ground motion acceleration with RJB

    Figs. (a)−(d) are sites A,B,C and D,E;Figs. (e) and (f) are PGA-H and PGA-UD of NW and SE groups respectively

    图  7   不同分组时的地震动持时随RJB的变化规律

    Figure  7.   Relations of ground motion durations in different groups versus RJB

    (a) DB (0.025g);(b) DB (0.05g);(c) DB (0.1g);(d) DU (0.025g);(e) DU (0.05g);(f) DU (0.1g);(g) DE (0.025g);(h) DS (5%—75%);(i) DS (5%—95%)

    图  8   不同的地震动持时在不同的场地条件下随RJB变化的分布图

    Figure  8.   Distribution of different ground motion durations at different site conditions with RJB

    (a) DB (0.025g);(b) DB (0.05g);(c) DB (0.1g);(d) DU (0.025g);(e) DU (0.05g);(f) DU (0.1g);(g) DE (0.025g);(h) DS (5%—75%);(i) DS (5%—95%)

    图  9   NW组和SE组台站记录的水平向峰值加速度反应谱PSA-H

    图(a)—(d)分别为T=0.2,0.5,1.0和2.0 s时水平向峰值加速度反应谱PSA-H随RJB的变化曲线;图(e)为NW组和SE组水平向峰值加速度反应谱PSA-H的比较

    Figure  9.   Peak acceleration response spectrum of group NW and SE

    Figs. (a)−(d) are relationships of PSA-H of NW and SE groups at 0.2,0.5,1.0 and 2.0 s versus RJB respectively,Fig. (e) is comparison of PSA-H of NW group with SE group

    表  1   部分台站和强震动记录信息

    Table  1   Information of partial stations and ground motion recordings

    台站名称 场地类型 北纬/° 东经/° 震中距
    /km
    RJB/km PGA/(cm·s−2 PGA-H
    /(cm·s−2
    东西向 南北向 垂直向
    IV.T1213 A 42.72 13.13 12.0 7.8 779.3 850.0 868.9 574.3
    IV.T1214 B 42.76 13.21 11.4 7.2 593.2 413.0 632.9 416.1
    IT.AMT B 42.63 13.29 26.5 21.4 521.6 393.6 317.8 382.6
    IT.ACC A 42.70 13.24 18.6 14.0 425.9 384.7 546.9 340.0
    IT.CLO A 42.83 13.21 7.8 3.9 418.6 571.4 782.0 326.2
    IT.NRC B 42.79 13.10 4.6 0.9 476.4 365.1 367.5 307.7
    IT.CNE C 42.89 13.15 7.7 3.8 466.7 288.3 536.5 286.1
    IT.FOC C 43.03 12.90 27.8 22.6 372.2 335.6 219.2 264.9
    下载: 导出CSV

    表  2   峰值加速度PGA随RJB变化关系拟合系数表

    Table  2   Parameters of regression equations for PGA changes versus RJB

    分组 方向 C1 C2 C3 ε
    NW组 水平向 6.352 −2.598 20.5 0.453
    垂直向 6.344 −2.607 20.5 0.501
    SE组 水平向 5.892 −2.512 20.5 0.500
    垂直向 5.889 −2.509 20.5 0.421
    下载: 导出CSV

    表  3   水平向地震动持时随RJB变化关系的拟合参数表

    Table  3   Parameters of regression equations for durations in horizontal components versus RJB

    破裂前方区域 (NW) 破裂后方向区域 (SE)
    持时/s 拟合公式 平行于断层走向 垂直于断层走向 平行于断层走向 垂直于断层走向
    a b ε a b ε a b ε a b ε
    DB (0.025g) D=aebRε 20.16 0.01 6.95 20.84 0.02 6.49 23.61 0.01 8.21 21.76 0.01 6.43
    DB (0.05g) 16.81 0.03 2.95 18.14 0.04 2.42 15.41 0.02 3.87 16.28 0.02 3.86
    DB (0.1g) 12.97 0.05 2.54 13.00 0.04 1.93 10.26 0.02 3.92 12.93 0.03 4.54
    DU (0.025g) 11.74 0.04 1.52 12.37 0.04 1.39 9.80 0.03 2.36 10.53 0.04 2.60
    DU (0.05g) 11.46 0.04 1.44 12.09 0.04 1.48 9.51 0.03 2.39 9.82 0.03 2.72
    DU (0.1g) 11.20 0.04 1.63 11.33 0.03 1.56 8.65 0.01 2.32 9.53 0.02 3.06
    DE 10.91 0.03 1.68 10.98 0.03 1.68 10.29 0.02 3.19 11.25 0.02 3.12
    DS (5%—75%) D=abRε 1.27 0.16 3.08 2.34 0.13 2.84 3.50 0.17 4.15 3.83 0.17 4.31
    DS (5%—95%) 2.68 0.33 6.26 4.17 0.29 5.01 6.14 0.37 9.77 7.07 0.35 9.61
    下载: 导出CSV

    表  4   峰值加速度反应谱PSA随RJB变化关系的拟合系数表

    Table  4   Parameters of regression equations for PSA changes versus RJB

    T/s NW组 SE组
    C1 C2 C3 ε C1 C2 C3 ε
    0.2 6.35 −2.58 21.2 0.45 0.2 5.68 −2.21 21.6
    0.5 6.38 −2.51 20.5 0.47 0.5 5.96 −2.49 20.5
    1.0 6.08 −2.51 21.5 0.50 1.0 5.89 −2.51 20.5
    2.0 5.89 −2.47 20.5 0.50 2.0 5.77 −2.52 20.5
    下载: 导出CSV
  • 丁玉琴, 张永兴. 2010. 欧洲抗震设计规范Eurocode 8简介及其与我国岩土抗震设计比较[J]. 地震工程与工程振动, 30(5): 134-141.

    Ding Y Q, Zhang Y X. 2010. Introduction to Eurocode 8 and comparison with Chinese seismic design code for buildings focusing on geotechnical aspects[J]. Journal of Earthquake Engineering and Engineering Vibration, 30(5): 134–141 (in Chinese).

    胡进军, 谢礼立. 2011. 地震破裂的方向性效应相关概念综述[J]. 地震工程与工程振动, 31(4): 1-8.

    Hu J J, Xie L L. 2011. Review of rupture directivity related concepts in seismology[J]. Journal of Earthquake Engineering and Engineering Vibration, 31(4): 1-8 (in Chinese).

    胡聿贤. 2006. 地震工程学[M]. 北京: 地震出版社: 13–17.

    Hu Y X. 2006. Earthquake Engineering[M]. Beijing: Seismological Press: 13–17 (in Chinese).

    霍俊荣. 1989. 近场强地面运动衰减规律的研究[D]. 哈尔滨: 中国地震局工程力学研究所: 23–25.

    Huo J R. 1989. Study on the Attenuation and Laws of Strong Earthquake Ground Motion Near the Source[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 23–25 (in Chinese).

    姜永正, 王宏伟, 任叶飞, 温瑞智. 2017. 2016年8月24日意大利MW6.2地震近场地震动方向性效应[J]. 地震学报, 39(1): 132-142.

    Jiang Y Z, Wang H W, Ren Y F, Wen R Z. 2017. Rupture directivity effect of near-field ground motions in Italy MW6.2 earthquake on August 24, 2016[J]. Acta Seismologica Sinica, 39(1): 132-142 (in Chinese).

    刘洁平, 李小东, 张令心. 2006. 浅谈欧洲规范Eurocode 8: 结构抗震设计[J]. 世界地震工程, 22(3): 53-59.

    Liu J P, Li X D, Zhang L X. 2006. Elementary introduction to Eurocode 8: Design of structures for earthquake resistance[J]. World Earthquake Engineering, 22(3): 53-59 (in Chinese).

    卢建旗, 李山有, 李伟. 2009. 中强地震活动区地震动衰减关系的确定[J]. 世界地震工程, 25(4): 33-43.

    Lu J Q, Li S Y, Li W. 2009. Study on ground motion attenuation relationship of moderate earthquake risk areas[J]. World Earthquake Engineering, 25(4): 33-43 (in Chinese).

    任叶飞, 温瑞智, 山中浩明, 鹿嶋俊英. 2013. 运用广义反演法研究汶川地震场地效应[J]. 土木工程学报, 46(增刊2): 146-151.

    Ren Y F, Wen R Z, Hiroaki Y, Toshihide K. 2013. Research on site effect of Wenchuan earthquake by using generalized inversion technique[J]. China Civil Engineering Journal, 46(S2): 146-151 (in Chinese).

    任叶飞, 温瑞智, 周宝峰, 黄旭涛. 2014. 2013年4月20日四川芦山地震强地面运动三要素特征分析[J]. 地球物理学报, 57(6): 1836-1846.

    Ren Y F, Wen R Z, Zhou B F, Huang X T. 2014. The characteristics of strong ground motion of Lushan earthquake on April 20, 2013[J]. Chinese Journal of Geophysics, 57(6): 1836-1846 (in Chinese).

    王倩. 2015. 水平地震动持时的特征研究[D]. 哈尔滨: 中国地震局工程力学研究所: 7–15.

    Wang Q. 2015. Study on Characteristics of the Duration of Horizontal Components of Ground Motions[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 7–15 (in Chinese).

    于海英, 王栋, 杨永强, 解全才, 江汶乡, 周宝峰. 2009. 汶川8.0级地震强震动加速度记录的初步分析[J]. 地震工程与工程振动, 29(1): 1-13.

    Yu H Y, Wang D, Yang Y Q, Xie Q C, Jiang W X, Zhou B F. 2009. The preliminary analysis of strong ground motion records from the MS8.0 Wenchuan earthquake[J]. Journal of Earthquake Engineering and Engineering Vibration, 29(1): 1-13 (in Chinese).

    俞言祥. 2002. 长周期地震动衰减关系研究[D]. 北京: 中国地震局地球物理研究所: 96–100.

    Yu Y X. 2002. Study on Attenuation Relationships of Long Period Ground Motions[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 96–100 (in Chinese).

    Akinci A, Malagnini L, Sabetta F. 2010. Characteristics of the strong ground motions from the 6 April 2009 L’Aquila earthquake, Italy[J]. Soil Dyn Earthq Eng, 30(5): 320-335.

    Amato A, Galli P, Mucciarelli M. 2011. Introducing the special issue on the 2009 L’Aquila earthquake[J]. Boll Geof Teor Appl, 52(3): 357-365.

    Anzidei M, Baldi P, Serpelloni E. 2008. The coseismic ground deformations of the 1997 Umbria-Marche earthquakes: A lesson for the development of new GPS networks[J]. Ann Geophys, 51(2/3): 343-359.

    Bindi D, Luzi L, Massa M, Pacor F. 2010. Horizontal and vertical ground motion prediction equations derived from the Italian Accelerometric Archive (ITACA)[J]. Bull Earthq Eng, 8(5): 1209-1230

    Bindi D, Pacor F, Luzi L, Puglia R, Massa M, Ameri G, Paolucci R, 2011. Ground motion prediction equations derived from the Italian strong motion database[J]. Bull Earthq Eng, 9(6): 1899-1920.

    Bommer J J, Stafford P J, Alarcón J E. 2009. Empirical equations for the prediction of the significant, bracketed, and uniform duration of earthquake ground motion[J]. Bull Seismol Soc Am, 99(6): 3217-3233.

    Boore D M, Joyner W B, Fumal T E. 1997. Equations for estimating horizontal response spectra and peak acceleration from Western North American earthquakes: A summary of recent work[J]. Seismol Res Lett, 68(1): 28-153.

    Boore D M, Atkinson G M. 2008. Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01s and 10.0s[J]. Earthq Spectra, 24(1): 99-138.

    BSI. 2004. EN 1998-1 Eurocode 8: Design of Structures for Earthquake Resistance, Part 1: General rules, Seismic Actions and Rules for Buildings[S]. Brussel: European Committee for Standardization: 20–21.

    Chiou B S J, Darragh R, Gregor N, Silva W. 2008. NGA project strong-motion database[J]. Earthq Spectra, 24(1): 23-44.

    Cinti F R, Cucci L, Marra F, Montone P. 2000. The 1997 Umbria-Marche earthquakes (Italy): Relation between the surface tectonic breaks and the area of deformation[J]. J Seismol, 4(4): 333-343.

    Emolo A, Zollo A. 2001. Accelerometric radiation simulation for the September 26, 1997 Umbria-Marche (Central Italy) main shocks[J]. Ann Geophys, 44(3): 605-617.

    EMS. 2016. EMS engineering strong motion[EB/OL]. [2016−08−24]. http://esm.mi.ingv.it/DYNA-stage/CadmoDriver?_action_do_single=1&_criteria=CZ001%3d%20AZ014itaca_event_idIAZ021EMSC-20160824_0000013%27&_page=ACC_Events_D&_rock=INVALID&_state=find&_tabber=3&_token=NULLNULLNULLNULL.

    Luzi L, Puglia R, Russo E, ORFEUS WG5. 2016. Engineering Strong Motion Database, version 1.0. Istituto Nazionale di Geofisica e Vulcanologia, Observatories & Research Facilities for European Seismology[EB/OL]. [2013–08–01]. http://esm.mi.ingv.it/DYNA-stage/CadmoDriver?_action_do=1&_page=ACC_redirect_home_page&_rock=INVALID&_state=initial&_tabber=0&_token=NULLNULLNULLNULL.

    Pacor F, Paolucci R, Ameri G, Massa M, Puglia R. 2011. Italian strong motion records in ITACA: Overview and record processing[J]. Bull Earthq Eng, 9(6): 1741-1759.

    Peresan A, Kossobokov V, Romashkova L, Magrin A, Soloviev A, Panza G F. 2016. Time-dependent neo-deterministic seismic hazard scenarios: Preliminary report on the M6.2 Central Italy earthquake, 24th August 2016[J]. New Concepts Global Tectonics J, 4(3): 487-493.

    Samsonov S V, González P J, Tiampo K F. 2014. Anthropogenic and natural ground deformation near Bologna, Italy, observed by Radarsat-2 InSAR during 2008−2013[G]// Mathematics of Planet Earth: Proceedings of the 15th Annual Conference of the International for Mathematical Geosciences. Berlin: Springer: 383–386.

    Somerville P, Irikurak K, Graves R, Sawada S, Wald D, Abrahamson N, Iwasaki Y, Kagawa T, Smith N, Kowada A. 1999. Characterizing crustal earthquake slip models for the prediction of strong ground motion[J]. Seismol Res Lett, 1999, 70(1): 59-80.

    Trifunac M D, Brady A G. 1974. A study on the duration of strong earthquake ground motion[J]. Bull Seismol Soc Am, 65(3): 581-626.

    USGS. 2016. Italy earthquakes[EB/OL]. [2017−03−07]. https://earthquake.usgs.gov/earthquakes/search/.

    USGS. 2017. W-phase moment tensor[EB/OL]. [2017−03−07]. https://earthquake.usgs.gov/earthquakes/eventpage/us1000731j#moment-tensor.

    Wen R Z, Wang H W, Ren Y F. 2015. Rupture directivity from strong-motion recordings of the 2013 Lushan aftershocks[J]. Bull Seismol Soc Am, 105(6): 3068-3082.

    Wessel P, Smith W H F. 1998. New, improved version of generic mapping tools released[J]. Eos Trans Am Geophys Union, 79(47): 579.

    Zambonelli E, De Nardis R, Filippi L, Nicoletti M, Dolce M. 2011. Performance of the Italian strong motion network during the 2009, L’Aquila seismic sequence (Central Italy)[J]. Bull Earthq Eng, 9(1): 39-65.

图(9)  /  表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-13
  • 修回日期:  2017-09-17
  • 网络出版日期:  2018-04-11
  • 发布日期:  2018-02-28

目录

/

返回文章
返回