陕西韩城台巨幅地倾斜异常的成因分析

杨小林, 王军, 王希彬, 王新, 窦玛丽, 危自根

杨小林,王军,王希彬,王新,窦玛丽,危自根. 2018. 陕西韩城台巨幅地倾斜异常的成因分析. 地震学报,40(6):760−773. doi:10.11939/jass.20180025. DOI: 10.11939/jass.20180025
引用本文: 杨小林,王军,王希彬,王新,窦玛丽,危自根. 2018. 陕西韩城台巨幅地倾斜异常的成因分析. 地震学报,40(6):760−773. doi:10.11939/jass.20180025. DOI: 10.11939/jass.20180025
Yang X L,Wang J,Wang X B,Wang X,Dou M L,Wei Z G. 2018. What causes the remarkable tilt anomalies at the Hancheng geodynamic observatory in Shaanxi Province? Acta Seismologica Sinica40(6):760−773. doi:10.11939/jass.20180025. DOI: 10.11939/jass.20180025
Citation: Yang X L,Wang J,Wang X B,Wang X,Dou M L,Wei Z G. 2018. What causes the remarkable tilt anomalies at the Hancheng geodynamic observatory in Shaanxi Province? Acta Seismologica Sinica40(6):760−773. doi:10.11939/jass.20180025. DOI: 10.11939/jass.20180025

陕西韩城台巨幅地倾斜异常的成因分析

基金项目: 国家重点研发计划“深地资源勘查开采”重点专项(2016YFC0600402)和中国地震局2017年度震情跟踪课题(2017010206)联合资助
详细信息
    通讯作者:

    杨小林: e-mail:yang-xiaolin123@163.com

  • 中图分类号: P315.72+5

What causes the remarkable tilt anomalies at the Hancheng geodynamic observatory in Shaanxi Province?

  • 摘要: 巨幅地倾斜异常既可能是地震前兆异常信息,也有可能是仪器问题或环境干扰所致的异常信号. 有效地厘清其性质,对地震前兆异常的及时识别与科学判定至关重要. 陕西韩城台金属水平摆EW分量自2010年以来连续两次出现巨幅东倾和西倾异常,幅度分别约达140″和180″,该巨幅地倾斜异常产生的根源至今尚未被厘清. 鉴于此,本研究依据韩城台所在区域的水文、构造和地震活动等特征,提出并分析了地下水动力变化、韩城断裂慢滑移和地壳应力场变动等3种可能的成因机制. 结果表明,第一种成因机制难以有效地解释巨幅地倾斜异常,第二和第三种成因机制则具有一定的可能性,但证据还不够充分. 因此,更可靠的物理解释尚需更多的观测和更深入的研究. 尽管本文未能给出该巨幅异常的真正成因,但所采取的分析方法可为今后巨幅地倾斜异常性质的判定工作提供有益的参考.
    Abstract: The remarkable tilt anomalies could be the earthquake precursors, but may also be caused by instrumental factors and environmental disturbances. Thus, the question arises on how to distinguish the earthquake precursors from the non-tectonic factors, which is very important to effectively and reasonably detect earthquake precursors. Since 2010, two remarkable tilt anomalies have been recorded by metallic horizontal pendulums in E-W component at the Hancheng observatory in Shannxi Province, and the amount of east- and west-ward tilt approxi-mately reach up to 140″ and 180″, respectively, but these two remarkable tilt anomalies have not been reasonably and clearly interpreted till now. Here, we propose and compare three different causal mechanisms possibly responsible for these anomalous phenomena according to the regional hydrological, tectonic and seismicity characteristics, i.e. ① hydrodynamics-induced surface tilt, ② a long-term slow slip event on the northeastern segment of the Hancheng fault, and ③ variations of the regional tectonic stress field during the anomalous period. We then theoretically calculated the poroelastic deformation and the fault slip amount, and finally inversed the focal mechanism solutions of 85 earthquakes (2.0≤ML≤4.8) that occurred between 2008 and 2015 with the aim of determining the regional stress field changes (35°N—36°N, 110°E—111°E) in the crust. Our results show that the first possibility can be shown unlikely, but it is difficult to rule out the second and the third possibility according to the current eviden-ce. To further prove and confirm the causal relationship between deformation of tectonic origin and the anomalies, more comprehensive tilt and crustal deformation measurements are necessary in the Hancheng region in the future, furthermore, more intensive researches are also needed to reveal and determine the causal mechanisms of these anomalies. Unfortunately, we fail to find the real causal mechanism, but the approaches used in this study could be helpful to investigate the causal origin of remarkable anomalies recorded by tiltmeters in the near future.
  • 图  1   研究区域及台站概况

    (a) 区域构造背景、台站分布、历史强震及2008—2016年ML≥2.0地震分布;(b) 韩城台、龙门水文站、韩城断裂NE段和黄河的地理位置;(c) 韩城台及韩城断裂剖面图;(d) NS和EW分量金属水平摆;(e) 韩城台及周边地区与黄河之间地下水动力示意图

    Figure  1.   Map view of the investigation region and stations containing regional tectonic setting,earthquake events,hydrology and station locations

    (a) Regional tectonic setting,the distribution of ML≥2.0 events during the period from 2008 to 2016 and significant historical earthquakes;(b) Distribution of the Longmen hydrological station,Hancheng station,NE segment of Hancheng fault and Yellow River;(c) Picture showing the Hancheng station and Hancheng fault plane;(d) Picture of NS and EW components of the metallic horizontal pendulums;(e) Conceptual cartoon illustrating the groundwater hydrodynamics between Hancheng station and Yellow River

    图  2   韩城台地倾斜观测曲线

    (a) NS分量变化;(b) EW分量巨幅异常变化;(c) 地倾斜的矢量变化

    Figure  2.   The secular ground tilt recorded by Hancheng station

    (a) Tilt variations in NS component;(b) Remarkable tilt anomalies in EW component;(c) The hodograph showing the changes of tilt vector

    图  3   经验模态分解方法提取的地倾斜周年变化信号(a)和观测室气温变化(b)

    Figure  3.   Annual variations of tilt retrieved by EMD (a) and room temperature changes recorded at Hancheng observatory (b)

    图  4   1977年黄河特大洪峰引起的巨幅地倾斜

    (a) 龙门水文站记录的黄河特大洪峰;(b) 韩城台记录到的SE向巨幅地倾斜

    Figure  4.   Remarkable ground tilt induced by the great flood peak of the Yellow River in 1977

    (a) The 1977 great flood peak of the Yellow River recorded at Longmen hydrological station;(b) SE-ward tilt recorded at Hancheng station

    图  5   黄河水位(a)、S34井水位(b)及运城气象站(c,d)观测的降雨变化

    Figure  5.   Hydrology and rainfall information of Hancheng station and its adjacent regions

    (a) The water level of Yellow River recorded at Longmen hydrological station since 2007;(b) Changes in groundwater level in S34 well;(c) Time series of cumulative annual and daily precipitation observed at Yuncheng meteorological station;(d) Cumulative daily and detrended time series from 2001 to 2017

    图  6   断裂慢滑移引起的EW分量的理论倾斜场

    Figure  6.   Theoretical ground tilt in EW component induced by slow slip event on fault

    图  7   巨幅地倾斜异常前后研究区内85次2.0≤ML≤4.8地震的震源机制解及应力场反演结果

    (a) 2008年10月10日至2010年2月26日研究区内28次地震的震源机制解;(b) 2010年3月14日至2015年9月15日研究区内57次地震的震源机制解;(c) 2008年10月10日至2010年2月26日研究区内应力张量;(d) 2010年3月14日至2015年9月15日研究区内应力张量

    Figure  7.   Focal mechanism solutions for the 85 earthquakes with 2.0≤ML≤4.8 and stress field inversion in the studied area before and after the remarkable tilt anomalies

    (a) Focal mechanism solutions for the 28 earthquakes from Octorber 10,2018 to February 26,2010;(b) Focal mechanism solutions for the 57 earthquakes from March 14,2010 to September 15,2015;(c) The principal stress axes for the period from October 10,2008 to February 26,2010;(d) The principal stress axes for the period from March 14,2010 to September 15,2015

    表  1   韩城台概况

    Table  1   General information of Hancheng station

    台基
    岩性
    海拔
    /m
    观测室情况 金属水平摆仪器参数 仪器支墩
    材质及尺寸
    覆盖层
    厚度/m
    室内气温
    年变幅/℃
    室内气温
    日变幅/℃
    相对
    湿度
    仪器
    类型
    记录
    方式
    折合摆长
    /mm
    使用周期
    /s
    奥陶系
    灰岩
    460 0 17—18 ≤0.5 90% JB 光记录 NS分量:25.2
    EW分量:25.4
    18—19 混凝土,
    高0.7 m
    下载: 导出CSV
  • 薄万举. 2010. 形变异常与干扰关系的再认识[J]. 大地测量与地球动力学,30(1):5–8.

    Bo W J. 2010. Study on relation between crustal deformation anomaly and disturbances[J]. Journal of Geodesy and Geodyna-mics,30(1):5–8 (in Chinese).

    高伯贤,高雪. 2011. 韩城矿区南部奥陶系灰岩岩溶水特征[J]. 陕西煤炭,30(1):43–45.

    Gao B X,Gao X. 2011. Characteristics of Ordovician limestone karst water in southern Hancheng mining area[J]. Shaanxi Coal,30(1):43–45 (in Chinese).

    郭平战. 2015. 韩城矿区岩溶形成机理及其水文地质特征[J]. 地下水,37(5):54–57.

    Guo P Z. 2015. Karst formation mechanism of karst in Hancheng mining area and its hydrogeological characteristics[J]. Ground Water,37(5):54–57 (in Chinese).

    何毅. 2012. 近60年来渭河流域气候变化研究[D]. 杨凌: 西北农林科技大学: 16–37.

    He Y. 2012. Climate Change of Wei River Basin in Last 60 Years[D]. Yangling: Northwest A&F University: 16–37 (in Chinese).

    黄辅琼,陈颙,白长清,张晶,晏锐,杨明波,兰从欣,张晓东,江在森. 2005. 八宝山断层的变形行为与降雨及地下水的关系[J]. 地震学报,27(6):637–646.

    Huang F Q,Chen Y,Bai C Q,Zhang J,Yan R,Yang M B,Lan C X,Zhang X D,Jiang Z S. 2005. The correlation of deformation behavior with precipitation and groundwater of the Babaoshan fault in Beijing[J]. Acta Seisomogical Sinica,27(6):637–646 (in Chinese).

    扈桂让,李自红,闫小兵,赵晋泉,曾金艳,郭瑾. 2017. 韩城断裂晚第四纪活动性研究[J]. 地震地质,39(1):206–217.

    Hu G R,Li Z H,Yan X B,Zhao J Q,Zeng J Y,Guo J. 2017. The study of Late Quaternary activity of Hancheng fault[J]. Seismology and Geology,39(1):206–217 (in Chinese).

    陆一锋,徐鸣洁,王良书,米宁,李华,于大勇. 2012. 鄂尔多斯东南缘地区的地壳结构[J]. 科学通报,57(1):59–64.

    Lu Y F,Xu M J,Wang L S,Mi N,Li H,Yu D Y. 2011. Crustal structure of the southeastern margin of the Ordos block[J]. Chinese Science Bulletin,56(35):3854–3859. doi: 10.1007/s11434-011-4847-7

    牛安福,顾国华,曹景鹏,张凌空,闫伟,赵静,吉平. 2013. 芦山MS7.0地震前远、近场形变时空演化特征研究[J]. 地震学报,35(5):670–680.

    Niu A F,Gu G H,Cao J P,Zhang L K,Yan W,Zhao J,Ji P. 2013. On the preseismic deformation changes prior to the Lushan MS7.0 earthquake[J]. Acta Seismologica Sinica,35(5):670–680 (in Chinese).

    水利部黄河水利委员会. 2017. 水情信息[EB/OL]. [2018–01–21]. http://61.163.88.227:8006/hwsq.aspx.

    Yellow River Conservancy Commission of the Ministry of Water Resources. 2017. The information of water[EB/OL]. [2018–01–21]. http://61.163.88.227:8006/hwsq.aspx (in Chinese).

    吴富春,张鸿福,景北科,段锋,张义民. 1999. 陕西几例特殊的无震异常及其成因分析[J]. 西北地震学报,21(3):268–273.

    Wu F C,Zhang H F,Jing B K,Duan F,Zhang Y M. 1999. Study on some special aseismic precursory anomalies observed from Shaanxi seismic network and their causes[J]. Northwestern Seismological Journal,21(3):268–273 (in Chinese).

    田中豊. 1972. 地殼変動連続観測(長期変動と地震前駆変動)[C]//地震予知研究シンポジウム. 东京: 东京大学出版社: 35–44.

    Tanaka Y. 1972. Long-term crustal deformation and precursory variation in seismicity[C]//Proceedings of the Earthquake Prediction Research Symposium 1972. Tokyo: University of Tokyo Press: 35–44 (in Japanese).

    里嘉千茂. 1989. 伝播性歪に関する数値実験[J]. 測地学会誌,35(1):27–36.

    Sato K. 1989. Numerical experiments on strain migration[J]. Journal of the Geodetic Society of Japan,35(1):27–36 (in Japanese).

    内藤宏人,吉川澄夫. 1999. 地殻変動解析支援プログラムMICAP-Gの開発[J]. 地震,52(1):101–103.

    Naito H,Yoshikawa S. 1999. A program to assist crustal deformation analysis[J]. Journal of the Geodetic Society of Japan,52(1):101–103 (in Japanese).

    竹本修三, 和田安男, 伊藤潔, 福田洋一, 森井亙, 百瀬秀夫, 中村光邦. 2004. 地殻ひずみの観測に及ぼす局所的日照変化の影響—花山と立山観測室のデータ比較[R].京都大学防災研究所年報, 47(B): 725–734.

    Takemoto S, Wada Y, Ito K, Fukuda Y, Morii W, Momose H, Nakamura M. 2004. Effect of local sunshine changes upon crustal strain observations: Comparison of strain data obtained at Kwasan and Tateyama stations[R]. Disaster Prevention Research Institute Annuals, Kyoto University, 47(B): 725–734 (in Japanese).

    Agnew D C. 1986. Strainmeters and tiltmeters[J]. Rev Geophys,24(3):579–624. doi: 10.1029/RG024i003p00579

    Bilham R G,Beavan R J. 1979. Strains and tilts on crustal blocks[J]. Tectonophysics,52(1/2/3/4):121–138. doi: 10.1016/0040-1951(79)90216-6

    Braitenberg C,Nagy I. 2014. Illustrating the superposition of signals recorded by the Grotta Gigante pendulums with musical analogues[J]. Acta Carsol,43(1):139–147.

    Brimich L,Bednárik M,Bezák V,Kohút I,Bán D,Eper-Pápai I,Mentes G. 2016. Extensometric observation of Earth tides and local tectonic processes at the Vyhne station,Slovakia[J]. Contrib Geophys Geod,46(2):75–90. doi: 10.1515/congeo-2016-0006

    Bykov V G,Trofimenko S V. 2016. Slow strain waves in blocky geological media from GPS and seismological observations on the Amurian plate[J]. Nonlin Process Geophys,23(6):467–475. doi: 10.5194/npg-23-467-2016

    Caniven Y,Dominguez S,Soliva R,Peyret M,Cattin R,Maerten F. 2017. Relationships between along-fault heterogeneous normal stress and fault slip patterns during the seismic cycle:Insights from a strike-slip fault laboratory model[J]. Earth Planet Sci Lett,480:147–157. doi: 10.1016/j.jpgl.2017.10.009

    Cicerone R D,Ebel J E,Britton J. 2009. A systematic compilation of earthquake precursors[J]. Tectonophysics,476(3/4):371–396.

    Detournay E, Cheng A H D. 1993. Fundamental of Poroelasticity in Comprehensive Rock Engineering: Principles, Practice & Projects, Vol.2[M]. Oxford: Pergamon Press: 127–128.

    Dragoni M,Bonafede M,Boschi E. 1984. On the interpretation of slow ground deformation precursory to the 1976 Friuli earthquake[J]. Pure Appl Geophys,122(6):781–792.

    Eper-Pápai I,Mentes G,Kis M,Koppán A. 2014. Comparison of two extensometric stations in Hungary[J]. J Geodyn,80:3–11. doi: 10.1016/j.jog.2014.02.007

    Evans K,Wyatt F. 1984. Water table effects on the measurement of earth strain[J]. Tectonophysics,108(3/4):323–337.

    Fréchet J,Rivera L. 2012. Horizontal pendulum development and the legacy of Ernst von Rebeur-Paschwitz[J]. J Seismol,16(2):315–343. doi: 10.1007/s10950-011-9272-5

    Fukuyama E. 2015. Dynamic faulting on a conjugate fault system detected by near-fault tilt measurements[J]. Earth Planets Space,67:38. doi: 10.1186/s40623-015-0207-1

    Gershenzon N I,Bykov V G,Bambakidis G. 2009. Strain waves,earthquakes,slow earthquakes,and afterslip in the framework of the Frenkel-Kontorova model[J]. Phys Rev E,79(5):056601. doi: 10.1103/PhysRevE.79.056601

    Goulty N R. 1976. Strainmeters and tiltmeters in geophysics[J]. Tectonophysics,34(3):245–256.

    Hao M,Wang Q L,Cui D X,Liu L W,Zhou L. 2016. Present-day crustal vertical motion around the Ordos block constrained by precise leveling and GPS data[J]. Surv Geophys,37(5):923–936. doi: 10.1007/s10712-016-9375-1

    Harada M,Furuzawa T,Teraishi M,Ohya F. 2003. Temporal and spatial correlations of the strain field in tectonic active region,southern Kyusyu,Japan[J]. J Geodyn,35:471–481. doi: 10.1016/S0264-3707(03)00008-5

    Hardebeck J L,Shearer P M. 2002. A new method for determining first-motion focal mechanisms[J]. Bull Seismol Soc Am,92(6):2264–2276. doi: 10.1785/0120010200

    Harrison J C,Herbst K. 1977. Thermoelastic strains and tilts revised[J]. Geophys Res Lett,4(11):535–537. doi: 10.1029/GL004i011p00535

    Hisz D B,Murdoch L C,Germanovich L N. 2013. A portable borehole extensometer and tiltmeter for characterizing aquifers[J]. Water Resour Res,49(12):7900–7910. doi: 10.1002/wrcr.20500

    Huang N E,Shen Z,Long S R,Wu M C,Shih H H,Zheng Q,Yen N C,Tung C C,Liu H H. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc Roy Soc A Math Phys Eng Sci,454(1971):903–995. doi: 10.1098/rspa.1998.0193

    Ishii H,Sato T,Takagi A. 1980. Characteristics of strain migration in the northeastern Japan Arc (II):Amplitude characteris-tics[J]. J Geod Soc Japan,26(1):17–25.

    Jahr T,Jentzsch G,Gebauer A,Lau T. 2008. Deformation,seismicity,and fluids:Results of the 2004/2005 water injection experiment at the KTB/Germany[J]. J Geophys Res,113(B11):B11410. doi: 10.1029/2008JB005610

    Kartvelishvili K Z. 2010. Investigation of deformational processes in Tbilisi underground earth-tidal laboratory[J]. J Georgian Geophys Soc,Phys Atmos,Ocean and Space Plasma,14(B):197–201.

    Kawai K,Sekine S,Fuji N R,Geller R J. 2009. Waveform inversion for D″ structure beneath northern Asia using Hi-net tiltmeter data[J]. Geophys Res Lett,36(20):L20314. doi: 10.1029/2009GL039651

    Kimura T,Obara K,Kimura H,Hirose H. 2011. Automated detection of slow slip events within the Nankai subduction zone[J]. Geophys Res Lett,38(1):L01311. doi: 10.1029/2010GL045899

    Linde A T,Gladwin M T,Johnston M J S,Gwyther R L,Bilham R G. 1996. A slow earthquake sequence on the San Andreas fault[J]. Nature,383(6595):65–68. doi: 10.1038/383065a0

    Lindsey E O,FialkoY,Bock Y,Sandwell D T,Bilham R. 2014. Localized and distributed creep along the southern San Andreas fault[J]. J Geophys Res,119(10):7909–7922. doi: 10.1002/2014JB011275

    Martínez-Garzón P,Kwiatek G,Ickrath M,Bohnhoff M. 2013. MSATSI:A MATLAB package for stress inversion combining solid classic methodology,a new simplified user-handling and a visualization tool[J]. Seismol Res Lett,85(4):896–904.

    Mentes G. 2008. Observation of recent tectonic movements by extensometers in the Pannonian Basin[J]. J Geodyn,45(4/5):169–177.

    Mentes G. 2017. The role of recent tectonics and hydrological processes in the evolution of recurring landslides on the Danube’s high bank in Dunaföldvár,Hungary[J]. J Geodyn,290:200–210.

    Michelson A A. 1914. Preliminary results of measurements of the rigidity of the earth[J]. Astrophys J,39:105–138. doi: 10.1086/142058

    NOAA. 2017. Climate data online[EB/OL]. [2017−10−12]. https://www.ncdc.noaa.gov/cdo-web/.

    Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bull Seismol Soc Am,74(5):1135–1154.

    Rikitake T. 1987. Earthquake precursors in Japan:Precursor time and detectability[J]. Tectonophysics,136(3/4):265–282.

    Rikitake T. 1988. Earthquake prediction:An empirical approach[J]. Tectonophysics,148(3/4):195–210.

    Schuite J,Longuevergne L,Bour O,Burbey T J,Boudin F,Lavenant N,Davy P. 2017. Understanding the hydromechanical behavior of a fault zone from transient surface tilt and fluid pressure observations at hourly time scales[J]. Water Resour Res,53(12):10558–10582. doi: 10.1002/2017WR020588

    Sgrigna V,D'ambrosio C,Yanovskaya T B. 2002. Numerical modeling of preseismic slow movements of crustal blocks caused by quasi-horizontal tectonic forces[J]. Phys Earth Planet Int,129(3/4):313–324.

    Stein R S,Barka A A,Dieterich J H. 1997. Progressive failure on the North Anatolian fault since 1939 by earthquake stress trig-gering[J]. Geophys J Int,128(3):594–604. doi: 10.1111/gji.1997.128.issue-3

    Takemoto S. 1991. Some problems on detection of earthquake precursors by means of continuous monitoring of crustal strains and tilts[J]. J Geophys Res,96(B6):10377–10390. doi: 10.1029/91JB00239

    Timofeev V Y,Ardyukov D G,Boyko E V,Gribanova E I,Semibalamut V M,Timofeev A V,Yaroshevich A V. 2012. Strain and displacement rates during a large earthquake in the South Baikal region[J]. Russ Geol Geophys,53(8):798–816. doi: 10.1016/j.rgg.2012.06.007

    Timofeev V Y,Masalsky O K,Ardyukov D G,Timofeev A V. 2015. Local deformation and rheological parameters by measurements in Talaya station gallery (Baikal region)[J]. Geodyn Tectonophys,6(2):241–253. doi: 10.5800/GT-2015-6-2-0179

    Tsai V C. 2011. A model for seasonal changes in GPS positions and seismic wave speeds due to thermoelastic and hydrologic variations[J]. J Geophys Res,116(B4):B04404. doi: 10.1029/2010JB008156

    Wang H F. 2000. Theory of Linear Poroelasticity[M]. Princeton: Princeton University Press: 265–266.

    Yamazaki K. 2013. An attempt to correct strain data measured with vault-housed extensometers under variations in temperature[J]. Tectonophysics,599:89–96. doi: 10.1016/j.tecto.2013.04.001

    Zadro M,Braitenberg C. 1999. Measurements and interpretations of tilt-strain gauges in seismically active areas[J]. Earth Sci Rev,47(3):151–187.

图(7)  /  表(1)
计量
  • 文章访问数:  1933
  • HTML全文浏览量:  1113
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-23
  • 修回日期:  2018-04-18
  • 网络出版日期:  2018-08-19
  • 发布日期:  2018-10-31

目录

    /

    返回文章
    返回