Analysis on the dynamic variations of well water temperature: With example of the Dangxiao well in Lijiang area, Yunnan Province
-
摘要: 以云南丽江党校井为例,分析了水温基本动态和同震变化特征,并对水温前兆异常变化进行了讨论。基本动态方面,水温水位的对比分析和井温梯度结构显示,党校井的温度探头位于井孔水体与含水层连通的主要部位,含水层中补给水的温度较低,水温动态主要受水位泄流状态和水位变化的影响;同震方面,在水位均为振荡的情况下,水温同震变化形态在不同的泄流状态下存在明显的差异,自流期间为上升—下降—恢复型,非自流期间为下降—上升—恢复型,同震变化反映出的温度探头放置位置和低温水源补给的认识与基本动态分析获得的认识相一致;前兆方面,党校井的水位动态受降雨的趋势性影响,温度探头所在处的地下水体活动剧烈,水温动态前兆变化特征不明显。Abstract: With example of the Dangxiao well in Lijiang city of Yunnan Province, we analyzed the basic and coseismic variations of the water temperature, and discussed the possible precursory anomalies. As for the basic variation of water temperature and water level in the Dangxiao well, the comparison results combined with the well water temperature gradient show that, the temperature sensor in the Dangxiao well is located at the main section where the well water intersects with the aquifer, and the recharging source is relatively cold. The water temperature variation is mainly affected by the discharge status and the variation of water level. As for the coseismic variations of the water temperature in the Dangxiao well, when the coseismic variation of water level displays as oscillating, it shows obvious differences, displaying as ascending−descending−recorvering during artesian status and descending−ascending−recovering during non-artesian status. The coseismic variations of water temperature also verify the location of water temperature sensor and cold source recharging, which is consistent with the conclusion obtained from analysis of the basic variation aspect. As for the precursory variations, the water level variations in the Dangxiao well are influenced by the tendency of rainfall, and the strong water activity could be found at the location of the temperature sensor in the Dangxiao well, which may suppress the precursor information to some extent, so it is hard to find evident precursor in the water temperature variation.
-
-
图 1 云南丽江周边活动断裂构造和部分地震震源机制解
活动断裂引自邓起东等 (2003);震源机制解引自Ekström et al (2012)
Figure 1. Active faults and focal mechanism solutions of some major earthquakes in Lijiang area and its vicinity,Yunnan Province
The active faults are referred to Deng et al (2003); the mechanism solutions are referred to Ekström et al (2012)
图 2 党校井区域水文地质和井点位置图(修改自康晓波等,2013)
Figure 2. The hydrogeological map of the Dangxiao well region (modified from Kang et al,2013 )
图 3 党校井地下水系统补径排过程示意图 (改自康晓波等,2013)
Figure 3. The sketch map of recharge-flow-discharge process of the Dangxiao well (modified from Kang et al,2013 )
图 8 党校井水温水位同震变化分钟值曲线图
数字与表1中的8次地震相对应,虚线表示发震时间
Figure 8. Coseismic variations of minute values of water temperature and water level for the Dangxiao well
Dashed lines denote the earthquakes occurrence time;the numbers are consistent with the serial numbers in Table 1
表 1 引起党校井显著水温同震变化的地震及其相关参数
Table 1 The earthquakes caused obvious water temperature coseismic variations in the Dangxiao well and the corresponding parameters
序号 发震时刻
东经/° 纬度/° MW 发震地点 震中距/km 地震能量
密度/(J·m–3)泄流
状态水位振荡
幅值/m水温同震
变化类型水温变化
幅值/10−4℃年-月-日 时:分 1 2007−09−12 19:11 101.40 4.46 (S) 8.5 印尼苏门答腊 3 487 0.002 2 自流 0.208 上升—下降 47 2 2007−09−13 07:49 100.73 2.62 (S) 7.9 印尼苏门答腊 3 281 0.000 4 自流 0.166 上升—下降 35 3 2008−05−12 14:28 103.37 31.06 (N) 7.9 四川汶川 556 0.079 0 静水位 0.119 下降—上升 −30 4 2011−03−11 13:46 142.50 38.30 (N) 9.1 日本 4 119 0.010 1 自流 0.711 上升—下降 48 5 2012−04−11 16:38 93.01 2.24 (S) 8.6 印尼苏门答腊 2 846 0.005 8 静水位 0.228 下降—上升 −41 6 2012−04−11 18:43 92.43 0.77 (S) 8.2 印尼苏门答腊 3 021 0.001 3 静水位 0.156 下降—上升 −30 7 2015−04−25 14:11 84.79 28.28 (N) 7.9 尼泊尔 1 529 0.003 7 静水位 0.163 下降—上升 −74 8 2015−12−07 15:50 72.78 38.21 (N) 7.2 塔吉克斯坦 2 850 0.000 1 静水位 0.016 下降—上升 −22 注:水位震荡幅值指最高值与最低值的差值;水温同震变化幅值指地震前的温度观测值与震后的水温上升或者下降最大值的差值;地震相关参数来自于ISC (International Seismological Centre,2017)。 -
车用太, 王基华, 林元武. 1998. 张北—尚义地震的短临预测回顾与反思[J]. 国际地震动态, (7): 9-15. Che Y T, Wang J H, Lin Y W. 1998. Reviewing and repondering on the short-term and imminent prediction of the Zhangbei-Shangyi earthquake[J]. Recent Developments in World Seismology, (7): 9-15(in Chinese).
车用太, 刘成龙, 鱼金子. 2008. 井水温度微动态及其形成机制[J]. 地震, 28(4): 20-28. Che Y T, Liu C L, Yu J Z. 2008. Micro-behavior of well-water temperature and its mechanism[J]. Earthquake, 28(4): 20-28(in Chinese).
邓起东, 张培震, 冉勇康, 杨晓平, 闵伟, 陈立春. 2003. 中国活动构造与地震活动[J]. 地学前缘, 10(S1): 66-73. Deng Q D, Zhang P Z, Ran Y K, Yang X P, Min W, Chen L C. 2003. Active tectonics and earthquake activities in China[J]. Earth Science Frontiers, 10(S1): 66-73(in Chinese).
冯恩国, 王华, 车用太, 刘成龙, 王伟, 陈其锋, 连凯旋, 刘保华, 李月强. 2012. 地震地下流体观测现状[J]. 地震地磁观测与研究, 33(5/6): 202-207. Feng E G, Wang H, Che Y T, Liu C L, Wang W, Chen Q F, Lian K X, Liu B H, Li Y Q. 2012. Investigation and analys is on the current observation status of the seismic underground fluid in China[J]. Seismological and Geomagnetic Observation and Research, 33(5/6): 202-207(in Chinese).
付虹, 赵小艳. 2013. 汶川MS8.0地震前云南地区显著前兆观测异常分析[J]. 地震学报, 35(4): 477-484. Fu H, Zhao X Y. 2013. Analysis on remarkable precursory anormalies observed in Yunnan area before Wenchuan MS8.0 earthquake[J]. Acta Seismologica Sinica, 35(4): 477-484(in Chinese).
付虹, 钱晓东, 毛玉平, 苏有锦, 刘翔, 李琼, 张立, 赵小艳, 邬成栋. 2015. 2014年云南鲁甸MS6.5地震异常及预测[J]. 地震研究, 38(2): 181-188. Fu H, Qian X D, Mao Y P, Su Y J, Liu X, Li Q, Zhang L, Zhao X Y, Wu C D. 2015. Anomaly and forecast of Yunnan Ludian MS6.5 earthquake in 2014[J]. Journal of Seismological Research, 38(2): 181-188(in Chinese).
付子忠. 1988. 地热动态观测与地热前兆[G]//地壳构造与地壳应力文集(1). 北京: 地震出版社: 1–8. Fu Z Z. 1988. The observation and earth-thermal precursor[G]//Thesis on Geological Tectonic and Stress in Earth Crust (1). Beijing: Seismological Press: 1–8 (in Chinese).
国家地震局地质研究所, 云南省地震局. 1990. 滇西北地区活动断裂[M]. 北京: 地震出版社: 106–113. Institute of Geology, State Seismological Bureau, Seismological Bureau of Yunnan Province. 1990. Active Faults in the North-west Yunnan Region[M]. Beijing: Seismological Press: 106–113 (in Chinese).
康晓波, 王宇, 张华, 曹瑾. 2013. 丽江黑龙潭泉群水文地质特征及断流的影响因素分析[J]. 中国岩溶, 32(4): 398-403. Kang X B, Wang Y, Zhang H, Cao J. 2013. Hydrogeologic features and influence factors of zero flow of the Heilongtan spring group in Lijiang[J]. Carsologica Sinica, 32(4): 398-403(in Chinese).
刘耀炜, 孙小龙, 王世芹, 任宏薇. 2008. 井孔水温异常与2007年宁洱6.4级地震关系分析[J]. 地震研究, 31(4): 347-353. Liu Y W, Sun X L, Wang S Q, Ren H W. 2008. Relationship of bore-hole water temperature anomaly and the 2007 Ning’er M6.4 earthquake[J]. Journal of Seismological Research, 31(4): 347-353(in Chinese).
刘耀炜, 任宏微, 张磊, 付虹, 孙小龙, 何德强, 余怀忠, 周志华, 张国盟. 2015. 鲁甸6.5级地震地下流体典型异常与前兆机理分析[J]. 地震地质, 37(1): 307-318. doi: 10.3969/j.issn.0253-4967.2015.01.024. Liu Y W, Ren H W, Zhang L, Fu H, Sun X L, He D Q, Yu H Z, Zhou Z H, Zhang G M. 2015. Underground fluid anomalies and the precursor mechanisms of the Ludian MS6.5 earthquake[J]. Seismology and Geology, 37(1): 307-318. doi: 10.3969/j.issn.0253-4967.2015.01.024(in Chinese).
石耀霖, 曹建玲, 马丽, 尹宝军. 2007. 唐山井水温的同震变化及其物理解释[J]. 地震学报, 29(3): 265-273. Shi Y L, Cao J L, Ma L, Yin B J. 2007. Tele-seismic coseismic well temperature changes and their interpretation[J]. Acta Seismologica Sinica, 20(3): 265-273(in Chinese).
王瑜青, 陈桂兰, 付子忠. 1994. 地热观测资料清理及映震能力分析[J]. 地震学报, 16(S1): 148-152. Wang Y Q, Chen G L, Fu Z Z. 1994. Sorting out of geothermal data in Yunnan and analysis of the correspondence with earthquakes[J]. Acta Seismologica Sinica, 16(S1): 148-152(in Chinese).
杨竹转, 邓志辉, 刘春国, 王桂清, 祖金华, 陶京玲, 宋键. 2008. 中国大陆井水位与水温动态对汶川MS8.0地震的同震响应特征分析[J]. 地震地质, 30(4): 895-905. Yang Z Z, Deng Z H, Liu C G, Wang G Q, Zu J H, Tao J L, Song J. 2008. Coseismic changes of water level and water temperature caused by MS8.0 Wenchuan earthquake[J]. Seismology and Geology, 30(4): 895-905(in Chinese).
曾成, 杨睿, 杨明明, 胡君春, 武贵华, 樊宇红. 2013. 丽江市黑龙潭泉群断流的人工神经网络模拟[J]. 中国岩溶, 32(4): 391-397. Zeng C, Yang R, Yang M M, Hu J C, Wu G H, Fan Y H. 2013. Artificial neural network simulation to zero flow of the Heilongtan spring groups in Lijiang[J]. Carsologica Sinica, 32(4): 391-397(in Chinese).
张彬, 方震, 刘耀炜, 杨选辉, 赵刚, 荆燕. 2014. 云南地区水温异常与地震关系[J]. 地球科学: 中国地质大学学报, 39(12): 1880-1886. Zhang B, Fang Z, Liu Y W, Yang X H, Zhao G, Jing Y. 2014. Relationship between water temperature anomaly and earthquake in Yunnan[J]. Earth Science: Journal of China University Geosciences, 39(12): 1880-1886(in Chinese).
赵刚, 马文娟, 王军, 何案华. 2009. 我国地热前兆观测台网的现状及对汶川地震的响应[J]. 地震研究, 32(3): 248-252. Zhao G, Ma W J, Wang J, He A H. 2009. Geothermal earthquake precursor network and its response to MS8.0 Wenchuan earthquake[J]. Journal of Seismological Research, 32(3): 248-252(in Chinese).
中国地震局. 2012. 地震地下流体观测方法: 井水和泉水温度观测(DB/T 49—2012)[S]. 北京: 地震出版社: 4. China Earthquake Administration. 2012. The Observation Method of Earthquake-Related Underground Fluid: Observation of Well-Water and Spring-Water Temperature (DB/T 49—2012)[S]. Beijing: Seismological Press: 4 (in Chinese).
Cicerone R D, Ebel J E, Britton J. 2009. A systematic compilation of earthquake precursors[J]. Tectonophysics, 476(3/4): 371-396.
Cox S C, Menzies C D, Sutherland R, Denys P H, Chamberlain C D, Teagle A H. 2015. Changes in hot spring temperature and hydrogeology of the Alpine fault hanging wall, New Zealand, induced by distal South Island earthquakes[J]. Geofluids, 15(1/2): 216-239.
Ekström G, Nettles M, Dziewonski A M. 2012. The global CMT project 2004–2010: Centroid-moment tensors for 13, 017 earthquakes[J]. Phys Earth Planet Inter, 200-201: 1-9. doi: 10.1016/j.pepi.2012.04.002.
International Seismological Centre. 2017. ISC-EHB bulletin: Catalogue search[EB/OL]. [2017–06–01]. http://www.isc.ac.uk/isc-ehb/search/catalogue/.
Mogi K, Mochizuki H, Kurokawa Y. 1989. Temperature changes in an artesian spring at Usami in the Izu Peninsula (Japan) and their relation to earthquakes[J]. Tectonophysics, 159(1/2): 95-108.
Nakamura Y, Wakita H. 1984. Precise temperature measurement of groundwater for earthquake-prediction study[J]. Pure Appl Geophys, 122(2): 164-174.
Orihara Y, Kamogawa M, Nagao T. 2014. Preseismic changes of the level and temperature of confined groundwater related to the 2011 Tohoku earthquake[J]. Sci Rep, 4: 6907.
Shi Z M, Wang G C, Manga M, Wang C Y. 2015. Mechanism of co-seismic water level change following four great earthquakes : Insights from co-seismic responses throughout the Chinese mainland[J]. Earth Planet Sci Lett, 430: 66-74.
Shimamura H, Ino M, Hikawa H, Iwasaki T. 1984. Groundwater microtemperature in earthquake regions[J]. Pure Appl Geophy, 122(6): 933-946.
Wang C Y, Manga M. 2010. Earthquakes and Water[M]. Berlin: Springer-Verlag: 16–17.
-
期刊类型引用(17)
1. 李文倩,冉慧敏,赵瑞胜. 基于地震学的天山地区地震动衰减关系研究. 地震工程学报. 2024(02): 449-456+464 . 百度学术
2. 郑现,赵翠萍,吴微微,杨晶琼. 川滇地区中小地震应力降特征及趋势分析. 地震. 2024(04): 1-13 . 百度学术
3. 李文倩,孙静,李姗姗. 1/4波长法和水平垂直谱比法场地放大反应差异性分析——以西克尔镇为例. 内陆地震. 2023(03): 232-238 . 百度学术
4. 肖孟仁,陈浩,罗丽,查小惠,郭江春. 江西地区地震动非弹性衰减和场地响应特征研究. 大地测量与地球动力学. 2020(03): 287-290+298 . 百度学术
5. 郁建芳,谢石文,张炳,隆爱军,韩成成,杨波. 安徽地区震源参数的相关性研究. 华南地震. 2019(03): 32-41 . 百度学术
6. 孙吉泽,俞言祥,何金刚,李一琼. 2013年乌鲁木齐M_S5.6和M_S5.1地震强地震动模拟研究. 地震学报. 2017(05): 751-763+819 . 本站查看
7. 刘建明,向元,聂晓红,高荣. 2016年12月8日呼图壁M_S6.2地震序列谱振幅相关系数和震源机制一致性研究. 内陆地震. 2017(03): 229-236 . 百度学术
8. Liu Jianming,Wang Qiong,Liu Jie,Deng Fei,Xiang Yuan,Yang Wen,Li Jin. Research on Stress Drops and the Focal Mechanisms of the Xinyuan-Hejing M_L6. 8 Earthquake Sequences. Earthquake Research in China. 2017(01): 25-38 . 必应学术
9. 蔡玲玲,赵英萍,李冬圣,常亮,温超,王莉婵. 河北地区中小地震震源参数的相关性研究. 防灾减灾学报. 2016(04): 91-96 . 百度学术
10. 卢婷. 四川攀西地区介质衰减特征研究. 大地测量与地球动力学. 2016(10): 907-911 . 百度学术
11. 吴微微,苏金蓉,魏娅玲,吴朋,李俊,孙玮. 四川地区介质衰减、场地响应与震级测定的讨论. 地震地质. 2016(04): 1005-1018 . 百度学术
12. 李艳永,王范霞,聂晓红,向元. 2012年新源—和静M_S6.6地震视应力变化分析. 地震地磁观测与研究. 2016(06): 16-20 . 百度学术
13. 尼鲁帕尔·买买吐孙,阿衣仙姑·买买提,夏爱国,海仁沙·司拉木. 新疆南天山西段地区介质衰减特征研究. 内陆地震. 2016(01): 41-48 . 百度学术
14. 刘建明,王琼,刘杰,邓菲,向元,杨文,李金. 新源、和静交界M_L6.8地震序列的应力降和震源机制研究. 中国地震. 2016(01): 28-39 . 百度学术
15. 刘建明,李志海. 新疆北天山非弹性衰减、场地响应及其震源参数研究. 地震. 2014(01): 77-86 . 百度学术
16. 孙吉泽,宋春燕. 新源、和静地震序列尾波Q值衰减特征研究. 内陆地震. 2013(02): 140-145 . 百度学术
17. 杨贵,李祖宁. 福建数字地震台网新地震参数目录的产出. 华南地震. 2012(03): 31-40 . 百度学术
其他类型引用(3)