Comparison on different seismometers performance based on probability density functions
-
摘要: 在记录波形一致性分析的基础上,对比不同仪器的噪声概率密度函数的分布形态和中值曲线,以及不同频率处的概率密度分布,得出仪器的实际观测性能差别,其与仪器特性及传递函数的差别相一致。利用对比噪声概率密度函数的方法可以定量地、直观地给出不同仪器观测性能差别,更为细致地了解不同地震计的差别,对观测资料作出合理的评估。Abstract: The difference in observational performance between different seismological instruments is not easy to find. In this paper, we discuss differences in the performance of observational seismological instruments on the same observation conditions, using a comparison of the probability density functions (PDFs)of the noise power spectrum, based on an analysis of conformance of seismic recorded waveforms. After comparing the probability density distribution of the power spectrum at different frequencies, as well as the distribution and median curves of PDFs of the noise power spectrum, we obtained the quantitative observation difference of different instruments. This difference agrees with the difference of instrument characteristics and transfer functions. By comparing the PDFs of the noise power spectrum, the quantitative and visual differences in the observation performance of different instruments can be given. This is a more detailed view of the difference between instruments and provides a reasonable evaluation of the observation data.
-
Keywords:
- probability density functions /
- seismometer comparison /
- ambient noise
-
引言
2022年1月8日1时45分,青海省海北州门源县发生MS6.9地震,震中位置为(37.8°N,101.3°E),这是中国大陆2022年第一个接近M7.0的强震。该次地震发生在青藏高原东北缘祁连地块中的托莱山—冷龙岭断裂附近(图1)。据中国地震台网中心(2022)的速报结果,该地震震中距离门源县城大约54 km,震源深度为10 km,震源深度重定位结果为12.9 km (Fan et al,2022)。截至2022年1月19日8时整,共记录到M≥3.0余震20次,其中MS4.0—4.9地震5次,MS≥5.0地震2次,最大为1月12日18时20分MS5.2地震。
门源地区位于祁连地块中东部,由于受到印度板块和欧亚板块持续碰撞、挤压的远程作用,区域内活动断裂发育、构造变形强烈。祁连地块内部发育了一系列以挤压逆冲为主兼具左旋走滑特征的活动断裂带,其中主要受到阿尔金和祁连—海原两条大型边界走滑断裂控制(袁道阳等,2004)。2022年门源MS6.9地震发生在冷龙岭断裂西端、托莱山断裂东端,基本上将冷龙岭断裂与托莱山断裂连接起来(图2),这两条断裂与海原断裂、老虎山断裂、毛毛山断裂、金强河断裂等构成了长约1 000 km的祁连—海原断裂带。祁连—海原断裂带不仅控制着青藏高原东北缘地区的几何和构造格局(Zheng et al,2013;Shi et al,2020),同时也调节着青藏地块相对于阿拉善地块的向东运动(Gaudemer et al,1995;Lasserre et al,2002)。
图 2 门源MS6.9地震及余震分布2022年地震序列定位结果引自Fan等(2022),2016年门源地震位置引自梁姗姗等(2017),1986年门源地震位置引自兰州地震研究所青海省地震局联合考察队(1987)。F1:龙首山南缘断裂东段;F2:河西堡—四道山断裂;F3:榆木山东缘断裂;F4:民乐—永昌断裂;F5:肃南—祁连断裂;F6:民乐—大马营断裂;F7:皇城—双塔断裂;F8:托莱山断裂;F9:冷龙岭断裂;F10:金强河断裂;F11:毛毛山断裂;F12:天桥沟—黄羊川断裂;F13:玛雅雪山北缘断裂;F14:大通山北缘断裂;F15:木里—江仓断裂;F16:日月山断裂;F17:门源断裂;F18:达坂山断裂;F19:黑林河断裂Figure 2. The distribution of Menyuan MS6.9 earthquake and its aftershocksThe location of 2022 seismic sequence is from Fan et al (2022),the location of 2016 Menyuan earthquake is from Liang et al (2017),and the location of 1986 Menyuan earthquake is from Lanzhou Institute of Seismology and Seismological Bureau of Qinghai Province (1987). F1:Eastern segment of southern Longshoushan fault;F2:Hexipu-Sidaoshan fault;F3:Yumushan eastern marginal fault;F4:Minyue-Yongchang fault; F5:Su’nan-Qilian fault;F6:Minyue-Damaying fault;F7:Huangcheng-Shuangta fault;F8:Tuolaishan fault;F9:Lenglongling fault;F10:Jinqianghe fault;F11:Maomaoshan fault;F12:Tianqiaogou-Huangyangchuan fault;F13:Mayaxueshan northern marginal fault;F14:Datongshan northern marginal fault;F15:Muli-Jiangcang fault;F16:Riyueshan fault; F 17:Menyuan fault;F18:Dabanshan fault;F19:Heilinhe fault1900年以来,祁连—海原断裂带附近多次发生M6.0以上地震,位置相近的有1986年MS6.4地震和2016年MS6.4地震(图2),其中2016年门源MS6.4地震发生在冷龙岭北侧断裂(胡朝忠等,2016),与此次门源地震序列中的1月12日MS5.2余震位置相差约9 km。两次门源地震虽然相距不远,但其发震机制表现不同,即2016年门源地震为冷龙岭北侧断裂上的逆冲型地震,2022年门源地震则为道沟断裂上的走滑型地震(中国地震局地质研究所,2022),表明该地区的地质构造特征比较复杂。相关研究表明,在剪切变形较大的区域更易发生地震(Jin et al,2019)。位于青藏东北缘的祁连地块是新生代再次活跃的早古生代岛弧、微陆块拼合体(Yin,Harrison,2000),当前仍以12 mm/a的速率沿NNE−SSW方向水平缩短(Zhang et al,2004)。这种NE方向的推挤对阿尔金断裂带东部和河西走廊产生一定的加载作用,可能是导致2016年门源MS6.4地震发生的原因(胡朝忠等,2016)。2022年门源MS6.9地震发生后,中国地震局组织了考察工作,初步结果显示:此次门源MS6.9地震极震区的烈度可能达Ⅸ以上(中国地震局地球物理研究所,2022);地震序列在托莱山—冷龙岭断裂附近产生了四条地表破裂带,其中断裂带南、北两侧破裂程度差异较大,北侧明显高于南侧(中国地震局地质研究所,2022)。
结构成像研究显示,强震更容易发生在高、低速变化的过渡带,例如青藏东南缘(王琼,高原,2014),青藏东北缘地区的岷漳MS6.7地震和九寨沟MS7.0地震的震源也都位于高、低速的过渡带(夏思茹等,2021)。为解剖强震发生的深部构造背景,本文收集了速度结构等资料,拟通过分析地壳结构与地震分布之间的关系,探讨门源MS6.9地震的深部孕震构造背景。
1. 接收函数揭示的门源地区地壳厚度和vP/vS不均匀分布
地壳厚度和泊松比是描述地壳结构和物质成分的两个重要参数,可以为地壳的地质演化过程提供重要的约束,同时有益于对地震孕震环境的研究。Wang等(2016)使用来自中国地震台网2007年8月至2013年10月间的三分量宽频带地震数据,对震级M>5.0,震中距为30°—90°且震相清晰、初动尖锐的地震记录进行接收函数计算,得到了青藏高原东北缘地区的地壳厚度和波速比。Wang等(2017)使用来自中国科学台阵Ⅱ期和鄂尔多斯地块内流动台阵的资料(共724个台站)得到了青藏高原东北缘的地壳厚度和波速比。为了分析此次门源MS6.9地震的发震位置与深部结构之间的关系,本文根据两种数据结果重绘了门源地区的地壳厚度和vP/vS的分布图像(图3)。
从图3可以看到,研究区域内地壳厚度约为30—70 km,变化非常剧烈,青藏高原东北部的地壳比周缘区域厚。地壳厚度与地形起伏变化比较一致,从东向西呈梯度加深的趋势。门源台(MEY)的地壳厚度为59.3 km,与王椿镛等(1995)的基于门源—平凉—渭南人工地震测深剖面得到的门源地壳厚度(58 km)较为一致。吴立辛等(2011)运用小波多尺度分析也观察到青藏高原东北缘地壳厚度呈现由东北向西南增厚的趋势,且门源地区位于梯度变化较大的区域。通过本文的数据再分析,门源地区处于地壳厚度由西向东剧烈减薄的地带,而门源MS6.9地震的震中位于地壳厚度南厚北薄的局部急剧变化过渡带上,同时又处于波速比(vP/vS)东高西低快速变化的过渡带,揭示了门源MS6.9地震与深部结构的不均匀分布有关,特别是与物性参数的快速变化有关。
由于使用不同的资料和方法,Wang等(2016)和Wang等(2017)的结果在门源地区存在一些差异,也揭示了该区域地壳物性在小范围内的不均匀分布,表明关键地域密集台阵观测的必要性。这些结果虽然呈现不均匀分布的具体形态差异,但它们都揭示了门源MS6.9地震震源区深部结构存在剧烈的(或快速的)物性变化。
2. 体波成像揭示的P波、S波速度和泊松比分布
基于2009年至2017年青藏高原东北缘区域固定台网记录到的3万9 971次地震的初至P波和S波走时数据,利用双差成像方法对2万9 491次地震进行了重新定位,获取了青藏高原东北缘地壳的波速和泊松比结构(肖卓,高原,2017)。为了探究门源MS6.9地震的深部发震结构,对门源地震震源区的深部结构进行了重绘放大,得到了门源地震震源区的P波速度、S波速度以及泊松比在不同深度的横向和垂向分布图像,结果如图4和图5所示。
图 4 门源地区P波速度(a)、S波速度(b)和泊松比(c)红色星形表示2022年MS6.9门源主震,红色圆点表示其余震,地壳深度标于子图的左下角,下同Figure 4. P-wave velocity (a),S-wave velocity (b) and Poisson’s ratio (c) in the Menyuan regionThe red star represents the 2022 Menyuan MS6.9 earthquake,the red solid circle represents its aftershock,and the crustal depth is labled at the lower-left corner of the subfigure,the same below图 5 穿过门源地震震源区的P波速度(a)、S波速度(b)和泊松比(c)的垂向剖面图剖面方向根据图4白色实线绘制,剖面数据来自肖卓和高原(2017)Figure 5. Vertical profiles of P-wave velocity (a),S-wave velocity (b) and Poisson’s ratio (c) through the source region of Menyuan earthquakeThe section direction is drawn according to the white line in Fig. 4,and the profile data is from Xiao and Gao (2017)P波速度分布显示,门源地震震源区的结构存在明显的垂向变化和横向变化,特别是在垂向上,上地壳顶部(0—10 km)的P波速度较高,但随着深度的增加(10—20 km),P波速度逐渐转变为低速异常(图4,5)。根据门源地震序列重新定位结果(Fan et al,2022),MS6.9主震的震源深度为12.9 km。在震源区,P波速度在5—15 km深度由高速变为低速(图5)。S波速度和泊松比分布显示,门源地震震源区的结构存在明显的横向变化。在10—15 km深度,门源地震震源区东西两侧分别呈现为高S波速度、低泊松比和低S波速度、高泊松比异常(图4)。门源地震震源区泊松比(图4)在东西方向的变化特征与接收函数得到的vP/vS变化(图3)具有很好的一致性,揭示了地壳介质物性在东西方向上的快速变化很可能主要分布在10—20 km深度范围。
夏思茹等(2021)使用青藏高原东北缘71个固定台和418个流动台站得到了更高分辨率的三维P波速度结构,本文使用其数据绘制了两个跨过震中位置的垂向剖面图(图6)。从图6可以看到,门源地震发生在上地壳高低速变化过渡区,震源下方存在明显低速体。从这一点上看,图6与图5的P波速度垂向变化结果基本一致。
图 6 穿过门源地震震源区P波速度垂向剖面图剖面方向根据图1中白色实线绘制,剖面数据来自夏思茹等(2021)Figure 6. Vertical P-wave velocity profile through the source region of Menyuan earthquakeThe section direction is drawn according to the white line in Fig. 1,and the prolife data is from Xia et al (2021)人工地震测深剖面(王椿镛等,1995)和远震面波成像(Li et al,2017)均揭示,祁连造山带下方中地壳存在S波低速层;地震与速度结构之间关系的研究结果表明,地震的发生往往与壳内低速度层存在明显的关联性(Zhao et al,2002;李永华等,2014);重力资料多阶小波分析也显示,重力异常分布与大地震发生的位置有关联性(Wu,Gao,2019);王新胜等(2013)利用分离的布格重力异常揭示大地震多发生在高、低密度异常边界区域或者下地壳低密度层之上,结果显示这次门源MS6.9震源区下方下地壳表现为强烈的低密度异常;赵凌强等(2019)通过大地电磁探测剖面发现冷龙岭断裂下方存在高导层,认为该断裂下方可能形成了明显的力学强度软弱区,这种力学强度软弱区的存在易导致地震蠕动、滑移与发生。由此可见,地震带下方壳内薄弱层的存在很可能使其上覆脆性上地壳物质易于形成应力集中而发生强震。
3. 背景噪声成像揭示的相速度和方位各向异性分布
利用青藏高原东北缘地区固定地震台网三分量连续波形数据,采用Yao等(2006)发展起来的背景噪声数据处理技术,使用瑞雷波能量较强的垂向记录,反演得到了青藏高原东北缘地区相速度和方位各向异性(王琼,高原,2018)。为了分析门源地震与深部结构的关系,本文重绘了门源地震震源区的区域相速度和方位各向异性结构(图7)。
根据门源MS6.9地震的震源深度结果,把门源地震标示在周期8 s和12 s的相速度图(图7)上。可以看到,MS6.9门源地震发生在高低速的过渡区,方位各向异性也呈现出方向和幅值的变化。郭瑛霞(2017)利用布设在祁连山断裂带的40个短周期流动台站和38个宽频带固定台站的记录,采用背景噪声成像得到了祁连地块S波速度结构,结果同样显示门源震源区处于高速与低速的过渡区域。王琼和高原(2014)分析青藏高原东南缘地区强震活动与速度结构关系时发现,M5.0—6.9地震主要发生在高低速过渡区和低速异常区,M≥7.0地震则主要发生在高低速过渡区但更深入到高速异常区里。房立华等(2009)认为,速度变化强烈的地区存在应力集中,介质比较脆弱,更易于释放应力而触发较大的地震。
地震各向异性可以揭示壳幔内部构造变形等信息(高原,滕吉文,2005)。连续记录的背景噪声数据不依赖于地震信号,更有利于获得地壳的结构特征。从图7可以看到,以冷龙岭断裂为界,各向异性快波方向呈现不同特征:断裂以北,快波方向主要呈北东方向,与区域平均最大主压应力方向一致(许忠淮,2001);断裂以南,快波方向主要呈北西方向,表明各向异性形态可能受到区域断裂带的影响,揭示门源地区地壳(至少上地壳)介质各向异性可能受到区域构造应力和局部断裂(构造)的双重约束。
祝意青等(2016)关于2011—2015年流动重力观测资料的分析结果显示,重力变化在冷龙岭断裂两侧出现正负边界带,重力变化梯度带与冷龙岭断裂的走向一致,冷龙岭北侧的重力变化以正值为主,南侧则以负值为主,表明冷龙岭断裂有地震孕育的构造背景。赵凌强等(2019)结合现今水准、重力、GPS速度场及大地电磁测深结果,认为冷龙岭断裂所处的祁连—海原断裂带是青藏高原东北缘的边界断裂,目前正承受着巨大的NE向挤压力。Gao等(1996)和高锐等(1998)根据深地震反射剖面结果认为青藏高原在向北扩展过程中处于双向挤压应力作用之下,同时受到印度板块向北俯冲和阿拉善地块沿宽滩山断裂插入到祁连山之下的动力作用。在双向挤压力作用下,上地壳岩片发生逆冲叠覆,岩层发生脆性变形,使上地壳缩短增厚,因此对于祁连造山带内低速高导层的存在,可能与地壳增厚和地表抬升有关。Wang (2001)提出,由于壳幔流变性质的差异,地壳的增厚升温可以降低岩石层的整体强度。新生代祁连造山带地壳的增厚和构造演化可能导致放射性生热元素含量增加,产生相对较高的热流值。羌塘地块和松潘—甘孜地块的热流值较低(44—45 mW/m2),柴达木盆地的热流值为54 mW/m2,而祁连造山带的热流值高达66 mW/m2 (Wang,2001),说明祁连山的局部低速异常可能由上地壳增厚、生热元素含量增加引起,而门源地震同时也处于地壳厚度快速变化的区域(图3),容易造成应力的集中,具有发生大地震的深部构造背景。
4. 讨论与结论
本文根据地壳厚度、vP/vS比值、P波和S波速度结构、面波相速度及方位各向异性结果,结合密集地震台阵探测、人工地震测深、深地震反射、大地电磁探测、区域重力场等地球物理资料,初步探讨了门源MS6.9地震的深部构造背景。
此次门源MS6.9地震发生在地壳厚度和vP/vS值都出现快速空间变化的区域。门源MS6.9地震震源位于P波速度从浅到深由高速变低速的垂向过渡区,也是S波速度和泊松比分布呈现明显横向变化的过渡区域,该过渡区域大致处于10—20 km深度范围内。背景噪声成像结果显示,冷龙岭断裂两侧相速度和方位各向异性变化明显。这些现象表明,地震活动与地壳结构有较强的对应关系。通常情况下,地震波速度的变化可能代表岩石强度的变化,而大的破裂或强烈的地壳变形往往都集中在地壳强度(或地震波速度)反差较大的地方(Tian et al,2021)。
1月12日的MS5.2余震震中与2016年MS6.4地震震中很近,表明这次门源MS6.9地震及其余震导致冷龙岭断裂的破裂比较充分,两次门源地震之间及邻近地区短时间内难以积累更大的能量,即意味着短时间内发生更大地震的可能性不大。
本文结果显示,不同资料、不同方法及不同数据处理得到的结果可能存在差异,需要甄别大的形态一致性与小的局部不同。重要的是强震震源区处于地壳介质物性快速变化的过渡区,这是不同的研究结果给出了共同的认识。对于小区域深部结构的准确成像,需要密集台阵观测资料的支持。此外,P波与S波速度分布不同,可能表明岩性、组分或流体充填状态等的不同。
受到印度板块和欧亚板块持续碰撞、挤压的远程作用,青藏高原东北缘祁连地块的地壳显著增厚,但陇西盆地没有明显增厚(Tian et al,2021),而祁连地块东部正处于地壳厚度横向变化较为剧烈的区域,容易形成应力集中和积累,具有发生大地震的深部构造背景。
中国地震局地球物理研究所王兴臣副研究员提供了地壳厚度和波速比数据,石磊副研究员和硕士研究生夏思茹提供了P波速度剖面图件,审稿专家提出的宝贵意见使本文的质量有了明显改善,作者在此一并表示衷心的感谢。
-
图 1 流动台和固定台不同分量的地震波形记录对比
(a)和(b)分别为远震的垂直分量和水平合并分量; (c)和(d)分别为近震的垂直分量和水平合并分量
Figure 1. Comparisons of seismic waveforms for different component between the mobile station and the fixed station
(a) and (b) are vertical component and synthesized horizontal component of distant earthquake, respectively;(c) and (d) are vertical component and synthesized horizontal component of near earthquake, respectively
图 2 流动台和固定台不同分量地震波形记录的相关分析结果
(a)和(b)分别为远震垂直分量和水平合并分量; (c)和(d)分别为近震垂直分量和水平合并分量
Figure 2. Cross-correlations of different component seismic waveforms of the mobile station and the fixed station
(a) and (b) are vertical and combined horizontal component of distant earthquake respectively;(c) and (d) are vertical and combined horizontal component in near earthquake respectively
表 1 观测仪器的主要参数
Table 1 Main parameters of the observation instruments
台站类型 数采型号 数采字长/bit 数采动态范围/dB 地震计型号 地震计频率范围 地震计动态范围/dB 采样率/sps 固定台 EDAS-24 24 >135 BBVS-60 40 Hz—60 s >130 100 流动台 REFTEK-130 24 >135 CMG-3T 50 Hz—120 s >140 50 -
蔡亚先, 吕永清, 周云耀, 程骏玲. 2004. CTS-1甚宽频带地震计[J]. 大地测量与地球动力学, 24(3): 109-114. Cai Y X, Lü Y Q, Zhou Y Y, Cheng J L. 2004. CTS-1 very broadband seismometer[J]. Crustal Deformation and Earthquake, 24(3): 109-114 (in Chinese).
陈继锋, 李亮, 李少睿, 刘白云, 陈晓龙. 2016. 甘肃省测震台网地震台站地震计方位角检验与校正[J]. 地震工程学报, 38(3): 460-465. Chen J F, Li L, Li S R, Liu B Y, Chen X L. 2016. Check and correction of seismometer azimuth for Gansu seismic network stations[J]. China Earthquake Engineering Journal, 38(3): 460-465 (in Chinese).
崔庆谷. 2003. 反馈式地震计的性能设计与噪声测量研究[D]. 北京: 中国地震局地球物理研究所: 36–70. Cui Q G. 2003. The Research for Performance and Self-Noise Measure of Force-Balanced Seismometers[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 36–70 (in Chinese).
段天山, 袁顺. 2011. BBVS-60、CMG-3ESPC型地震计工作参数对比分析[J]. 地震地磁观测与研究, 32(5): 109-114. Duan T S, Yuan S. 2011. The comparative analysis of noise level and dynamic range of BBVS-60 and CMG-3ESPC seismometer in practice[J]. Seismological and Geomagnetic Observation and Research, 32(5): 109-114 (in Chinese).
葛洪魁, 陈海潮, 欧阳飚, 杨微, 张梅, 袁松涌, 王宝善. 2013. 流动地震观测背景噪声的台基响应[J]. 地球物理学报, 56(3): 857-868. Ge H K, Chen H C, Ouyang B, Yang W, Zhang M, Yuan S Y, Wang B S. 2013. Transportable seismometer response to seismic noise in vault[J]. Chinese Journal of Geophysics, 56(3): 857-868 (in Chinese).
黄金莉, 顾小虹. 2001. 国家数字地震台网中心应用地震波形数据格式及转换[J]. 地震, 21(4): 60-65. Huang J L, Gu X H. 2001. Data format and conversion of seismic waveform used in National Center of Digital Seismic Network[J]. Earthquake, 21(4): 60-65 (in Chinese).
刘瑞丰, 高景春, 陈运泰, 吴忠良, 黄志斌, 徐志国, 孙丽. 2008. 中国数字地震台网的建设与发展[J]. 地震学报, 30(5): 533-539. Liu R F, Gao J C, Chen Y T, Wu Z L, Huang Z B, Xu Z G, Sun L. 2008. Construction and development of digital seismograph networks in China[J]. Acta Seismologica Sinica, 30(5): 533-539 (in Chinese).
孙宏志. 2016. 地震计智能恒温系统的设计与实现[J]. 地震工程学报, 38(6): 1004-1009. Sun H Z. 2016. Design and implication of an intelligent constant temperature control system of seismometers[J]. China Earthquake Engineering Journal, 38(6): 1004-1009 (in Chinese).
吴建平, 欧阳飚, 王未来, 姚志祥, 袁松涌. 2012. 华北地区地震环境噪声特征研究[J]. 地震学报, 34(6): 818-829. Wu J P, Ouyang B, Wang W L, Yao Z X, Yuan S Y. 2012. Ambient noise level of North China from temporary seismic array[J]. Acta Seismologica Sinica, 34(6): 818-829 (in Chinese).
谢剑波, 何寿清, 吕金水, 吴永权, 张政平, 黎珠博, 王国望. 2007. 宽频带地震计的安装[J]. 地震地磁观测与研究, 28(1): 57-63. Xie J B, He S Q, Lü J S, Wu Y Q, Zhang Z P, Li Z B, Wang G W. 2007. Installation of broadband seismometer[J]. Seismological and Geomagnetic Observation and Research, 28(1): 57-63 (in Chinese).
Bonnefoy-Claudet S, Cotton F, Bard P Y. 2006. The nature of noise wavefield and its applications for site effects studies: A literature review[J]. Earth Sci Rev, 79(3/4): 205-227.
Diaz J, Villasenor A, Morales J, Pazos A, Cordoba D, Pulgar J, Garcia-Lobon J L, Harnafi M, Carbonell R, Gallart J. 2010. Background noise characteristics at the Iber array broadband seismic network[J]. Bull Seismol Soc Am, 100(2): 618-628.
Frontera T, Ugalde A, Olivera C, Jara J A, Goula X. 2010. Seismic ambient noise characterization of a new permanent broadband ocean bottom seismometer site offshore Catalonia (Northeastern Iberian Peninsula)[J]. Seismol Res Lett, 81(5): 740-749.
Longuet-Higgins M S. 1950. A theory of the origin of microseisms[J]. Philosoph Trans R Soc Lond, Mathemat Phys Sci, 243(857): 1-35.
Mark A R, Robert D M, John A O. 1990. Limits of sensitivity of inertial seismometers with velocity transducers and electronic amplifiers[J]. Bull Seismol Soc Am, 80(6A): 1725-1752.
Mcnamara D E, Buland R P. 2004. Ambient noise levels in the continental United States[J]. Bull Seismol Soc Am, 94(4): 1517-1527.
Mcnamara D E, Boaz R I. 2005. Seismic Noise Analysis System, Power Spectral Density Probability Density Function: Stand-Alone Software Package[R]. Reston: Geological Survey Open File Report: 1438.
Peterson J R. 1993. Observations and Modeling of Seismic Background Noise[R]. Albuquerque: Geological Survey Open File Report: 93–322.
Ringler A T, Hutt C R. 2010. Self-noise models of seismic instruments[J]. Seismol Res Lett, 81(6): 972-983.
Wielandt E, Streckeisen G. 1982. The leaf-spring seismometer: design and performance[J]. Bull Seismol Soc Am, 72(6A): 2349-2367.
Wielandt E. 2002. Seismic Sensors and Their Calibration[M/OL]. [2013-01-11]. http://www.docin.com/p-627048690.html.
-
期刊类型引用(8)
1. 谢张迪,于湘伟,章文波. 2022年青海门源M_W6.6地震震源动力学破裂过程. 地震学报. 2025(01): 21-36 . 本站查看
2. Qiong Wang,ShuYu Li,XinYi Li,Yue Wu,PanPan Zhao,Yuan Gao. Deep tectonics and seismogenic mechanisms of the seismic source zone of the Jishishan M_s 6.2 earthquake on December 18, 2023, at the northeast margin of the Tibetan Plateau. Earth and Planetary Physics. 2024(03): 514-521 . 必应学术
3. 高原,李心怡,李抒予,夏新宇,杨逸文,王琼. 2023年12月18日积石山6.2级地震的深浅变形构造分析. 地震. 2024(01): 160-166 . 百度学术
4. 刘会龙,陈楚桐,范俊杰,马德锡,彭伍胥,陈亮. 青藏高原东北缘祁连至阿拉善地块深部电性结构特征及其地质意义. 地球物理学进展. 2024(03): 916-929 . 百度学术
5. 于书媛,黄显良,郑海刚,李玲利,骆佳骥,丁娟,范晓冉. 2022年门源M_W6.7地震的同震破裂模型及应力研究. 地震地质. 2023(01): 286-303 . 百度学术
6. 万悦,苏鹤军,李晨桦,周慧玲. 祁连山断裂带中东段断层土壤气氡浓度强度时空分布特征及其地震危险性分析. 地震工程学报. 2023(02): 491-500 . 百度学术
7. 李莹,田建慧,李心怡,李抒予,王琼,高原. 2022年9月5日四川泸定M_S6.8地震深部构造特征. 地球物理学报. 2023(04): 1385-1396 . 百度学术
8. 赵云峰,祝意青,隗寿春,刘芳,梁伟锋,孙和平. 2022年1月8日青海门源M_S6.9地震前重力场动态变化. 地球物理学报. 2023(06): 2337-2351 . 百度学术
其他类型引用(2)