Crustal velocity structure beneath the northern North-South Seismic Zone from local seismic tomography and its tectonic implications
-
摘要: 收集和拾取了“中国地震科学台阵”探测项目在南北地震带北段布设的680个流动地震台站和中国地震台网217个固定台站所记录的地震事件的P波和S波初至到时,通过层析成像研究获得了南北地震带北段水平网格间距为0.33°×0.33°的地壳P波和S波速度分布。结果显示:在30 km深度上青藏高原东北部表现为显著的整体性低速异常,低速异常区向南延伸至龙门山断裂,以106°E为界线将秦岭造山带分为西侧的低速异常和东侧的高速异常,并沿银川—河套地堑向东北展布,向北穿过河西走廊,在阿拉善地块表现为低速异常,这可能暗示了青藏高原向东的扩展被较为坚固的四川盆地和秦岭造山带阻挡,而向北的扩展可能影响到了河西走廊至阿拉善地块,并沿银川—河套地堑影响到鄂尔多斯西北缘;在50 km深度上,阿拉善地块、祁连造山带东段显示高速异常,有可能是阿拉善地块向祁连东段下方俯冲所致。研究区内大部分地震分布在P波和S波高低速异常相间及速度剧烈变化的地区,M≥6.0强震几乎全部投影在30 km深度的低速异常区域内,说明强震发生的背景可能与地震源区下方的低速区有关。Abstract: We collected and picked the first arrivals of P and S waves of local and regional events recorded by 680 portable broadband seismic stations of the ChinArray-Himalaya Ⅱ and 217 fixed stations of the Chinese Seismic Network located on the northern North-South Seismic Zone (96°E−110°E, 30°N−44°N). We got a 3D P and S wave velocity (vP and vS) structure of the crust beneath the northern North-South Seismic Zone with a horizontal grid space of 0.33°×0.33° by tomography. The tomography results reveal obvious integrated low velocity anomalies at 30 km depth beneath the northeastern Tibetan Plateau. The low velocity zone extends southward to the Longmenshan fault and extends eastward to the 106°E, dividing the Qinling orogenic belt into low velocity zone at westside and high velocity zone at eastside. The low velocity zone also extends northeast along the Yinchuan-Hetao graben, and extends northward through the Hexi Corridor, and it shows low velocity anomalies beneath the Alxa block at 30 km depth. This implicates that the extension of the Tibetan Plateau may be blocked by the relatively strong Sichuan basin and Qinling block in the east, while the extension affects the Hexi Corridor and the Alashan block, as well as the northwestern margin of Ordos along the Yinchuan-Hetao graben. At 50 km depth, it shows high velocity anomalies beneath the Alxa block and eastern Qilian orogenic belt, indicating possible southward subduction of the Alxa block beneath the eastern Qilian orogenic belt. Most crustal earthquakes in the studied region generally occurred along the fault zones between low velocity and high velocity zones where vP and vS change drastically over a short distance. The projections of large earthquakes (M≥6.0) at 30 km depth are almost located in the low velocity zone, which may indicate that the background of strong earthquakes is related to the low velocity zone beneath the source area.
-
引言
随着城镇化建设的发展,土地资源日渐紧缺,对地下空间的开发和利用不断深化。然而,地下结构的建设破坏了土体的局部整体性,改变了原场地的动力特性,因而对附近地上和地下工程结构的抗震安全造成了影响。因此,系统深入地分析由于地下结构的存在而引起的沿线地震动随深度的变化规律,对地下结构沿线的结构抗震设计具有十分重要的意义。
地下结构对附近场地地震动影响的实质是地下结构对地震波的散射。Mow和Pao (1973)最早运用波函数展开法研究了无限空间中的隧道在弹性波入射下的动应力集中问题;随之,Lee和Trifunac (1979)运用该方法分析了半空间中衬砌隧道对SH波的动力响应。Lee和Karl (1992,1993)通过理论分析给出了半空间中单个无衬砌隧道对P波和SV波散射问题的解析解。基于单个衬砌隧道的研究,Liang等(2003)得到了半空间中双衬砌隧道对P波和SV波散射问题的解析解。Liu等(2016)分析了弹性半空间中平面波作用下双垂直衬砌隧道的动力相互作用。Xu等(2011)采用傅里叶-贝塞尔级数展开方法计算了半空间中圆形衬砌隧道对P波入射的动力响应。考虑不同种类弹性波的入射情形,梁建文等(2005a,b)研究了地下圆形隧道对地表运动幅值的影响。Liu等(2013)考察了弹性半空间中隧道处于浅埋时平面 P-SV 波和瑞雷波的动力响应。Luco和de Barros (2010)以及de Barros和Luco (2010)计算了水平层状半空间中埋置隧道在入射体波下的三维动力响应。对于平面SV波和P波垂直入射的情形,Oliaei和Alitalesh (2015)分析了由于地下圆形和椭圆形隧道的存在而引起的地面位移被放大的现象。利用四阶有限差分方法,Narayan等(2015)探讨了瑞雷波入射下地下无衬砌隧道和有衬砌隧道对其周围应变和黏弹性地基地表位移的影响。Alielahi和Adampira (2016)应用边界元法给出了P波和SV波入射时双平行隧道对其周围垂直平面内地震动响应的影响。Liu和Liu (2015)利用间接边界元法讨论了弹性楔形空间中隧道在SH波入射下对附近表面地震动的影响。Parvanova等(2014)利用数值模拟方法探讨了局部地形对隧道动力响应的影响。
目前,大部分研究成果仅针对SH波入射情况下地下隧道对地表面地震动的影响(Liang et al,2012,2013;付佳等,2016),而且对考虑地下隧道周围土体在一定深度范围内的动力响应研究也较少。为此,本文拟以含有圆形衬砌隧道的弹性半空间为研究对象,分析地下圆形隧道对场地动力响应的影响,重点研究隧道埋深、衬砌刚度、入射角度以及入射频率对地下隧道周围土体位移振动幅值随深度的变化规律,以期为定量评估地下隧道对既有地下建筑物地震安全性提供理论依据。
1. 地下位移幅值的求解
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
1.1 入射波场
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
$ w_1^i({r_1}{\text{,}} {\theta _1}) {\text{=}} \sum\limits_{m {\text{=}} 0}^{ {\text{+}} \infty } {{\varepsilon _m}} {({\text{-}}{\rm{i}})^m}{{\rm J}_m}(k{r_1})(\cos m\gamma \cos m{\theta _1} {\text{+}} \sin m\gamma \sin m{\theta _1}){\text{,}} $
(1) This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
$ w_2^i({r_2}{\text{,}} {\theta _2}) {\text{=}} \sum\limits_{m {\text{=}} 0}^{ {\text{+}} \infty } {{\varepsilon _m}} {({\text{-}} {\rm{i}})^m}{{\rm J}_m}(k{r_2})(\cos m\gamma \cos m{\theta _2} {\text{+}} \sin m\gamma \sin m{\theta _2}){\text{.}} $
(2) 1.2 散射波场
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
$ w_1^r\left({{r_1}{\text{,}} {\theta _1}} \right) {\text{=}} \sum\limits_{m {\text{=}} 0}^{ {\text{+}} \infty } {{\rm H}_m^{\left(2 \right)}} \left({k{r_1}} \right)\left({{A_m}\cos m{\theta _1} {\text{+}} {B_m}\sin m{\theta _1}} \right){\text{,}} $
(3) $ w_2^r\left({{r_2}{\text{,}} {\theta _2}} \right) {\text{=}} \sum\limits_{n {\text{=}} 0}^{ {\text{+}} \infty } {{\rm H}_n^{\left(2 \right)}} \left({k{r_2}} \right)\left({{A_n}\cos n{\theta _2} {\text{+}}{B_n}\sin n{\theta _2}} \right){\text{,}} $
(4) This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
$ w_1^f\left({{r_1}{\text{,}} {\theta _1}} \right) {\text{=}} \sum\limits_{m {\text{=}} 0}^{ {\text{+}} \infty } {{\rm H}_m^{\left(2 \right)}} \left({{k_1}{r_1}} \right)\left({C_m^{(2)}\cos m{\theta _1} {\text{+}} D_m^{(2)}\sin m{\theta _1}} \right){\text{,}} $
(5) $ w_2^f\left({{r_1} {\text{,}} {\theta _1}} \right) {\text{=}}\sum\limits_{m {\text{=}} 0}^{ {\text{+}} \infty } {{\rm H}_m^{\left(1 \right)}} \left({{k_1}{r_1}} \right)\left({C_m^{(1)}\cos m{\theta _1} {\text{+}} D_m^{(1)}\sin m{\theta _1}} \right) {\text{,}} $
(6) This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
因此,在SH波入射的情形下,半空间中波的势函数为
$ {w^d} {\text{=}} w_1^i {\text{+}} w_2^i {\text{+}} w_1^r {\text{+}} w_2^r{\text{,}} $
(7) 衬砌介质中波的势函数为
$ {w^f} {\text{=}} w_1^f {\text{+}} w_2^f{\text{.}} $
(8) 1.3 引入边界条件求解问题
引入衬砌隧道的边界条件:
$ {\sigma _{rz}} {\text{=}} {\mu _1}\frac{{\partial {w^f}}}{{\partial {r_1}}} {\text{=}} 0 {\text{,}}{r_1} {\text{=}} b {\text{,}} $
(9) $ {w^d}{\text{=}} {w^f} {\text{,}} {r_1} {\text{=}} a {\text{,}} $
(10) $ {\mu _0}\frac{{\partial {w^d}}}{{\partial {r_1}}} {\text{=}} {\mu _1}\frac{{\partial {w^f}}}{{\partial {r_1}}}{\text{,}} {r_1}{\text{=}} a{\text{,}} $
(11) 即可求得式(3)—(6)中所有待定系数,从而确定式(7)中半空间介质内波的势函数。在SH波作用下,沿深度方向的位移可通过求解以上边界条件得出,从而求得隧道周围沿深度方向的位移幅值,具体求解过程不再赘述。
1.4 解的验证
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
2. 算例与分析
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
表 1 距地表6a深度范围内隧道左右两侧最大地下位移幅值Table 1. The maximum amplitude of underground displacement on both sides of tunnel within a depth of 6a from surface入射角/° 地下位移幅值 x/a=−3.0 x/a=−1.5 x/a=1.5 x/a=3.0 0 2.66 2.79 2.79 2.66 30 2.90 2.83 2.31 2.45 60 3.30 2.37 2.64 2.61 90 3.31 3.94 3.37 3.01 This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
3. 讨论与结论
本文应用波函数展开法和镜像法,得到了平面SH波作用下含圆形衬砌隧道的弹性半空间中散射波场的级数解答。通过数值算例分析,研究了平面SH的入射角度、入射频率和隧道埋深、衬砌刚度对沿线地下地震动的影响。结果表明,地下隧道的存在对其周围地震动具有显著的影响,并具有如下规律:
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
2) 随着入射频率的增加,隧道周围土体的位移幅值有逐渐增大的趋势,但是在隧道左侧近处存在异常区,该区随着频率的增加地下位移振幅逐渐减小。
3) 在隧道周围近距离处,衬砌刚度的变化对地下位移幅值的影响显著,而在隧道远距离处,衬砌刚度对地下位移幅值的影响较弱。
-
图 7 速度扰动变化与走时残差均方根之间的折中曲线. 灰色实心圆圈中的数字为本研究采用的最佳反演参数
(a) 采用不同阻尼因子的折中曲线;(b) 采用不同平滑参数的折中曲线
Figure 7. Trade-off curve for the norm of solution and RMS travel time residual. The numbers in solid gray circles denote the optimal parameters.
(a) The curve with different damping parameters; (b) The curve with different smoothing parameters
图 6 初始一维速度模型(a)及本文采用的地壳厚度分布(b)(引自Li et al,2014b ;Wang et al,2017a )
Figure 6. 1-D starting velocity model (a) and crustal thickness obtained from results of receiver functions (b) (after Li et al,2014b ;Wang et al,2017a )
-
毕奔腾,胡祥云,李丽清,张恒磊,刘双,蔡建超. 2016. 青藏高原东北部多尺度重力场及其地球动力学意义[J]. 地球物理学报,59(2):543–555. doi: 10.6038/cjg20160213 Bi B T,Hu X Y,Li L Q,Zhang H L,Liu S,Cai J C. 2016. Multi-scale analysis to the gravity field of the northeastern Tibetan Pla-teau and its geodynamic implications[J].Chinese Journal of Geophysics,59(2):543–555 (in Chinese) doi: 10.6038/cjg20160213
常利军,丁志峰,王椿镛. 2016. 南北构造带北段上地幔各向异性特征[J]. 地球物理学报,59(11):4035–4047 doi: 10.6038/cjg20161109 Chang L J,Ding Z F,Wang C Y. 2016. Upper mantle anisotropy beneath the northern segment of the north-south tectonic belt in China[J]. Chinese Journal of Geophysics,59(11):4035–4047 (in Chinese) doi: 10.6038/cjg20161109
邓起东,张培震,冉勇康,杨晓平,闵伟,陈立春. 2003. 中国活动构造与地震活动[J]. 地学前缘,10(增刊1):66–73 Deng Q D,Zhang P Z,Ran Y K,Yang X P,Min W,Chen L C. 2003. Active tectonics and earthquake activities in China[J]. Earth Science Frontiers,10(S1):66–73 (in Chinese)
嘉世旭,张先康. 2008. 青藏高原东北缘深地震测深震相研究与地壳细结构[J]. 地球物理学报,51(5):1431–1443 Jia S X,Zhang X K. 2008. Study on the crust phases of deep seismic sounding experiments and fine crust structures in the northeast margin of Tibetan Plateau[J]. Chinese Journal of Geophysics,51(5):1431–1443 (in Chinese)
嘉世旭, 郭文斌, 林吉焱, 王夫运, 段永红. 2017. 青藏高原东北缘地壳深部结构长剖面深地震测深探测研究[R]. 北京: 中国地球科学联合学术年会2017: 360–361. Jia S X, Guo W B, Lin J Y, Wang F Y, Duan Y H. 2017. Study on the Crust Structure of Long Profile Deep Seismic Sounding Experiments in the Northeast Margin of Tibetan Plateau[R]. Beijing: Annual Meeting of Chinese Geoscience Union (CGU) 2017: 360–361 (in Chinese).
李英康,高锐,米胜信,姚聿涛,高建伟,李文辉,熊小松. 2014. 青藏高原东北缘六盘山—鄂尔多斯盆地的地壳速度结构特征[J]. 地质论评,60(5):1147–1157 Li Y K,Gao R,Mi S X,Yao Y T,Gao J W,Li W H,Xiong X S. 2014. The characteristics of crustal velocity structure for Liupan Mountain−Ordos Basin in the northeastern margin of Qinghai−Xizang (Tibet) Plateau[J]. Geological Review,60(5):1147–1157 (in Chinese)
刘永前,方小敏,宋春晖,李立立,程彧. 2009. 青藏高原东北缘六盘山地区新生代构造旋转及其意义[J]. 大地构造与成矿学,33(2):189–198 Liu Y Q,Fang X M,Song C H,Li L L,Cheng Y. 2009. Cenozoic tectonic rotation of the Liupanshan region in the northeastern Tibetan Plateau and its implications[J]. Geotectonica et Metallogenia,33(2):189–198 (in Chinese)
裴顺平. 2017. 青藏高原东北缘上地壳Pg波速度和各向异性联合成像及其动力学意义[R]. 北京: 中国地球科学联合学术年会2017: 366. Pei S P. 2017. Join Imaging of Pg Velocity and Anisotropy of Upper Crust Beneath the Northeast Margin of Tibetan Plateau and its Dynamics Implications[R]. Beijing: Annual Meeting of Chinese Geoscience Union (CGU) 2017: 366 (in Chinese).
王敏,沈正康,牛之俊,张祖胜,孙汉荣,甘卫军,王琪,任群. 2003. 现今中国大陆地壳运动与活动块体模型[J]. 中国科学:D辑,33(增刊1):21–32 Wang M,Shen Z K,Niu Z J,Zhang Z S,Sun H R,Gan W J,Wang Q,Ren Q. 2003. Contemporary crustal deformation of the Chinese continent and tectonic block model[J]. Science in China:Series D,46(S2):25–40
王帅军,刘保金,嘉世旭,邓晓果,宋向辉,李怡青. 2017. 利用人工地震测深剖面研究银川盆地及两侧区域的S波速度结构[J]. 地球物理学进展,32(5):1936–1943 doi: 10.6038/pg20170510 Wang S J,Liu B J,Jia S X,Deng X G,Song X H,Li Y Q. 2017. Study on S-wave velocity structure difference of Yinchuan basin and blocks on both sides using artificial seismic sounding profiles[J]. Progress in Geophysics,32(5):1936–1943 (in Chinese) doi: 10.6038/pg20170510
王兴臣,丁志峰,武岩,朱露培. 2017. 中国南北地震带北段及其周缘地壳厚度与泊松比研究[J]. 地球物理学报,60(6):2080–2090 Wang X C,Ding Z F,Wu Y,Zhu L P. 2017. Crustal thickness and Poisson’s ratios beneath the northern section of the north-south seismic belt and surrounding areas in China[J]. Chinese Journal of Geophysics,60(6):2080–2090 (in Chinese)
王绪本,罗威,张刚,蔡学林,覃庆炎,罗皓中. 2013. 扇形边界条件下的龙门山壳幔电性结构特征[J]. 地球物理学报,56(8):2718–2727 doi: 10.6038/cjg20130820 Wang X B,Luo W,Zhang G,Cai X L,Qin Q Y,Luo H Z. 2013. Electrical resistivity structure of Longmenshan crust-mantle under sector boundary[J]. Chinese Journal of Geophysics,56(8):2718–2727 (in Chinese) doi: 10.6038/cjg20130820(inChinese)
喻学惠,赵志丹,莫宣学,周肃,朱德勤,王永磊. 2005. 甘肃西秦岭新生代钾霞橄黄长岩的40Ar/39Ar同位素定年及其地质意义[J]. 科学通报,50(23):2638–2643 Yu X H,Zhao Z D,Mo X X,Zhou S,Zhu D Q,Wang Y L. 2006. 40Ar/39Ar dating for Cenozoic kamafugite from western Qinling in Gansu Province[J]. Chinese Science Bulletin,51(13):1621–1627
詹艳,赵国泽,王立凤,王继军,陈小斌,赵凌强,肖骑彬. 2014. 西秦岭与南北地震构造带交汇区深部电性结构特征[J]. 地球物理学报,57(8):2594–2607 doi: 10.6038/cjg20140819 Zhan Y,Zhao G Z,Wang L F,Wang J J,Chen X B,Zhao L Q,Xiao Q B. 2014. Deep electric structure beneath the intersection area of west Qinling orogenic zone with North-South seismic tectonic zone in China[J]. Chinese Journal of Geophysics,57(8):2594–2607 (in Chinese) doi: 10.6038/cjg20140819(inChinese)
詹艳,杨皓,赵国泽,赵凌强,孙翔宇. 2017. 青藏高原东北缘海原构造带马东山阶区深部电性结构特征及其构造意义[J]. 地球物理学报,60(6):2371–2384 doi: 10.6038/cjg20170627 Zhan Y,Yang H,Zhao G Z,Zhao L Q,Sun X Y. 2017. Deep electrical structure of crust beneath the Madongshan step area at the Haiyuan fault in the northeastern margin of the Tibetan Plateau and tectonic implications[J]. Chinese Journal of Geophysics,60(6):2371–2384 (in Chinese) doi: 10.6038/cjg20170627(inChinese)
张乐天,金胜,魏文博,叶高峰,段书新,董浩,张帆,谢成良. 2012. 青藏高原东缘及四川盆地的壳幔导电性结构研究[J]. 地球物理学报,55(12):4126–4137 doi: 10.6038/j.issn.0001-5733.2012.12.025 Zhang L T,Jin S,Wei W B,Ye G F,Duan S X,Dong H,Zhang F,Xie C L. 2012. Electrical structure of crust and upper mantle beneath the eastern margin of the Tibetan Plateau and the Sichuan basin[J]. Chinese Journal of Geophysics,55(12):4126–4137 (in Chinese) doi: 10.6038/j.issn.0001-5733.2012.12.025(inChinese)
张培震,邓起东,张国民,马瑾,甘卫军,闵伟,毛凤英,王琪. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学:D辑,33(增刊1):12–20 Zhang P Z,Deng Q D,Zhang G M,Ma J,Gan W J,Min W,Mao F Y,Wang Q. 2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China:Series D,46(S2):13–24
赵盼盼,陈九辉,刘启元,郭飚,李顺成,李昱. 2015. 龙门山断裂带中上地壳速度结构的短周期环境噪声成像[J]. 地球物理学报,58(11):4018–4030 doi: 10.6038/cjg20151111 Zhao P P,Chen J H,Liu Q Y,Guo B,Li S C,Li Y. 2015. Fine structure of middle and upper crust of the Longmenshan fault zone from short period seismic ambient noise[J]. Chinese Journal of Geophysics,58(11):4018–4030 (in Chinese) doi: 10.6038/cjg20151111(inChinese)
Bao X W,Song X D,Xu M J,Wang L S,Sun X X,Mi N,Yu D Y,Li H. 2013. Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications[J]. Earth Planet Sci Lett,369/370:129–137
Cheng B,Zhao D P,Cheng S Y,Ding Z T,Zhang G W. 2016. Seismic tomography and anisotropy of the Helan-Liupan tectonic belt:Insight into lower crustal flow and seismotectonics[J]. J Geophys Res,121(4):2608–2635
Clark M K,Royden L H. 2000. Topographic ooze:Building the eastern margin of Tibet by lower crustal flow[J]. Geology,28(8):703–706
Dayem K E,Molnar P,Clark M K,Houseman G A. 2009. Far-field lithospheric deformation in Tibet during continental collision[J]. Tectonics,28(6):TC6005 doi: 10.1029/2008TC002344
Ding Z T,Cheng B,Dong Y P,Zhao D P. 2017. Seismic imaging of the crust and uppermost mantle beneath the Qilian orogenic belt and its geodynamic implications[J]. Tectonophysics,705:63–79
Gan W, Zhang P, Shen Z K, Niu Z, Wang M, Wan Y, Zhou D, Cheng J. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. J Geophys Res,112:B08416
Hickman S,Sibson R H,Bruhn R. 1995. Introduction to special section:Mechanical involvement of fluids in faulting[J]. J Geophys Res,100(B7):12831–12840
Huang Z C,Zhao D P,Wang L S. 2011. Stress field in the 2008 Iwate-Miyagi earthquake (M7.2) area[J]. Geochem Geophys Geosyst,12(6):Q06006 doi: 10.1029/2011GC003626
Jiang C X,Yang Y J,Zheng Y. 2014. Penetration of mid-crustal low velocity zone across the Kunlun fault in the NE Tibetan Pla-teau revealed by ambient noise tomography[J]. Earth Planet Sci Lett,406:81–92
Lei J S,Zhao D P. 2009. Structural heterogeneity of the Longmenshan fault zone and the mechanism of the 2008 Wenchuan earthquake (MS8.0)[J]. Geochem Geophys Geosyst,10(10):Q10010 doi: 10.1029/2009GC002590
Li H Y,Shen Y,Huang Z X,Li X F,Gong M,Shi D N,Sandvol E,Li A B. 2014a. The distribution of the mid-to-lower crustal low-velocity zone beneath the northeastern Tibetan Plateau revealed from ambient noise tomography[J]. J Geophys Res,119(3):1954–1970 doi: 10.1002/2013JB010374
Li Y H,Gao M T,Wu Q J. 2014b. Crustal thickness map of the Chinese mainland from teleseismic receiver functions[J]. Tectonophysics,611:51–60
Li Y H,Pan J T,Wu Q J,Ding Z F. 2017a. Lithospheric structure beneath the northeastern Tibetan Plateau and the western Sino-Korea craton revealed by Rayleigh wave tomography[J]. Geophys J Int,210(2):570–584 doi: 10.1093/gji/ggx181
Li Y H,Wang X C,Zhang R Q,Wu Q J,Ding Z F. 2017b. Crustal structure across the NE Tibetan Plateau and Ordos block from the joint inversion of receiver functions and Rayleigh-wave dispersions[J]. Tectonophysics,705:33–41
Liu Q Y,van der Hilst R D,Li Y,Yao H J,Chen J H,Guo B,Qi S H,Wang J,Huang H,Li S C. 2014. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults[J]. Nat Geosci,7(5):361–365
Lu H J,Xiong S F. 2009. Magnetostratigraphy of the Dahonggou section,northern Qaidam basin and its bearing on Cenozoic tecto-nic evolution of the Qilianshan and Altyn Tagh fault[J].Earth Planet Sci Lett,288(3/4):539–550
Mulch A,Chamberlain C P. 2006. The rise and growth of Tibet[J]. Nature,439(7077):670–671
Paige C C,Saunders M A. 1982. LSQR:An algorithm for sparse linear equations and sparse least squares[J]. ACM Trans Math Softw,8(1):43–71
Pan S Z,Niu F L. 2011. Large contrasts in crustal structure and composition between the Ordos Plateau and the NE Tibetan Plateau from receiver function analysis[J]. Earth Planet Sci Lett,303(3/4):291–298
Royden L H,Burchfiel B C,King R W,Wang E,Chen Z L,Shen F,Liu Y P. 1997. Surface deformation and lower crustal flow in eastern Tibet[J]. Science,276(5313):788–790
Shen X Z,Yuan X H,Ren J S. 2015. Anisotropic low-velocity lower crust beneath the northeastern margin of Tibetan Plateau:Evi-dence for crustal channel flow[J]. Geochem Geophys Geosyst,16(12):4223–4236 doi: 10.1002/2015GC005952
Sibson R H. 1992. Implications of fault-valve behaviour for rupture nucleation and recurrence[J]. Tectonophysics,211(1/4):283–293
Tapponnier P,Xu Z Q,Roger F,Meyer B,Arnaud N,Wittlinger G,Yang J S. 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science,294(5547):1671–1677
Wang W L,Wu J P,Fang L H,Lai G J,Cai Y. 2017a. Sedimentary and crustal thicknesses and Poisson's ratios for the NE Tibetan Plateau and its adjacent regions based on dense seismic arrays[J]. Earth Planet Sci Lett,462:76–85
Wang X B,Zhang G,Fang H,Luo W,Zhang W,Zhong Q,Cai X L,Luo H Z. 2014. Crust and upper mantle resistivity structure at middle section of Longmenshan,eastern Tibetan Plateau[J]. Tectonophysics,619/620:143–148
Wang X C,Li Y H,Ding Z F,Zhu L P,Wang C Y,Bao X W,Wu Y. 2017b. Three dimensional lithospheric S wave velocity mo-del of the NE Tibetan Plateau and western North China Craton[J]. J Geophys Res,122(8):6703–6720 doi: 10.1002/2017JB014203
Wang Z,Zhao D,Wang J. 2010. Deep structure and seismogenesis of the north-south seismic zone in southwest China[J]. J Geophys Res,115:B12334 doi: 10.1029/2010JB007797
Wu Z B,Xu T,Badal J,Yao H J,Wu C L,Zhang Z J,Teng J W. 2017. Crustal shear-wave velocity structure of northeastern Tibet revealed by ambient seismic noise and receiver functions[J]. Gondwana Res,41:400–410
Wu Z B,Xu T,Liang C T,Wu C L,Liu Z Q. 2018. Crustal shear wave velocity structure in the northeastern Tibet based on the Neighbourhood algorithm inversion of receiver functions[J]. Geophys J Int,212(3):1920–1931
Yang Y J,Ritzwoller M H,Zheng Y,Shen W S,Levshin A L,Xie Z J. 2012. A synoptic view of the distribution and connecti-vity of the mid-crustal low velocity zone beneath Tibet[J]. J Geophys Res,117(B4):B04303 doi: 10.1029/2011JB008810
Ye Z,Gao R,Li Q S,Zhang H S,Shen X Z,Liu X Z,Gong C. 2015. Seismic evidence for the North China plate underthrus-ting beneath northeastern Tibet and its implications for plateau growth[J]. Earth Planet Sci Lett,426:109–117
Yin A,Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annu Rev Earth Planet Sci,28(1):211–280
Zhang P Z,Shen Z K,Wang M,Gan W J,Bürgmann R,Molnar P,Wang Q,Niu Z J,Sun J Z,Wu J C,Sun H R,You X Z. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology,32(9):809–812
Zhang Q,Sandvol E,Ni J,Yang Y J,Chen Y J. 2011. Rayleigh wave tomography of the northeastern margin of the Tibetan Pla-teau[J]. Earth Planet Sci Lett,304(1/2):103–112
Zhao D P,Hasegawa A,Horiuchi S. 1992. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan[J]. J Geophys Res,97(B13):19909–19928
Zhao D P,Hasegawa A,Kanamori H. 1994. Deep structure of Japan subduction zone as derived from local,regional,and teleseismic events[J]. J Geophys Res,99(B11):22313–22329
Zhao D P. 2015. Multiscale Seismic Tomography[M]. New York: Springer: 304.
Zhao L F,Xie X B,He J K,Tian X B,Yao Z X. 2013. Crustal flow pattern beneath the Tibetan Plateau constrained by regional Lg-wave Q tomography[J]. Earth Planet Sci Lett,383:113–122
Zheng D,Li H Y,Shen Y,Tan J,Ouyang L B,Li X F. 2016. Crustal and upper mantle structure beneath the northeastern Tibetan Plateau from joint analysis of receiver functions and Rayleigh wave dispersions[J]. Geophys J Int,204(1):583–590
-
期刊类型引用(2)
1. 王少坤,吕义清,陈燕. 近断层煤层开采的采空区地震动力响应及其对地表的影响. 矿业研究与开发. 2024(02): 96-102 . 百度学术
2. 许华南,张洋,黄清云,许美娟. 出平面波作用下地下复杂衬砌结构的地震动研究. 地震工程与工程振动. 2019(06): 154-159 . 百度学术
其他类型引用(6)