Real-time estimation of rupture length of earthquake source based on records of strong motion array
-
摘要: 本文提出一种通过小孔径台阵波束形成技术快速估测震源破裂长度的方法,同时提出了调整各台站相位的方法,即在每个台站的延时无法确定的情况下,近似地得到每个台站之间相位差的方法。在此基础上,利用自贡强震动观测台阵在汶川地震中得到的主震地震动记录进行了破裂长度的离线快速估测。结果表明,该方法的时效性较好,在地震动加速度峰值到来前约10 s时,便得到了断层破裂长度(约120 km)和相应破裂走向的估测结果,虽然此时的估测结果与最终估测结果(约230 km)有较大的偏差,但从实现快速地震预警的角度来看,还是有较好的实际意义。通过与前人的研究结果进行对比,结果显示该方法低估了东北方向的破裂长度,于是探讨了该现象产生的原因及可能的解决方案。最后对这种算法的计算速度进行了测试分析,结果表明通过并行计算该方法能够满足实时断层破裂长度估测的要求。Abstract: We develop a fast rupture length estimation method by using small-aperture seismic arrays beam-forming technology, and proposed a method to adjust the phase of each station. By the method the phase difference of each station can be calculated approximately, when delay of each station cannot be determined. The result of Wenchuan earthquake outline test shows that the time efficiency of this method is good, for example, at about 10 s before the arrival of peak ground acceleration, the estimation result of rupture length is about 120 km. Although this estimation has a large deviation compared with the final estimation results (about 230 km); however, from the point of view of fast earthquake warning, it still has good practical significance. By comparing with the previous research results, it is indicated that this method underestimates the rupture length in northeast direction, and the causes and possible solutions are discussed. Finally, the computational speed of the algorithm is studied, the results show that the method can meet the requirement of real-time fault rupture length estimation by parallel computing.
-
根据美国地质调查局(United States Geological Survey,缩写为USGS)国家地震信息中心(National Earthquake Information Centre,缩写为NEIC)的测定,2021年2月13日14时7分50秒(UTC),日本本州以东发生了一次矩震级高达MW7.2的地震,震中位于(37.745°N,141.749°E),震源深度为49.94 km,这是截至本文发稿时最终更新的定位结果,更新前为(37.686°N,141.992°E),震源深度为54.0 km。美国地质调查局(USGS,2021)和全球矩心矩张量组(GCMT,2021)随后发布了这次地震的矩心矩张量解(表1)。震后48小时内累计发生M>2.5余震13次,其中最大的余震震级达到MW5.3,主震和余震的深度分布在35—65 km之间。该事件所在区域曾于2011年3月11日发生过MW9.1特大地震(Duputel et al,2012a)并引起破坏性海啸,相较于2011年MW9.1事件,本次事件的位置更靠近西侧,发生在俯冲带较深的区域。
表 1 GCMT,USGS 和本研究所得日本本州东海岸MW7.2地震矩心矩张量解Table 1. The centroid moment tensor solutions for the MW7.2 earthquake in the east coast of Honshu,Janpan,from GCMT,USGS and this study机构 矩张量/(1019 N·m) 矩心参数 Mrr Mtt Mpp Mrt Mrp Mtp τc/s 北纬/° 东经/° 矩心深度/km GCMT (2021) 5.540 −0.647 −4.890 0.269 −1.760 −1.740 9.6 37.60 141.63 50.7 USGS (2021)(W震相) 4.557 −0.220 −4.337 0.724 −0.773 −1.550 13.2 37.63 141.88 60.5 USGS (2021)(体波) 5.964 −1.531 −4.434 0.313 −2.151 −1.156 − 37.75 141.72 50.6 本文 8.588 −0.147 −8.440 −0.217 −2.755 −1.000 12.0 37.65 141.45 50.0 基于对该事件震级、噪声水平及空间分辨率的综合考虑,我们收集了震中距处于34.53°—89.92°范围内全球地震台网(Global Seismograph Network,缩写为GSN)和宽频带数字地震台网联盟(International Federation of Digital Seismograph Network,缩写为FDSN) 61个台站的宽频带垂直分量数据作为观测资料,采用AK135模型计算格林函数(Wang,1999)并截取P波数据,根据震级将滤波频带设定为0.01—0.05 Hz。与Kanamori和Rivera (2008)、Duputel等(2012b)以及先前的研究(张喆等,2020)相同,本文采用网格搜索的方法对矩心时空信息进行非线性反演,结果如图1所示。反演结果显示,矩心时间为12 s,矩心水平坐标为(37.65°N,141.45°E),矩心深度为50 km,其中双力偶成分占比接近100%。根据矩心矩张量解(表1,图2),我们也得到了相应的最佳双力偶解(表2)。图3展示了利用反演结果计算的合成波形与观测波形的比较,二者的整体相关系数达到0.93,二次误差为5.785×10−8,大多数台站的相关系数在0.90以上。
图 1 日本本州东海岸MW7.2地震矩心矩张量解反演过程(a) 矩心时间τc搜索;(b) 矩心水平空间搜索,黄色圆圈表示矩心水平坐标;(c) 矩心深度hc搜索;(d) 矩心相对震中的位置,红色沙滩球表示矩心矩张量解,红色星形表示震中Figure 1. Inversion process of the centroid moment tensor solution for the MW7.2 earthquake in the east coast of Honshu,Japan(a) Search for centroid time τc;(b) Search for the horizontal location of the centroid (yellow circle);(c) Search for centroid depth hc; (d) The centroid location (beach-ball) with respect to the instrumental epicenter (red hexagon)表 2 GCMT,USGS以及本研究得到的日本本州东海岸MW7.2地震的最佳双力偶解Table 2. The best double-couple solutions for the MW7.2 earthquake in the east coast of Honshu,Japan,from USGS,GCMT and this study机构 标量地震矩
/(1019 N·m)双力偶
成分占比节面Ⅰ 节面Ⅱ 走向/° 倾角/° 滑动角/° 走向/° 倾角/° 滑动角/° GCMT (2021) 5.800 99% 192 53 80 28 38 103 USGS (2021)(W震相) 4.831 96% 187 49 74 30 43 107 USGS (2021)(体波) 5.903 61% 191 55 82 25 35 102 本文 9.008 100% 186 54 89 7 36 91 与USGS和GCMT的结果(图4)相比,本文反演所得矩心时间12 s介于二者之间,而矩心位置(37.65°N,141.45°E,深度50 km)要更偏向西侧。本文反演得到的标量地震矩达到9.008×1019 N·m,换算为矩震级约MW7.24,高于其它机构(约MW7.1)的结果。此外,本文反演得到矩张量解中双力偶成分占比接近100%,这个数值要略高于GCMT和USGS (W震相)的结果,明显高于USGS (体波)发布的结果。从最佳双力偶解所确定的断层面来看,本研究的走向和倾角与其它研究结果近似,滑动角上存在接近10°的差异。经反复测试我们认为滑动角、矩心位置与其它研究结果的差异与观测资料、滤波频带的不同以及参考震中(Preliminary Determination Epicenter,缩写为PDE)的变更相关。从本文反演得到的震源机制解来看这是一次纯逆冲事件。
图 4 2011年MW9.1地震(灰色沙滩球)后M>2.5事件以及本州东海岸MW7.2地震的余震分布和各机构发布的该主震的矩心矩张量反演结果Figure 4. The centroid moment tensor solutions (colored beach-balls) from various institutions and aftershocks of the MW7.2 earthquake in east coast of Honshu as well as the M>2.5 earthquakes since the 2011 MW9.1 earthquake (gray beach-ball)本研究使用的数字波形数据均通过地震学联合研究会(Incorporated Research Institutions for Seismology,缩写为IRIS)数据中心获取,震源机制数据分别来自于全球矩心矩张量(GCMT)和美国地质调查局(USGS),余震数据来自于美国地质调查局(USGS),作者在此表示感谢!
-
图 3 强震动记录的筛选过程示意图
(a) 1号台站前60 s三分量强震动记录及其S波标志震相;(b) 本文采用的汶川地区地下速度结构;(c) 自贡台阵记录到的汶川地震各台站加速度时程之间的相关性
Figure 3. Diagram of the screening process for strong ground motion records
(a) The pre 60 s three-component strong motion records of the station No.1 and the seismic phase of the S wave;(b) Underground velocity structure of seismic wave in Wenchuan area;(c) Correlation between acceleration time histories of each station recorded by Zigong array during Wenchuan earthquake
图 5 离线条件下汶川地震瞬时主能量源实时估测结果(a)及同时刻2号参考台站的垂向加速度时程(b)
图(a)中圆点的位置代表这一时刻的主能量源位置,圆点的大小代表这一时刻相关系数和的极值,虚线表示两阶段估测的破裂长度范围
Figure 5. The outline result of the real-time estimation of the main energy source of Wenchuan earthquake (a) and the vertical acceleration record of the reference station No.2 at the same time (b)
In Fig.(a),the dot position represents the location of main energy source at the moment,the dot size represents the maximum size of correlation coefficient at the moment,and the dotted lines represent range of the rupture
-
阿布都瓦里斯•阿布都瓦衣提. 2013. 基于台阵观测资料的地震动空间变化特性研究[D]. 北京: 中国地震局地球物理研究所: 19–23. Abduwahit A. 2013. Study on Spatial Variation of Ground Motions Based on Array Records[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 19–23 (in Chinese).
金星, 张红才, 李军, 韦永祥, 马强. 2012. 地震预警连续定位方法研究[J]. 地球物理学报, 55(3): 925-936. Jin X, Zhang H C, Li J, Wei Y X, Ma Q. 2012. Research on continuous location method used in earthquake early warning system[J]. Chinese Journal of Geophysics, 55(3): 925-936 (in Chinese)
李小军. 2001. 对近年大震震害现象与工程地震问题研究的思考[J]. 国际地震动态, (8): 26-32. Li X J. 2001. Comments on phenomena of great earthquake damages and engineering seismological researches[J]. Recent Developments in World Seismology, (8): 26-32 (in Chinese).
刘瑞丰, 陈翔, 沈道康, 郑秀芬, 杨辉, 陈宏峰. 2014. 宽频带数字地震记录震相分析[M]. 北京: 地震出版社: 100–113. Liu R F, Chen X, Shen D K, Zheng X F, Yang H, Chen H F. 2014. Phase Analysis on the Broad Frequency Band Digital Seismic Recording[M]. Beijing: Seismological Press: 100–113 (in Chinese).
马强. 2008. 地震预警技术研究及应用[D]. 哈尔滨: 中国地震局工程力学研究所: 34–40. Ma Q. 2008. Study and Application on Earthquake Early Warning[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 34–40 (in Chinese).
唐晖, 李小军, 李亚琦. 2012. 自贡西山公园山脊地形的场地效应分析[J]. 振动与冲击, 31(8): 74-79. Tang H, Li X J, Li Y Q. 2012. Site effect of topography on ground motions of Xishan park of Zigong city[J]. Journal of Vibration and Shock, 31(8): 74-79 (in Chinese).
吴建平, 黄媛, 张天中, 明跃红, 房立华. 2009. 汶川MS8.0级地震余震分布及周边区域P波三维速度结构研究[J]. 地球物理学报, 52(2): 320-328. Wu J P, Huang Y, Zhang T Z, Ming Y H, Fang L H. 2009. Aftershock distribution of the MS8.0 Wenchuan earthquake and three dimensional P-wave velocity structure in and around source region[J]. Chinese Journal of Geophysics, 52(2): 320–328 (in Chinese).
杨宇, 李小军, 贺秋梅. 2011. 自贡西山公园山脊场地地形和土层效应数值模拟[J]. 震灾防御技术, 6(4): 436-447. Yang Y, Li X J, He Q M. 2011. Numerical simulation for site effect of ridge terrain and overlaying soil in Zigong Xishan park[J]. Technology for Earthquake Disaster Prevention, 6(4): 436-447 (in Chinese).
张小飞, 陈华伟, 仇小峰, 汪飞, 王成华, 张弓, 徐大专. 2015. 阵列信号处理及MATLAB实现[M]. 北京: 电子工业出版社: 50–55. Zhang X F, Chen H W, Qiu X F, Wang F, Wang C H, Zhang G, Xu D Z. 2015. Array Signal Processing and MATLAB Implemen-tation[M]. Beijing: Publishing House of Electronics Industry: 50–55 (in Chinese).
张勇, 冯万鹏, 许力生, 周成虎, 陈运泰. 2008. 2008年汶川大地震的时空破裂过程[J]. 中国科学: D辑, 38(10): 1186-1194. Zhang Y, Feng W P, Xu L S, Zhou C H, Chen Y T. 2009. Spatio-temporal rupture process of the 2008 great Wenchuan earthquake[J]. Science in China Series D: Earth Sciences, 2009, 52(2): 145-154.
Akaike H. 1973. Information theory and an extension of the maximum likelihood principle[G]//Selected Papers of Hirotugu Akaike. New York: Springer: 199–213.
Allen R M, Kanamori H. 2003. The potential for earthquake early warning in southern California[J]. Science, 300(5620): 786-789.
Allen R M, Brown H, Hellweg M, Khainovski O, Lombard P, Neuhauser D. 2009. Real-time earthquake detection and hazard assessment by ElarmS across California[J]. Geophys Res Lett, 36(5): L00B08.
Allen R V. 1978. Automatic earthquake recognition and timing from single traces[J]. Bull Seismol Soc Am, 68(5): 1521-1532.
Allen R V. 1982. Automatic phase pickers: Their present use and future prospects[J]. Bull Seismol Soc Am, 72(6B): S225-S242.
Borcea L, Papanicolaou G, Tsogka C, Berryman J. 2002. Imaging and time reversal in random media[J]. Inverse Probl, 2002, 18(5): 1247-1279.
Böse M. 2006. Earthquake Early Warning for Istanbul Using Artificial Neural Networks[D]. Karlsruhe: Karlsruhe University: 19–24.
Böse M, Hauksson E, Solanki K, Kanamori H, Heaton T H. 2009a. Real-time testing of the on-site warning algorithm in southern California and its performance during the July 29 2008 MW5.4 Chino Hills earthquake[J]. Geophys Res Lett, 36(5): L00B03.
Böse M, Sokolov V, Wenzel F. 2009b. Shake map methodology for intermediate-depth Vrancea (Romania) earthquakes[J]. Earthq Spectra, 25(3): 497-514.
Böse M, Heaton T H, Hauksson E. 2012. Real-time finite fault rupture detector (FinDer) for large earthquakes[J]. Geophys J Int, 2012, 191(2): 803-812.
Chen D Y. 2015. Development and Study of Earthworm Platform for Earthquake Early Warning in Taiwan[D]. Taipei: College of Science, Taiwan University: 43–47.
Espinosa-Aranda J M, Jiménez A, Ibarrola G, Alcantar F, Aguilar A, Inostroza M, Maldonado S. 1995. Mexico city seismic alert system[J]. Seismol Res Lett, 66(6): 42-53.
Espinosa-Aranda J M, Cuellar A, Garcia A, Ibarrola G, Islas R, Maldonado S, Rodriguez F H. 2009. Evolution of the Mexican seismic alert system (SASMEX)[J]. Seismol Res Lett, 80(5): 694-706.
Fletcher J B, Spudich P, Baker L M. 2006. Rupture propagation of the 2004 Parkfield, California, earthquake from observations at the UPSAR[J]. Bull Seismol Soc Am, 96(4B): S129-S142.
Horiuchi S, Negishi H, Abe K, Kamimura A, Fujinawa Y. 2005. An automatic processing system for broadcasting earthquake alarms[J]. Bull Seismol Soc Am, 95(2): 708-718.
Hoshiba M, Iwakiri K, Hayashimoto N, Shimoyama T, Hirano K, Yamada Y, Ishigaki Y, Kikuta H. 2011. Outline of the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0): Earthquake early warning and observed seismic intensity[J]. Earth Planets Space, 63(7): 547-551.
Kodera Y, Saitou J, Hayashimoto N, Adachi S, Morimoto M, Nishimae Y, Hoshiba M. 2016. Earthquake early warning for the 2016 Kumamoto earthquake: Performance evaluation of the current system and the next-generation methods of the Japan Meteorological Agency[J]. Earth Planets Space, 68(1): 202-213.
Meng L, Ampuero J P, Sladen A, Rendon H. 2012. High-resolution backprojection at regional distance: Application to the Haiti M7.0 earthquake and comparisons with finite source studies[J]. J Geophys Res, 117(B4): B04313.
Meng L, Allen R M, Ampuero J P. 2014. Application of seismic array processing to earthquake early warning[J]. Bull Seismol Soc Am, 104(5): 2553-2561.
Nakamura Y. 1988. On the urgent earthquake detection and alarm system (UrEDAS)[C]//Proceedings of 9th World Conference on Earthquake Engineering (Vol. VII). Tokyo-Kyoto, Japan: Japan Association for Earthquake Disaster Prevention: 673.
Odaka T. 2003. A new method of quickly estimating epicentral distance and magnitude from a single seismic record[J]. Bull Seismol Soc Am, 93(1): 526-532.
Pazos A, Romeu N, Lozano L, Colom Y, López M, Goula X, Jara J A, Cantavella J V, Zollo A, Hanka W, Carrilho F. 2015. A regional approach for earthquake early warning in South West Iberia: A feasibility study. Bull Seismol Soc Am, 105(2A): 560-567.
Peng H S, Wu Z L, Wu Y M, Yu S M, Zhang D N, Huang W H. 2011. Developing a prototype earthquake early warning system in the Beijing capital region[J]. Seismol Res Lett, 82(3): 394-403.
Pittore M, Bindi D, Stankiewicz J, Oth A, Wieland M, Boxberger T, Parolai S. 2014. Toward a loss-driven earthquake early warning and rapid response system for Kyrgyzstan (Central Asia)[J]. Seismol Res Lett, 85(6): 1328-1340.
Vallée M, Landès M, Shapiro N M, Klinger Y. 2008. The 14 November 2001 Kokoxili (Tibet) earthquake: High-frequency seismic radiation originating from the transitions between sub-Rayleigh and supershear rupture velocity regimes[J]. J Geophys Res, 113(B7): B07305.
Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bull Seismol Soc Am, 84(4): 974–1002.
Wu Y M, Chung J K, Shin T C, Hsiao N C, Tsai Y B, Lee W H K, Teng T L. 1999. Development of an integrated earthquake early warning system in Taiwan: Case for the Hualien area earthquakes[J]. Terr Atmos Oceanic Sci, 10(4): 719-736.
Wu Y M, Chen D Y, Lin T L, Hsieh C Y, Chin T L, Chang W Y, Li W S, Ker S H. 2013. A high-density seismic network for earthquake early warning in Taiwan based on low cost sensors[J]. Seismol Res Lett, 84(6): 1048-1054.
Zhang Y, Wang R J, Zschau J, Chen Y T, Parolai S, Dahm T. 2014. Automatic imaging of earthquake rupture processes by iterative deconvolution and stacking of high-rate GPS and strong motion seismograms[J]. J Geophys Res, 119(7): 5633-5650.
Zollo A, Lancieri M, Nielsen S. 2006. Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records[J]. Geophys Res Lett, 33(23): 430-452.
Zollo A, Amoroso O, Lancieri M, Wu Y M, Kanamori H. 2010. A threshold-based earthquake early warning using dense accelerometer networks[J]. Geophys J Int, 183(2): 963-974.
-
期刊类型引用(3)
1. 顾春生,许书刚,杨鹏,唐鑫,张其琪,李浩民. 基于LASSO-BP神经网络模型的滆湖组黏性土抗剪强度预测. 世界地质. 2023(03): 577-587 . 百度学术
2. 陈帅,苗则朗,吴立新. 顾及坡体赋存环境的概率地震滑坡危险性制图. 测绘学报. 2023(09): 1548-1561 . 百度学术
3. 陈帅,苗则朗,吴立新. 基于修正岩土体强度参数的简化纽马克位移法地震滑坡危险性快速评估技术. 地震学报. 2022(03): 512-527 . 本站查看
其他类型引用(1)