基于噪声概率密度函数的地震计观测性能对比

刘旭宙, 沈旭章, 张元生, 秦满忠, 李秋生

刘旭宙, 沈旭章, 张元生, 秦满忠, 李秋生. 2018: 基于噪声概率密度函数的地震计观测性能对比. 地震学报, 40(4): 461-470. DOI: 10.11939/jass.20170137
引用本文: 刘旭宙, 沈旭章, 张元生, 秦满忠, 李秋生. 2018: 基于噪声概率密度函数的地震计观测性能对比. 地震学报, 40(4): 461-470. DOI: 10.11939/jass.20170137
Liu Xuzhou, Shen Xuzhang, Zhang Yuansheng, Qin Manzhong, Li Qiusheng. 2018: Comparison on different seismometers performance based on probability density functions. Acta Seismologica Sinica, 40(4): 461-470. DOI: 10.11939/jass.20170137
Citation: Liu Xuzhou, Shen Xuzhang, Zhang Yuansheng, Qin Manzhong, Li Qiusheng. 2018: Comparison on different seismometers performance based on probability density functions. Acta Seismologica Sinica, 40(4): 461-470. DOI: 10.11939/jass.20170137

基于噪声概率密度函数的地震计观测性能对比

基金项目: 地震科技星火计划(XH18050SX)和地震预测研究所基本科研业务专项(2012IESLZ03)联合资助
详细信息
    通讯作者:

    秦满忠: e-mail: manzhongqin@eyou.com

Comparison on different seismometers performance based on probability density functions

  • 摘要: 在记录波形一致性分析的基础上,对比不同仪器的噪声概率密度函数的分布形态和中值曲线,以及不同频率处的概率密度分布,得出仪器的实际观测性能差别,其与仪器特性及传递函数的差别相一致。利用对比噪声概率密度函数的方法可以定量地、直观地给出不同仪器观测性能差别,更为细致地了解不同地震计的差别,对观测资料作出合理的评估。
    Abstract: The difference in observational performance between different seismological instruments is not easy to find. In this paper, we discuss differences in the performance of observational seismological instruments on the same observation conditions, using a comparison of the probability density functions (PDFs)of the noise power spectrum, based on an analysis of conformance of seismic recorded waveforms. After comparing the probability density distribution of the power spectrum at different frequencies, as well as the distribution and median curves of PDFs of the noise power spectrum, we obtained the quantitative observation difference of different instruments. This difference agrees with the difference of instrument characteristics and transfer functions. By comparing the PDFs of the noise power spectrum, the quantitative and visual differences in the observation performance of different instruments can be given. This is a more detailed view of the difference between instruments and provides a reasonable evaluation of the observation data.
  • 图  1   流动台和固定台不同分量的地震波形记录对比

    (a)和(b)分别为远震的垂直分量和水平合并分量; (c)和(d)分别为近震的垂直分量和水平合并分量

    Figure  1.   Comparisons of seismic waveforms for different component between the mobile station and the fixed station

    (a) and (b) are vertical component and synthesized horizontal component of distant earthquake, respectively;(c) and (d) are vertical component and synthesized horizontal component of near earthquake, respectively

    图  2   流动台和固定台不同分量地震波形记录的相关分析结果

    (a)和(b)分别为远震垂直分量和水平合并分量; (c)和(d)分别为近震垂直分量和水平合并分量

    Figure  2.   Cross-correlations of different component seismic waveforms of the mobile station and the fixed station

    (a) and (b) are vertical and combined horizontal component of distant earthquake respectively;(c) and (d) are vertical and combined horizontal component in near earthquake respectively

    图  3   两套仪器不同分量的PDF对比

    (a)和(b)分别为流动台和固定台的垂直分量PDF;(c)和(d)分别为流动台和固定台的南北分量PDF

    Figure  3.   The comparisons of PDF of different components

    (a) and (b) show vertical component PDFs of mobile station and fixed station; (c) and (d) show north-south component PDFs of mobile station and fixed station

    图  4   流动台和固定台垂直分量(a)和南北分量(b)的PDF中值及仪器自噪声对比

    Figure  4.   The comparison of the PDF median and instrument self noise between the mobile station and the fixed station in vertical component (a) and north-south component (b)

    图  5   不同频率处流动台和固定台PSD概率分布对比

    (a)—(f)分别为0.06,0.1,1,10,30和40 s处固定台和流动台PSD概率分布的对比

    Figure  5.   PSD probability distribution comparison between the mobile station and the fixed station at certain frequencies

    (a)−(f) are the comparisons at frequencies of 0.06,0.1,1,10,30 and 40 s,respectively

    图  6   流动台和固定台的PDF分布定量差值

    Figure  6.   The quantitative difference of PDFs between the mobile station and the fixed station

    表  1   观测仪器的主要参数

    Table  1   Main parameters of the observation instruments

    台站类型 数采型号 数采字长/bit 数采动态范围/dB 地震计型号 地震计频率范围 地震计动态范围/dB 采样率/sps
    固定台 EDAS-24 24 >135 BBVS-60 40 Hz—60 s >130 100
    流动台 REFTEK-130 24 >135 CMG-3T 50 Hz—120 s >140 50
    下载: 导出CSV
  • 蔡亚先, 吕永清, 周云耀, 程骏玲. 2004. CTS-1甚宽频带地震计[J]. 大地测量与地球动力学, 24(3): 109-114.

    Cai Y X, Lü Y Q, Zhou Y Y, Cheng J L. 2004. CTS-1 very broadband seismometer[J]. Crustal Deformation and Earthquake, 24(3): 109-114 (in Chinese).

    陈继锋, 李亮, 李少睿, 刘白云, 陈晓龙. 2016. 甘肃省测震台网地震台站地震计方位角检验与校正[J]. 地震工程学报, 38(3): 460-465.

    Chen J F, Li L, Li S R, Liu B Y, Chen X L. 2016. Check and correction of seismometer azimuth for Gansu seismic network stations[J]. China Earthquake Engineering Journal, 38(3): 460-465 (in Chinese).

    崔庆谷. 2003. 反馈式地震计的性能设计与噪声测量研究[D]. 北京: 中国地震局地球物理研究所: 36–70.

    Cui Q G. 2003. The Research for Performance and Self-Noise Measure of Force-Balanced Seismometers[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 36–70 (in Chinese).

    段天山, 袁顺. 2011. BBVS-60、CMG-3ESPC型地震计工作参数对比分析[J]. 地震地磁观测与研究, 32(5): 109-114.

    Duan T S, Yuan S. 2011. The comparative analysis of noise level and dynamic range of BBVS-60 and CMG-3ESPC seismometer in practice[J]. Seismological and Geomagnetic Observation and Research, 32(5): 109-114 (in Chinese).

    葛洪魁, 陈海潮, 欧阳飚, 杨微, 张梅, 袁松涌, 王宝善. 2013. 流动地震观测背景噪声的台基响应[J]. 地球物理学报, 56(3): 857-868.

    Ge H K, Chen H C, Ouyang B, Yang W, Zhang M, Yuan S Y, Wang B S. 2013. Transportable seismometer response to seismic noise in vault[J]. Chinese Journal of Geophysics, 56(3): 857-868 (in Chinese).

    黄金莉, 顾小虹. 2001. 国家数字地震台网中心应用地震波形数据格式及转换[J]. 地震, 21(4): 60-65.

    Huang J L, Gu X H. 2001. Data format and conversion of seismic waveform used in National Center of Digital Seismic Network[J]. Earthquake, 21(4): 60-65 (in Chinese).

    刘瑞丰, 高景春, 陈运泰, 吴忠良, 黄志斌, 徐志国, 孙丽. 2008. 中国数字地震台网的建设与发展[J]. 地震学报, 30(5): 533-539.

    Liu R F, Gao J C, Chen Y T, Wu Z L, Huang Z B, Xu Z G, Sun L. 2008. Construction and development of digital seismograph networks in China[J]. Acta Seismologica Sinica, 30(5): 533-539 (in Chinese).

    孙宏志. 2016. 地震计智能恒温系统的设计与实现[J]. 地震工程学报, 38(6): 1004-1009.

    Sun H Z. 2016. Design and implication of an intelligent constant temperature control system of seismometers[J]. China Earthquake Engineering Journal, 38(6): 1004-1009 (in Chinese).

    吴建平, 欧阳飚, 王未来, 姚志祥, 袁松涌. 2012. 华北地区地震环境噪声特征研究[J]. 地震学报, 34(6): 818-829.

    Wu J P, Ouyang B, Wang W L, Yao Z X, Yuan S Y. 2012. Ambient noise level of North China from temporary seismic array[J]. Acta Seismologica Sinica, 34(6): 818-829 (in Chinese).

    谢剑波, 何寿清, 吕金水, 吴永权, 张政平, 黎珠博, 王国望. 2007. 宽频带地震计的安装[J]. 地震地磁观测与研究, 28(1): 57-63.

    Xie J B, He S Q, Lü J S, Wu Y Q, Zhang Z P, Li Z B, Wang G W. 2007. Installation of broadband seismometer[J]. Seismological and Geomagnetic Observation and Research, 28(1): 57-63 (in Chinese).

    Bonnefoy-Claudet S, Cotton F, Bard P Y. 2006. The nature of noise wavefield and its applications for site effects studies: A literature review[J]. Earth Sci Rev, 79(3/4): 205-227.

    Diaz J, Villasenor A, Morales J, Pazos A, Cordoba D, Pulgar J, Garcia-Lobon J L, Harnafi M, Carbonell R, Gallart J. 2010. Background noise characteristics at the Iber array broadband seismic network[J]. Bull Seismol Soc Am, 100(2): 618-628.

    Frontera T, Ugalde A, Olivera C, Jara J A, Goula X. 2010. Seismic ambient noise characterization of a new permanent broadband ocean bottom seismometer site offshore Catalonia (Northeastern Iberian Peninsula)[J]. Seismol Res Lett, 81(5): 740-749.

    Longuet-Higgins M S. 1950. A theory of the origin of microseisms[J]. Philosoph Trans R Soc Lond, Mathemat Phys Sci, 243(857): 1-35.

    Mark A R, Robert D M, John A O. 1990. Limits of sensitivity of inertial seismometers with velocity transducers and electronic amplifiers[J]. Bull Seismol Soc Am, 80(6A): 1725-1752.

    Mcnamara D E, Buland R P. 2004. Ambient noise levels in the continental United States[J]. Bull Seismol Soc Am, 94(4): 1517-1527.

    Mcnamara D E, Boaz R I. 2005. Seismic Noise Analysis System, Power Spectral Density Probability Density Function: Stand-Alone Software Package[R]. Reston: Geological Survey Open File Report: 1438.

    Peterson J R. 1993. Observations and Modeling of Seismic Background Noise[R]. Albuquerque: Geological Survey Open File Report: 93–322.

    Ringler A T, Hutt C R. 2010. Self-noise models of seismic instruments[J]. Seismol Res Lett, 81(6): 972-983.

    Wielandt E, Streckeisen G. 1982. The leaf-spring seismometer: design and performance[J]. Bull Seismol Soc Am, 72(6A): 2349-2367.

    Wielandt E. 2002. Seismic Sensors and Their Calibration[M/OL]. [2013-01-11]. http://www.docin.com/p-627048690.html.

图(6)  /  表(1)
计量
  • 文章访问数:  1805
  • HTML全文浏览量:  803
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-22
  • 修回日期:  2017-12-14
  • 网络出版日期:  2018-06-21
  • 发布日期:  2018-06-30

目录

    /

    返回文章
    返回