2017年西藏米林MS6.9地震余震序列重定位和b值时空分布特征

韩佳东, 杨建思, 王伟平

韩佳东, 杨建思, 王伟平. 2019: 2017年西藏米林MS6.9地震余震序列重定位和b值时空分布特征. 地震学报, 41(2): 169-180. DOI: 10.11939/jass.20180077
引用本文: 韩佳东, 杨建思, 王伟平. 2019: 2017年西藏米林MS6.9地震余震序列重定位和b值时空分布特征. 地震学报, 41(2): 169-180. DOI: 10.11939/jass.20180077
Han Jiadong, Yang Jiansi, Wang Weiping. 2019: Relocation of the aftershock sequence of Milin MS6.9 earthquake in 2007 and spatio-temporal variation characteristics of b-value. Acta Seismologica Sinica, 41(2): 169-180. DOI: 10.11939/jass.20180077
Citation: Han Jiadong, Yang Jiansi, Wang Weiping. 2019: Relocation of the aftershock sequence of Milin MS6.9 earthquake in 2007 and spatio-temporal variation characteristics of b-value. Acta Seismologica Sinica, 41(2): 169-180. DOI: 10.11939/jass.20180077

2017年西藏米林MS6.9地震余震序列重定位和b值时空分布特征

基金项目: 国家自然科学基金项目(41874075)资助
详细信息
    通讯作者:

    杨建思: e-mail:yangjs@cea-igp.ac.cn

  • 中图分类号: P315.5

Relocation of the aftershock sequence of Milin MS6.9 earthquake in 2007 and spatio-temporal variation characteristics of b-value

  • 摘要: 本文采用双差定位方法对2017年西藏米林MS6.9地震的余震序列进行重定位,获得了较准确的余震空间分布。在此基础上,计算了米林地震震源区的b值空间分布,并结合前人资料研究了米林地震前后的b值变化。重定位结果显示:米林地震余震序列呈NW−SE向分布,主要分布在雅鲁藏布江大拐弯缝合带和比鲁构造岩片的北东边界,震源深度集中于3—20 km范围内。b值时间分布显示:米林地震震前震源区的b值降低,表明震前震源区存在较强的应力积累;地震后震源区的b值呈现跳跃式上升,反映出震源区应力释放,同时随时间的推移,b值逐渐趋于稳定。米林地震震源区的b值在0.52—1.35范围内变化,15 km深度以上b值在东、西方向上存在差异,15 km以下在东北、南西方向上存在差异,由此推测不同的b值分布与地下的结构特征有关,浅层的b值变化与震源区的破裂程度相关,深部变化则反映了不同构造单元的岩性差异。
    Abstract: The aftershock sequence of the Milin MS6.9 earthquake in Tibet in 2017 are relocated by double-difference algorithm in this paper. Based on the relocated results, the spatial distribution of b-value in the source region of Milin earthquake is obtained. Combining historical b-value data from previous researches, the temporal distribution of b-value in the studied area is also obtained. The relocation results show that the aftershock sequence of the Milin earthquake are distributed in NE−SE direction along the NE boundary of Indus-Yarlung Tsangpo big-turned suture and Bilu tectonic slice, most aftershocks are concentrated in 3−20 km depth. The temporal distribution of b-value shows before Milin earthquake b-value is lower than that in the year of 2008, indicating that the stress accumulation in the studied area is strong before Milin earthquake. After Milin earthquake, there was a step-rise of b-value, showing the releases of stress, and b-value tended to stable. b-value ranges in 0.52−1.35 in the source region of Milin earthquake, the b-value variation above the depth of 15 km is distributed along the east-west direction, and below 15 km along the NE−SW direction. Therefore, it is deduced that different b-value distribution represents different structure characteristics, i.e., the b-value variation of the shallow area is related to the degree of rupture in the source region, and the b-value variation of deep area reflects the lithology difference of different tectonic units.
  • 破坏性地震发生后,主要通过现场调查获取震害信息,这样获取的信息的精度和置信度均较高,然而破坏性地震的影响范围往往很大,现场调查存在工作量大、效率低、信息表达不直观等问题(柳稼航等,2004张志强等,2018)。鉴于遥感影像覆盖面积大、成本低,具有快速、宏观的特点,因此可作为获取震害信息的一种既经济又快捷的数据来源(王晓青等,2003Huang et al,2014)。经由高分辨率遥感影像提取的建筑物震害信息可为地震现场救援决策提供高效的数据支持(Turker,Cetinkaya,2005王龙等,2007)。 “十二五” 计划以来,我国陆续研制发射并投入使用了 “高分一号” (GF-1)、 “高分二号” (GF-2)和 “高分四号” (GF-4)卫星,极大地满足了我国对中高分辨率遥感数据的应用需求。随着国产卫星技术的发展,国产卫星产出的数据质量高、获取简单且成本较低,为防震减灾事业发展提供了强有力的支持。因此研究基于我国国产高分数据的建筑物震害信息提取方法,对提高震害信息获取速度和救援决策效率意义重大。

    近年来,研究人员依据建筑物震害特征,提出了多种建筑物震害信息提取方法(Turker,Sumer,2008Dong,Shan,2013叶昕等,2016),例如:Yamazaki等(2005)采用目视解译方法进行建筑物震害信息提取;翟永梅等(2015)赵妍等(2016)采用面向对象方法进行基于高分辨率遥感影像的建筑物震害信息提取;张景发等(20022017)就建筑物震害评估和多源遥感特征及机理予以分析;王晓青等(2015)借助遥感手段针对尼泊尔MS8.1地震的建筑物震害信息进行提取和分析。基于遥感影像的建筑物震害信息提取已有诸多成果,也具有很好的应用前景,然而由于该技术的复杂性,使其在现实中的应用受到局限,特别是信息提取的速率、精度及自动化程度等方面亟待提高。

    为此,本文拟以分辨率高、获取方便的国内高分卫星遥感影像为基础,考虑人机互补的优势,结合建筑物纹理和形态学特征,研究适用于我国高分卫星数据的建筑物震害信息提取方法,为地震应急决策、灾害损失评估及震后灾区恢复重建等工作服务。

    塔什库尔干塔吉克自治县,简称塔县,隶属新疆维吾尔自治区喀什地区。塔县位于帕米尔高原西部,西昆仑褶皱带的塔什库尔干隆起地带,海拔较高。塔县的地势由西南向东北倾斜,山脉自西南向东北延伸。

    2017年5月11日5时58分(北京时间),新疆喀什地区塔什库尔干塔吉克自治县(37.58°N,75.25°E)发生MS5.5地震,震源深度为8 km。该地震造成塔什库尔干县8人遇难、31人受伤。8名遇难者均在塔什库尔干乡库孜滚村,受该地震影响,库孜滚村的建筑物大面积倒塌毁坏,此地为塔县地震的极灾区,正是本文的研究区域。

    本文采用地震前后同系列卫星遥感数据,首先完成两景影像精确位置匹配,然后结合纹理和形态学特征方法进行建筑物信息提取,满足一定的精度要求;通过震前、震后建筑物变化检测分析,提取研究区倒塌建筑物的空间分布信息。

    图1给出了建筑物震害信息提取的技术路线图,技术路线包括以下几部分:

    图  1  建筑物震害信息提取的技术路线图
    Figure  1.  Technology route line of seismic damage information extraction

    1) 数据收集及预处理。收集研究区震前震后的高分遥感影像数据、数字高程模型(digital elevation model,缩写为DEM)数据、行政区划数据等,进行影像正射校正、几何校正、影像融合、影像重采样等预处理,完成震前、震后影像空间匹配;然后手动建立居住区为感兴趣区,缩小研究区范围。

    2) 纹理分析。采用灰度共生矩阵方法提取建筑物纹理信息,通过对比分析,确定能够突出建筑物信息的纹理特征图像。

    3) 二值化及形态学运算。对纹理特征图像进行密度分割,找到建筑物取值范围,进行二值化(林祥国,张继贤,2017),从而提取建筑物的空间分布信息;之后通过形态学运算优化建筑物形态。

    4) 精度评价。将通过人工识别的完整建筑物作为地面样本,计算信息提取的总分类精度,并且进行精度评价,人工修改误提、漏提的建筑物区域,使其达到精度要求,为建筑物震害信息提取提供精确数据支持。

    5) 建筑物震害信息提取。对震前、震后提取的建筑物空间分布信息进行变化检测,提取完全倒塌的建筑物空间分布信息。

    塔县地震发生后,为快速了解灾区灾情,新疆维吾尔自治区地震局应急遥感技术组联系新疆卫星遥感应用中心快速收集地震前后的高分遥感数据,便于快速进行震害信息遥感解译。所获数据为研究区震前2015年9月6日GF-1影像、震后2017年5月13日GF-2影像以及研究区DEM、县驻地、乡驻地、县界、乡界等数据。

    采用正射校正、几何校正、影像融合、影像重采样等方法对震前、震后遥感影像进行预处理,其中正射校正采用30 m DEM数据进行,几何校正以google影像为基础进行。为保证数据的解译效果,本文还进行了影像融合。为保证建筑物震害信息的解译精度,在数据预处理时对震前、震后影像进行几何精校正。由于震前、震后影像的空间分辨率不一致,为保证匹配精度,须将震前影像进行影像重采样,重采样数据的空间分辨率为1 m,然后进行几何精校正,校正误差小于0.5个像元,至此完成震前、震后的影像精确匹配。图2a图2b分别为预处理后研究区的震前GF-1影像和震后GF-2影像。

    图  2  研究区预处理后的GF卫星遥感影像图
    (a) 预处理后的震前GF-1影像图;(b) 预处理后的震后GF-2影像图;(c) 裁剪震后的GF-2居住区影像图
    Figure  2.  GF remote sensing images preprocessed in the studied area
    (a) GF-1 image before earthquake after pre-processing;(b) GF-2 image after earthquake after pre-processing;(c) Clip image of GF-2 residential area after the earthquake

    为提高建筑物震害信息遥感解译精度和效率,以居住区为目标,手动建立感兴趣区,裁剪研究区影像,减少数据范围及干扰信息。图2c为经过感兴趣区裁剪后的震后GF-2遥感影像图。

    倒塌建筑物和完好建筑物的纹理特征和结构不同:完好建筑物形状规则,房屋边缘纹理清晰;倒塌建筑物的形状和布局发生变化,影像中房屋建筑物破坏截面粗糙、破碎,形状不规则,房屋边缘模糊等。通过提取纹理信息可自动提取建筑物,通过震前、震后建筑物信息对比分析可识别研究区的倒塌建筑物。

    灰度共生矩阵法是较为流行的纹理分析方法,也是建筑物检测的最有效方法之一。灰度共生矩阵可以展现像素值在空间的相对位置。通过多种方法对灰度共生矩阵加权计算,可以得到一系列特征统计量来表征区域纹理。Haralick (1979)提出了14种特征统计量,常用的有均值、方差、同质性、对比度、非相似性、熵、角二阶矩、相关性等。

    灰度共生矩阵算法能较好地提取建筑物的空间分布信息,但提取结果存在建筑物边缘不平滑、小斑块噪声以及建筑物顶面有孔洞等问题。采用数学形态学方法进行数据处理(王光霞,杨培,2000翟辉琴,王明孝,2005欧阳平,张玉方,2009李金香等,2016),可以得到完整的建筑物顶面信息。

    数学形态学基本公式如下:

    当二值形态腐蚀时,

    $ {{A}}\Theta {{B }} {\text{=}} \{ {{x}}:{{B}} {\text{+}} {{x}} \subset {{A}}\} {\text{;}} $

    (1)

    当二值形态膨胀时,

    $ {{A}} \oplus {{B}} {\text{=}} {[{{{A}}^{\rm{c}}}\Theta \left( { - {{B}}} \right)]^{{c}}} {\text{;}} $

    (2)

    当二值形态开运算时,

    $ {{A}} \circ {B} {\text{=}} \left( {{{A}}\Theta {{B}}} \right) \oplus {{B}} {\text{;}} $

    (3)

    当二值形态闭运算时,

    $ {{A}} \bullet {{B}} {\text{=}} \left( {{{A}} \oplus {{B}}} \right)\Theta {{B}} {\text{,}} $

    (4)

    This page contains the following errors:

    error on line 1 at column 1: Start tag expected, '<' not found

    Below is a rendering of the page up to the first error.

    为了更好地说明本文方法中建筑物震害信息提取的效果, 应用上述方法提取研究区建筑物震害信息后,同时使用基于像元级和基于目标级信息提取方法提取建筑物震害信息,并对不同方法所得计算结果进行比较。

    采用灰度共生矩阵法对新疆塔县地震极灾区震前、震后遥感影像进行纹理分析,计算了8种特征图像,结果如图3所示。通过对比,采用干扰信息少的对比度特征来提取建筑物纹理信息。

    图  3  建筑物纹理特征图像
    (a) 均值;(b) 方差;(c) 同质性;(d) 对比度;(e) 非相似性;(f) 熵;(g) 角二阶矩;(h) 相关性
    Figure  3.  Texture feature of buildings
    (a) Mean;(b) Variance;(c) Homogeneity;(d) Contrast;(e) Dissimilarity;(f) Entropy; (g) Angular second moment;(h) Correlation

    灰度共生矩阵方法中的尺度、方向及步长所采用的数值不同,计算结果不同,本文采用45°方向、步长为1的参数进行运算。合适的滑动窗口尺度能够更好地展现建筑物信息,本文选取3×3,5×5,7×7,9×9,11×11,13×13窗口尺度进行计算,图4为不同尺度的纹理特征影像。因震前、震后影像的分辨率不同,建筑物纹理特征存在差异,故而对震前、震后影像进行计算时,在参数适用性上也有差异,本文对于震前GF-1影像采用9×9窗口、45°单一方向、步长为1的对比度纹理特征影像进行建筑物信息提取,对于震后GF-2影像采用7×7窗口、45°单一方向、步长为1的对比度纹理特征影像进行建筑物信息提取。

    图  4  不同尺度的对比度特征图
    Figure  4.  Contrast feature images with different scales
    (a) 3×3;(b) 5×5;(c) 7×7;(d) 9×9;(e) 11×11;(f) 13×13;

    其次对提取的特征图像进行二值化,确定建筑物的空间分布。因震前、震后影像的拍摄时间不同,传感器也不同,故提取的特征图像中建筑物取值分布不同,采用密度分割法对特征图像进行密度分割,找到震前、震后影像中建筑物分布的纹理特征值,进行二值化,值为1的像元为建筑物数据(图5ab)。

    图  5  通过密度分割 (a)、二值化 (b)、形态学运算 (c) 的建筑物信息提取
    Figure  5.  Building information extraction by density segmentation (a),binarization (b) and morphological operation (c)

    数学形态学方法是指通过基于二值化影像开展的膨胀、腐蚀、开、闭等运算,使建筑物边缘更加平滑。因震前、震后影像的分辨率不同,震前、震后建筑物的边缘纹理存在差异,故而在利用数学形态学方法进行数据处理时,震前、震后影像计算参数也不同(图5c)。通过逐步试验,找到最优参数进行建筑物空间分布信息提取。图6给出了本文所提取的研究区震前、震后影像建筑物的空间分布信息。

    图  6  塔县地震前(a)、后(b)的建筑物提取结果图
    Figure  6.  Extraction results of buildings before (a) and after (b) the Taxkorgan Tajik earthquake

    精度评价(余先川等,2012)是分析建筑物信息提取结果的精度,进而判断提取结果的优劣及是否可用。通过人工选取建筑物感兴趣区域作为地面样本,对建筑物信息提取结果进行精度评价,震前、震后建筑物震害信息提取总精度分别为86.74%和77.78%。震害信息提取总精度较高,研究区无漏提现象,然而存在误提区域,震前、震后影像误提的区域主要为植被区,因植被纹理与房屋建筑物纹理存在相似的区域被误提,同时形态学综合过程中对建筑物边界进行膨胀腐蚀,使得房屋边界有所扩张,扩张区域误提了道路及空地区域。总之,利用本文算法提取的建筑物具有较高的正确率,后续通过人工修正方法对误提区域进行修正,保证后续建筑物震害信息提取的精度要求。

    进而对震前、震后提取的建筑物进行变化检测分析,提取建筑物震害信息。因形态学方法在进行建筑物信息综合的过程中对建筑物的边界已经进行了膨胀、腐蚀等运算,本文提取的建筑物边界较实际有所偏移,故而震前、震后建筑物边缘的匹配度欠佳,因此本文仅提取全部倒塌建筑物及新增完好建筑物的信息。

    震害信息提取算法为:首先提取与震后建筑物提取结果有交集的震前建筑物的空间分布数据,即为震后未倒塌的建筑物;然后用震前建筑物的提取结果剔除震后未倒塌的建筑物,即为倒塌建筑物的空间分布数据。同理,提取与震前建筑物提取结果有交集的震后建筑物的空间分布数据,用震后建筑物提取结果剔除交集,即为2015年后新建且在震后未倒塌的建筑物的空间分布数据。具体建筑物震害信息提取结果如图7所示。

    图  7  塔县地震后极灾区建筑物震害提取结果图
    (a) 未倒塌建筑物分布图;(b) 倒塌建筑物分布图;(c) 新建未倒塌建筑物分布图
    Figure  7.  Damage extraction map of buildings in the extreme disaster areas of Taxkorgan Tajik earthquake
    (a) Distribution of uncollapsed buildings;(b) Distribution of collapsed buildings; (c) Distribution of newly built uncollapsed buildings

    图7a中东南方较大区域斑块为村委会建筑,塔县地震后库孜滚村的未倒塌建筑物主要集中在村委会以北,尤其是安居富民房区域,房屋均未倒塌。安居富民房屋展现出较好的抗震性能。图7b中倒塌建筑物主要集中在村委会周围及村委会以南,该地区的房屋质量较差,抗震性能低,在地震中成片倒塌,此处为救援重点地区。在进行震前、震后建筑物信息变化检测中,2015年后新建建筑物被提取出来,由于经济水平的提高,该区域近年新建的建筑物质量较好,在地震中展现了较好的抗震性能。在新增建筑物中,位于安居富民房区域内的新增建筑物主要为抗震救灾帐篷搭设区。为更好地安置转移的地震受灾人员,使受灾人员集中便于管理,救灾帐篷搭设在安居富民房屋附近。

    为了更好地说明本文方法用于震害信息提取的效果,进行了多种方法的对比,选择的方法主要有基于像元级的分类方法和基于目标级的面向对象分析方法,并对不同方法的计算结果进行比较。

    像元级分类方法主要是利用地震现场信息及研究区的各类地物特征,结合影像识别地物影像特征及解译标志,并建立分类样本,采用支持向量机(support vector machine,缩写为SVM)方法对影像直接进行像元级信息提取。信息提取结果如图8a所示。

    图  8  支持向量机法(a)和面向对象方法(b)的建筑物震害信息提取结果图
    Figure  8.  Extraction result of seismic damage information of buildings by Support Vector Machine method (a) and by object-oriented methord (b)

    像元级信息提取是在建立精确地物解译标志及选择合适的信息提取方法的前提下,可以检测出倒塌建筑物的空间分布情况。由图8a可知,由本文方法提取的倒塌建筑物的空间分布情况与基于像元级方法(支持向量机法)提取的结果大致相同,然而基于像元级信息提取所获得的倒塌建筑物(图中红色区域)存在着大量的误检,同时分类结果存在椒盐效应。这是由于建筑物倒塌后占地面积较原始建筑物占地面积大,故而基于像元级信息提取方法提取的倒塌建筑物比本文方法提取结果的面积更大,且提取结果破碎。基于像元级信息提取方法是依据地物光谱信息分类提取的,同一地物光谱信息越集中,与其它地物光谱差别越大,提取效果越好,然而现实中多存在 “同物异谱” 和 “异物同谱” 现象,如倒塌建筑物区域与粗糙裸地的光谱接近,这使得基于像元级倒塌建筑物信息提取结果的误提信息较多,信息提取结果精度偏低。

    面向对象方法是一种基于目标的分类方法,该方法不再是基于像素尺度进行分类,而是通过多尺度分割将遥感影像分割为多个目标,综合考虑影像空间特征、光谱特征、纹理特征、几何特征等因素,得到较高精度的信息提取结果。

    面向对象方法分类的关键是多尺度影像分割技术。选择的分割尺度越小,越易出现误检现象,其原因在于,过小的分割尺度使得地物分割过于破碎,提取结果破碎且效果不佳。相反,选择的分割尺度太大,易出现漏检现象,即建筑物震害信息未被准确提取。其原因是分割尺度太大会使多种地物分割到一起,小斑块的地物容易被分割到周边大斑块地物中,使得建筑物震害信息无法准确地被提取出来。本研究经过反复试验,找到合适的分割尺度进行影像多尺度分割,进而进行面向对象信息提取,结果如图8b所示。

    目标级建筑物震害信息提取虽然有效地避免了椒盐效应,所提取的信息相对连续,但仍存在其它地物被错误识别为震害建筑物的问题。这是由于在多尺度分割过程中,倒塌建筑物出现过多的碎块,使得倒塌建筑物本身的形状特征不能很好地参与到分类过程中,导致最终分类结果中有部分植被、农田和裸地被混淆。

    为定量分析试验结果,对本文方法、像元级、目标级信息提取方法分别进行精度评价。本文结合现场调查信息和地震现场无人机影像以及震前google影像,进行无人机影像目视解译,将其作为精度评估样本。无人机影像覆盖区域、目视解译结果与本文提取结果的对比如图9所示,主要覆盖震后完好建筑物分布区域和倒塌建筑物连片分布区域,精度指标采用的总体精度和Kappa系数列于表1

    表  1  不同提取方法分类精度的比较
    Table  1.  Comparison of classification accuracy with different extraction method
    分类方法总体精度Kappa系数
    本文方法90.45%0.87
    支持向量机法84.67%0.78
    面向对象分析法85.22%0.79
    下载: 导出CSV 
    | 显示表格
    图  9  无人机影像区域提取结果对比图
    (a) 无人机影像覆盖区域;(b) 安居富民房航拍区对比结果图;(c) 村委会附近航拍区对比结果图
    Figure  9.  Contrast Map of UAV Image Region
    (a) UAV images coverage area;(b) Comparison of aerial photography area of the rural housing project in Xinjiang;(c) Comparison of aerial photography area near village committee

    表1不难发现,相较单一的像元级和目标级信息提取方法,本文方法的总体精度分别提高了5.78%和5.23%,其中:像元级信息提取方法中,倒塌建筑物主要将农田、裸地误提进来,误提率为7.75%和4.22%;目标级信息提取方法中,倒塌建筑物主要将裸地、农田和植被误提进来,误提率为5.31%,5.05%和2.84%;本文方法提取的建筑物震害信息是基于震前、震后建筑物提取结果对比分析的基础上所获,提取的倒塌建筑物主要为2015年9月后消失的建筑物,但由于在建筑物震害信息提取中未考虑人为因素,存在误提现象。今后尚需结合像元级和目标级震害信息提取方法进行误提部分剔除,进一步提高信息提取精度。

    本文结合纹理和形态学特征方法进行了基于国内高分遥感影像的建筑物震害信息提取研究,提取了2017年5月11日新疆塔县MS5.5地震极灾区库孜滚村在地震前后真实的建筑物空间分布数据,通过变化检测分析,获取了研究区倒塌建筑物空间分布信息,并结合其它方法进行了信息提取结果精度的对比。本文结果表明:结合纹理和形态学特征的方法能较好地提取高分遥感影像中的建筑物信息,本方法对基于国产高分影像进行建筑物震害信息提取具有较高的正确率和鲁棒性;通过对地震前后建筑物提取结果进行变化检测分析,能够有效地提取完全倒塌的建筑物,信息提取总体精度为90.45%;对比单一的像元级和目标级信息提取方法,本文方法的总体精度分别提高了5.78%和5.23%。

    本文仍存在一些不足,如本文仅提取了完全倒塌的建筑物,对于部分倒塌及未倒塌但严重破坏的建筑物并未涉及,今后应对不同震害类型进行更加细致的影像特征分析,建立更加丰富的建筑物震害特征库及专家知识库,便于探求新的模型方法,进行多类型震害信息识别,提高震害识别精度。本文建筑物信息提取的总体精度较高,但仍存在误差和噪声,对震害信息检测产生影响。为保证震害信息提取精度,结合人工修正方法效果会更佳。对于不同的震例,震害表现多有不同,不同地区的地物特征多有不同,今后需多加实践检验,根据地物特征及建筑物震害特点进行针对性的信息提取方法设计。

    总的来看,结合纹理和形态学特征方法可用于提取高分遥感影像中的建筑物震害信息,在震害严重、救灾任务紧急的情况下,借助国产高分遥感卫星采集极灾区高分遥感影像,通过自动提取方法可以快速获取灾区倒塌建筑物的空间分布情况,为震后快速确定人员压埋点、部署救援力量提供决策依据,提高地震应急救援的时效性。

  • 图  1   米林地震震中、台站分布及研究区构造背景图(修改自Xu et al,2012

    Figure  1.   Epicentral location of the Milin earthquake,station distribution and tectonic settings of the studied area (revised after Xu et al,2012

    图  2   米林地震序列重定位结果

    (a) 震中分布图,图中震源机制解数据来自GCMT (Dziewonski et al,1981Ekström et al,2012);(b) 走时残差直方图

    Figure  2.   Relocation result of Milin earthquake sequence

    (a) Distribution of Milin earthquake sequence,where the focal mechanism refers to GCMT (Dziewonski et al,1981Ekström et al,2012) catalog;(b) Histogram of the travel time residuals after relocation

    图  3   沿AA′ ,BB′ ,CC′ ,DD′ 剖面的余震分布图(虚线为推测的结构面)

    Figure  3.   The aftershocks distribution along the profiles AA′ ,BB′ ,CC′ and DD

    Dashed lines indicate inferred structural plane

    图  4   基于原始地震目录(a)和重定位后地震目录(b)的震级-频度关系曲线

    Figure  4.   Frequency-magnitude distributions from original earthquake catalogue (a) and relocated earthquake catalogue (b)

    图  5   2017年1—5月南迦巴瓦台网观测资料给出的震中分布 (a)和震级-频度分布 (b)

    Figure  5.   Spatial distribution of earthquakes (a) and magnitude-frequency distribution (b) obtained from earthquake data recorded by Namche Barwa earthquake network from January to May of 2017

    图  6   b值相关参数随时间的变化

    (a) b值;(b) Mc;(c) σb

    Figure  6.   Temporal variation of b-value relevant parameterts

    (a) b-value;(b) Mc;(c) σb

    图  7   b值(a)和σb)(b)沿AA′ 剖面的变化情况

    Figure  7.   Variation of b value (a) and σb) (b) along the profile AA

    图  8   b值(a)和σb)(b)沿BB′ 剖面的变化情况

    Figure  8.   Variation of b value (a) and σb) (b) along the profile BB

    图  9   b值深度切片(黑色六角星为主震位置)

    Figure  9.   The depth section of b-value (Black hexagram indicates the main shock)

    表  1   林芝地区P波速度结构

    Table  1   P-wave velocity structure model for Linzhi

    速度/(km·s−1 深度/km 来源
    5.23 0
    5.33 5
    5.70 10
    6.10 15
    6.25 25
    6.40 44 白玲等(2017)
    7.10 55 白玲等(2017)
    8.00 白玲等(2017)
    下载: 导出CSV
  • 白玲,李国辉,宋博文. 2017. 2017年西藏米林6.9级地震震源参数及其构造意义[J]. 地球物理学报,60(12):4956–4963. doi: 10.6038/cjg20171234

    Bai L,Li G H,Song B W. 2017. The source parameters of the M6.9 Mainling,Tibet earthquake and its tectonic implications[J]. Chinese Journal of Geophysics,60(12):4956–4963 (in Chinese).

    程成,白玲,丁林,李国辉,杨建亚,许强. 2017. 利用接收函数方法研究喜马拉雅东构造结地区地壳结构[J]. 地球物理学报,60(8):2969–2979.

    Cheng C,Bai L,Ding L,Li G H,Yang J Y,Xu Q. 2017. Crustal structure of Eastern Himalayan Syntaxis revealed by receiver function method[J]. Chinese Journal of Geophysics,60(8):2969–2979 (in Chinese).

    方亚如,蔡戴恩,刘晓红,李纪汉,郝晋昇,耿乃光. 1986. 含水岩石破裂前的声发射b值变化[J]. 地震,(2):1–6.

    Fang Y R,Cai D E,Liu X H,Li J H,Hao J S,Geng N G. 1986. The change of b-value of acoustic emission before ruptures of water-bearing rocks[J]. Earthquake,(2):1–6 (in Chinese).

    黄亦磊,周仕勇,庄建仓. 2016. 基于地震目录估计完备震级方法的数值实验[J]. 地球物理学报,59(4):1350–1358.

    Huang Y L,Zhou S Y,Zhuang J C. 2016. Numerical tests on catalog-based methods to estimate magnitude of completeness[J]. Chinese Journal of Geophysics,59(4):1350–1358 (in Chinese).

    李莹甄,殷娜,李小晗. 2014. 不同震级标度转换关系研究概述[J]. 地震工程学报,36(1):80–87. doi: 10.3969/j.issn.1000-0844.2014.01.0080

    Li Y Z,Yin N,Li X H. 2014. Review of the conversional relationship for different magnitude scales[J]. China Earthquake Engi-neering Journal,36(1):80–87 (in Chinese).

    邵翠茹. 2009. 雅鲁藏布大峡谷地区地震活动性研究[D]. 北京: 中国地震局地球物理研究所: 51–68.

    Shao C R. 2009. Seismicity of the Yarlung Tsangpo Grand Canyon Region, China[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 51–68 (in Chinese).

    王鹏,侯金欣,吴朋. 2017. 2017年九寨沟MS7.0地震序列活动特征分析[J]. 中国地震,33(4):453–462. doi: 10.3969/j.issn.1001-4683.2017.04.001

    Wang P,Hou J X,Wu P. 2017. Temporal evolution of the seismicity of the 2017 Jiuzhaigou MS7.0 earthquake sequence[J]. Earthquake Research in China,33(4):453–462 (in Chinese).

    王未来,吴建平,房立华,王长在. 2012. 2010年玉树MS7.1地震及其余震的双差定位研究[J]. 中国科学:地球科学,42(7):1037–1046.

    Wang W L,Wu J P,Fang L H,Wang C Z. 2013. Relocation of the Yushu MS7.1 earthquake and its aftershocks in 2010 from HypoDD[J]. Science China Earth Sciences,56(2):182–191. doi: 10.1007/s11430-012-4450-z

    王未来,吴建平,房立华,来贵娟. 2014. 2014年云南鲁甸MS6.5地震序列的双差定位[J]. 地球物理学报,57(9):3042–3051.

    Wang W L,Wu J P,Fang L H,Lai G J. 2014. Double difference location of the Ludian MS6.5 earthquake sequences in Yunnan Province in 2014[J]. Chinese Journal of Geophysics,57(9):3042–3051 (in Chinese).

    张盛峰,吴忠良,房立华. 2014. 双差(DD)定位地震目录能用于地震序列的统计地震学参数计算吗? :云南鲁甸MS6.5地震序列b值的空间分布[J]. 地震地质,36(4):1244–1259. doi: 10.3969/j.issn.0253-4967.2014.04.024

    Zhang S F,Wu Z L,Fang L H. 2014. Can the DD-relocated earthquake catalogue be used for the statistical parameters of an earthquake sequence? :A case study of the spatial distribution of b-values for the aftershocks of the 2014 Ludian MS6.5 earthquake[J]. Seismology and Geology,36(4):1244–1259 (in Chinese).

    张勇, 许力生, 陈运泰. 2017. 2017年11月18日西藏米林6.9级地震(应急处置科技产品报告)[EB/OL]. [2018-04-20]. http://www.cea-igp.ac.cn/tpxw/276003.html.

    Zhang Y, Xu L, Chen Y T. 2017. Earthquake summary poster for November 18, 2017, Milin, Tibet, MS6.9 earthquake[EB/OL]. [2018-04-20]. http://www.cea-igp.ac.cn/tpxw/276003.html (in Chinese).

    郑钰,杨建思. 2008. 双差算法的剖析及参数对定位的影响[J]. 地震地磁观测与研究,29(3):85–93. doi: 10.3969/j.issn.1003-3246.2008.03.016

    Zheng Y,Yang J S. 2008. Analysis of double-difference algorithm and the affect of its parameter in location[J]. Seismological and Geomagnetic Observation and Research,29(3):85–93 (in Chinese).

    Aki K. 1965. Maximum likelihood estimate of b in the formula logN=a-bM and its confidence limits[J]. Bull Seismol Soc Am,43:237–239.

    Amitrano D. 2003. Brittle-ductile transition and associated seismicity:Experimental and numerical studies and relationship with the b value[J]. J Geophys Res,108(B1):ESE 19-1–ESE 19-15.

    Dziewonski A M,Chou T A,Woodhouse J H. 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity[J]. J Geophys Res,86:2825–2852. doi: 10.1029/JB086iB04p02825

    Ekström G,Nettles M,Dziewonski A M. 2012. The global CMT project 2004−2010:Centroid-moment tensors for 13 017 earthquakes[J]. Phys Earth Planet Inter,200:1–9.

    Frohlich C,Davis S D. 1993. Teleseismic b values;Or,much ado about 1.0[J]. J Geophys Res,98(B1):631–644. doi: 10.1029/92JB01891

    Gupta H K. 2002. A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna,India[J]. Earth-Sci Rev,58(3/4):279–310.

    Gutenberg B, Richter C F. 1954. Seismicity of the Earth and Associated Phenomena[M]. 2nd ed. Princeton: Princeton University Press: 1–310.

    Mogi K. 1962. Study of elastic shocks caused by the fracture of heterogeneous materials and its relations to earthquake phenomena[J]. Bull Earthq Res Inst,Univ Tokyo,40(1):125–173.

    Mogi K. 1967. Regional variations in magnitude-frequency relation of earthquakes[J]. Bull Earthq Res Inst,Univ Tokyo,45(2):313–325.

    Nakaya S. 2006. Spatio-temporal variation in b value within the subducting slab prior to the 2003 Tokachi-Oki earthquake (M8.0),Japan[J]. J Geophys Res,111(B3):B03311.

    Nuannin P,Kulhánek O,Persson L. 2012. Variations of b-values preceding large earthquakes in the Andaman-Sumatra subduction zone[J]. J Asian Earth Sci,61:237–242. doi: 10.1016/j.jseaes.2012.10.013

    Papazachos B C. 1974. Dependence of the seismic parameter b on the magnitude range[J]. Pure Appl Geophys,112(6):1059–1065. doi: 10.1007/BF00881508

    Rydelek P A,Sacks I S. 1989. Testing the completeness of earthquake catalogues and the hypothesis of self-similarity[J]. Nature,337(6204):251–253. doi: 10.1038/337251a0

    Scholz C H. 1968. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes[J]. Bull Seismol Soc Am,58(9):399–415.

    Schorlemmer D,Wiemer S,Wyss M,Jackson D D. 2004. Earthquake statistics at Parkfield:2. Probabilistic forecasting and testing[J]. J Geophys Res,109(B12):B12308. doi: 10.1029/2004JB003235

    Schorlemmer D,Wiemer S,Wyss M. 2005. Variations in earthquake-size distribution across different stress regimes[J]. Nature,434(7058):539–542.

    Shi Y L,Bolt B A. 1982. The standard error of the magnitude-frequency b value[J]. Bull Seismol Soc Am,72(5):1677–1687.

    Smith W D. 1981. The b-value as an earthquake precursor[J]. Nature,289(5794):136–139. doi: 10.1038/289136a0

    Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368. doi: 10.1785/0120000006

    Waldhauser F,Ellsworth W L. 2002. Fault structure and mechanics of the Hayward fault,California,from double-difference earthquake locations[J]. J Geophys Res,107(B3):ESE 3-1–ESE 3-15.

    Wiemer S,Katsumata K. 1999. Spatial variability of seismicity parameters in aftershock zones[J]. J Geophys Res,104(B6):13135–13151. doi: 10.1029/1999JB900032

    Wiemer S,Wyss M. 2000. Minimum magnitude of completeness in earthquake catalogs:Examples from Alaska,the western United States,and Japan[J]. Bull Seismol Soc Am,90(4):859–869. doi: 10.1785/0119990114

    Wiemer S,Gerstenberge M,Hauksson E. 2002. Properties of the aftershock sequence of the 1999 MW7.1 Hector Mine earthquake:Implications for aftershock hazard[J]. Bull Seismol Soc Am,90(4):1227–1240.

    Xu Z Q,Ji S C,Cai Z H,Zeng L S,Geng Q R,Cao H. 2012. Kinematics and dynamics of the Namche Barwa Syntaxis,eastern Himalaya:Constraints from deformation,fabrics and geochronology[J]. Gondwana Res,21(1):19–36. doi: 10.1016/j.gr.2011.06.010

    Zeitler P K, Meltzer A S, Brown L, Kidd W S F, Lim C, Enkelmann E. 2014. Tectonics and topographic evolution of Namche Barwa and the easternmost Lhasa block, Tibet[G]//Toward an Improved Understanding of Uplift Mechanisms and the Elevation History of the Tibetan Plateau. Colorado: Geological Society of America, 507: 23–58.

  • 期刊类型引用(1)

    1. 陈宝魁,王博为,王东升. 海底强震观测记录与地震动特性研究进展. 世界地震工程. 2023(01): 200-208 . 百度学术

    其他类型引用(5)

图(10)  /  表(1)
计量
  • 文章访问数:  2090
  • HTML全文浏览量:  1215
  • PDF下载量:  127
  • 被引次数: 6
出版历程
  • 收稿日期:  2018-06-05
  • 修回日期:  2018-09-13
  • 网络出版日期:  2019-02-24
  • 发布日期:  2019-02-28

目录

/

返回文章
返回