Seismic finite source and its significance to earthquake early warning system(EEWS)
-
摘要: 本文通过多个震例的假定情形,讨论了地震破裂的有限性对地震早期预警系统布局设计的重要意义。分析结果认为,地震早期预警系统对地震减灾所能发挥的作用要远大于传统地震学视角下的预期。该观点深化了目前所认为的预警台站应该适当考虑非均匀布设的认识,强调在发生较大地震时,近断层区域密集布设的预警台站可能会使地震早期预警系统更加有效。Abstract: Finite size of an earthquake rupture, one of the key concepts in modern seismology, has significant implication for the design of an earthquake early warning system (EEWS). We discussed this issue by scenario earthquake cases, arguing that an EEWS has the potential to make much greater contribution to the reduction of earthquake disasters which is far beyond the expectation in the view of traditional seismology. The discussion deepens the present understanding of the EEWS design which does not aim at a homogeneous deployment, stressing that near-fault denser earthquake early warning station deployment may make the EEWS much more effective during great earthquakes.
-
Keywords:
- earthquake early warning /
- seismic finite source /
- blind zone /
- modern seismology
-
① 藤绳幸雄。2008。2008年四川省地震での緊急地震速報による災害軽減効果(推定)。个人通信。
-
图 1 世界范围内的多次强震在假定预警情形下的震源区走滑、极震区MMI和理论“盲区”空间位置分布。图(c)仅采用了USGS (2004)发布的断层面范围
(a) 2001年秘鲁MW8.4地震;(b) 2003年日本MW8.3地震;(c) 2004年印度尼西亚MW9.1地震;(d) 2005年印度尼西亚MW8.6地震;(e) 2010年智利MW8.0地震;(f) 2011年日本MW9.1地震;(g) 2014年智利MW8.2地震;(h) 2015年智利MW8.3地震
Figure 1. Spatial distribution of rupture slip,maximum intensity of MMI and “blind zone” of scenarios listed in Table 1. Fig. (c) only shows the extent of rupture released by USGS (2004)
(a) MW8.4 Peru earthquake in 2001;(b) MW8.3 Japan earthquake in 2003;(c) MW9.1 Indonesia earthquake in 2004;(d) MW8.6 Indonesia earthquake in 2005;(e) MW8.0 Chile earthquake in 2010;(f) MW9.1 Japan earthquake in 2011;(g) MW8.2 Chile earthquake in 2014;(h) MW8.3 Chile earthquake in 2015
表 1 2000年1月1日—2017年4月1日世界范围内MW≥8.0地震列表(USGS,2017)
Table 1 The catalog for global earthquakes with MW≥8.0 from January 1,2000 to April 1,2017(USGS,2017)
发震时间(UTC) 地区 纬度 经度 震源
深度/kmMW 盲区
半径/km年−月−日 时:分:秒 2000−11−16 04:54:56 巴布亚新几内亚 3.980°S 152.169°E 33.0 8.0 – 2001−06−23 20:33:14 秘鲁(图 1a) 16.265°S 73.641°W 33.0 8.4 67.8 2003−09−25 19:50:06 日本(图 1b) 41.815°N 143.910°E 27.0 8.3 52.3 2004−12−26 00:58:53 印度尼西亚(图 1c) 3.295°N 95.982°E 30.0 9.1 65.4 2005−03−28 16:09:36 印度尼西亚(图 1d) 2.085°N 97.108°E 30.0 8.6 264.7 2010−02−27 06:34:11 智利(图 1e) 36.122°S 72.898°W 22.9 8.0 35.1 2011−03−11 05:46:24 日本(图 1f) 38.297°N 142.373°E 29.0 9.1 62.4 2014−04−01 23:46:47 智利(图 1g) 19.610°S 70.769°W 25.0 8.2 70.0 2015−09−16 22:54:32 智利(图 1h) 31.573°S 71.674°W 22.4 8.3 80.3 -
李佳威,吴忠良. 2016. 地震预警系统的“盲区”控制问题:以首都圈地震预警原型系统为例[J]. 中国地震,32(4):584–594. doi: 10.3969/j.issn.1001-4683.2016.04.002 Li J W,Wu Z L. 2016. Controlling the ‘blind zone’ of an earthquake early warning system (EEWS):A case study of the Beijing Capital Circle prototype EEWS[J]. Earthquake Research in China,32(4):584–594 (in Chinese).
刘辰. 2014. 地震预警模式及预警能力分析方法研究[D]. 北京: 中国地震局地球物理研究所: 1–68. Liu C. 2014. Research of Earthquake Early Warning Mode and Capability Assessment of Earthquake Early Warning[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 1–68 (in Chinese).
许力生,陈运泰. 2002. 震源时间函数与震源破裂过程[J]. 地震地磁观测与研究,23(6):1–8. doi: 10.3969/j.issn.1003-3246.2002.06.001 Xu L S,Chen Y T. 2002. Source time function and rupture process of earthquake[J]. Seismological and Geomagnetic Observation and Research,23(6):1–8 (in Chinese).
杨陈,郭凯,张素灵,黄志斌. 2015. 中国地震台网现状及其预警能力分析[J]. 地震学报,37(3):508–515. Yang C,Guo K,Zhang S L,Huang Z B. 2015. Status quo of China earthquake networks and analyses on its early warning capacity[J]. Acta Seismologica Sinica,37(3):508–515 (in Chinese).
张国民, 傅征祥, 桂燮泰. 2001. 地震预报引论[M]. 北京: 科学出版社: 366–399. Zhang G M, Fu Z X, Gui X T. 2001. Introduction to Earthquake Prediction[M]. Beijing: Science Press: 366–399 (in Chinese).
Aki K, Richards P G. 1980. Quantitative Seismology: Theory and Methods[M]. San Francisco: W H Freeman Co: 1–932.
Aki K. 1984. Asperities,barriers,characteristic earthquakes and strong motion prediction[J]. J Geophys Res,89:5867–5872. doi: 10.1029/JB089iB07p05867
Archuleta R J. 1984. A faulting model for the 1979 Imperial Valley earthquake[J]. J Geophys Res,89(B6):4559–4585. doi: 10.1029/JB089iB06p04559
Backus G E. 1977. Interpreting the seismic glut moments of total degree two or less[J]. Geophys J Int,51(1):1–25. doi: 10.1111/j.1365-246X.1977.tb04187.x
Benioff H. 1955. Mechanism and strain characteristics of the White Wolf fault as indicated by the aftershock sequence[J]. Calif Div Mines Bull,171:199–202.
Böse M,Felizardo C,Heaton T H. 2015. Finite-fault rupture detector (FinDer):Going real-time in Californian ShakeAlert warning system[J]. Seismol Res Lett,86(6):1692–1704. doi: 10.1785/0220150154
Böse M,Smith D E,Felizardo C,Meier M A,Heaton T H,Clinton J F. 2018. FinDer v.2:Improved real-time ground-motion predictions for M2 -M9 with seismic finite-source characterization[J]. Geophys J Int,212(1):725–742. doi: 10.1093/gji/ggx430
Crowell B W,Schmidt D A,Bodin P,Vidale J E,Gomberg J,Hartog J R,Kress V C,Melbourne T I,Santillan M,Minson S E,Jamison D G. 2016. Demonstration of the Cascadia G-FAST geodetic earthquake early warning system for the Nisqually,Washington,earthquake[J]. Seismol Res Lett,87(4):930–943. doi: 10.1785/0220150255
Das S. 2007. The need to study speed[J]. Science,317(5840):905–906. doi: 10.1126/science.1142143
Das S,Aki K. 1977. Fault plane with barriers:A versatile earthquake model[J]. J Geophys Res,82(36):5658–5670. doi: 10.1029/JB082i036p05658
GCMT. 2006. Global CMT web page[EB/OL]. [2018−03−19]. http://www.globalcmt.org.
Grapenthin R,Johanson I A,Allen R M. 2014. Operational real-time GPS-enhanced earthquake early warning[J]. J Geophys Res,119(10):7944–7965. doi: 10.1002/2014JB011400
Haskell N A. 1964. Total energy and energy spectral density of elastic wave radiation from propagating faults[J]. Bull Seismol Soc Am,54(6A):1811–1841.
Haskell N A. 1966. Total energy and energy spectral density of elastic wave radiation from propagating faults,part Ⅱ :A statistical source model[J]. Bull Seismol Soc Am,56(1):125–140.
Haskell N A. 1969. Elastic displacements in the near-field of a propagating fault[J]. Bull Seismol Soc Am,59(2):865–908.
Heaton T H. 1990. Evidence for and implications of self-healing pulses of slip in earthquake rupture[J]. Phys Earth Planet Inter,64(1):1–20. doi: 10.1016/0031-9201(90)90002-F
Ji C,Wald D J,Helmberger D V. 2002. Source description of the 1999 Hector Mine,California,earthquake,part Ⅰ :Wavelet domain inversion theory and resolution analysis[J]. Bull Seismol Soc Am,92(4):1192–1207. doi: 10.1785/0120000916
Kanamori H,Stewart G S. 1978. Seismological aspects of the Guatemala earthquake of February 4,1976[J]. J Geophys Res,83(B7):3427–3434. doi: 10.1029/JB083iB07p03427
Kikuchi M,Kanamori H. 1982. Inversion of complex body waves[J]. Bull Seismol Soc Am,72(2):491–506.
Kikuchi M,Kanamori H. 1986. Inversion of complex body waves: Ⅱ[J]. Phys Earth Planet Int,43(3):205–222. doi: 10.1016/0031-9201(86)90048-8
Kikuchi M,Kanamori H. 1991. Inversion of complex body waves: Ⅲ[J]. Bull Seismol Soc Am,81:2335–2350.
Kuyuk H S,Allen R M. 2013. Optimal seismic network density for earthquake early warning:A case study from California[J]. Seismol Res Lett,84(6):946–954. doi: 10.1785/0220130043
Lay T, Kanamori H. 1981. An asperity model of large earthquake sequences[G]//Earthquake Prediction: An International Review. Washington: American Geophysical Union: 579–592.
Lay T,Kanamori H,Ruff L J. 1982. The asperity model and the nature of large subduction zone earthquakes[J]. Earthquake Pred Res,1:3–71.
Ma X J, Wu Z L, Peng H S, Ma T F. 2011. Challenging the limit of EEW: A scenario of EEWS application based on the lessons of the 2008 Wenchuan earthquake[G]//Advances in Geosciences. New Jersey: World Scientific, 31: 11–22.
Mai P M,Schorlemmer D,Page M T,Ampuero J P,Asano K,Causse M,Custodio S,Fan W Y,Festa G,Galis M,Gallovic F,Imperatori W,Käser M,Malytskyy D,Okuwaki R,Pollitz F,Passone L,Razafindrakoto H N T,Sekiguchi H,Song S G,Somala S N,Thingbaijam K K S,Twardzik C,van Driel M,Vyas J C,Wang R J,Yagi Y,Zielke O. 2016. The earthquake-source inversion validation (SIV) project[J]. Seismol Res Lett,87(3):690–708. doi: 10.1785/0220150231
Minson S E,Murray J R,Langbein J O,Gomberg J S. 2014. Real-time inversions for finite fault slip models and rupture geometry based on high-rate GPS data[J]. J Geophys Res,119(4):3201–3231. doi: 10.1002/2013JB010622
Ruff L,Kanamori H. 1983. The rupture process and asperity distribution of three great earthquakes from long-period diffracted P-waves[J]. Phys Earth Planet Int,31(3):202–230. doi: 10.1016/0031-9201(83)90099-7
Ruff L J. 1987. Tomographic imaging of seismic sources[G]//Seismic Tomography: With Applications in Global Seismology and Exploration Geophysics. Dordrecht: Reidel Publishing Company: 339–361.
Strauss J A,Allen R M. 2016. Benefits and costs of earthquake early warning[J]. Seismol Res Lett,87(3):765–772. doi: 10.1785/0220150149
USGS. 2004. Significant earthquakes[EB/OL]. [2004−12−26]. https://earthquake.usgs.gov/earthquakes/eventpage/official20041226005853450_30/executive.
USGS. 2008. M7.9 - eastern Sichuan, China[EB/OL]. [2018−03−19]. https://earthquake.usgs.gov/earthquakes/eventpage/usp000g650#executive.
USGS. 2017. Significant earthquakes[EB/OL]. [2018−03−19]. https://earthquake.usgs.gov/earthquakes/browse/significant.php.
Yamada M. 2014. Estimation of fault rupture extent using near-source records for earthquake early warning[G]//Early Warning for Geological Disasters. Heidelberg: Springer: 29–47.