基于无人机倾斜影像的三维建筑物震害精细信息提取

荆帅军, 帅向华, 甄盟

荆帅军, 帅向华, 甄盟. 2019: 基于无人机倾斜影像的三维建筑物震害精细信息提取. 地震学报, 41(3): 366-376. DOI: 10.11939/jass.20180114
引用本文: 荆帅军, 帅向华, 甄盟. 2019: 基于无人机倾斜影像的三维建筑物震害精细信息提取. 地震学报, 41(3): 366-376. DOI: 10.11939/jass.20180114
Jing Shuaijun, Shuai Xianghua, Zhen Meng. 2019: Fine information extraction of 3D building seismic damage based on unmanned aerial vehicle oblique images. Acta Seismologica Sinica, 41(3): 366-376. DOI: 10.11939/jass.20180114
Citation: Jing Shuaijun, Shuai Xianghua, Zhen Meng. 2019: Fine information extraction of 3D building seismic damage based on unmanned aerial vehicle oblique images. Acta Seismologica Sinica, 41(3): 366-376. DOI: 10.11939/jass.20180114

基于无人机倾斜影像的三维建筑物震害精细信息提取

基金项目: 国家重点研发计划(2016YFC0803107)资助
详细信息
    通讯作者:

    帅向华: e-mail:shuaixhua@sina.com

  • 中图分类号: P231.1

Fine information extraction of 3D building seismic damage based on unmanned aerial vehicle oblique images

  • 摘要: 无人机倾斜摄影技术建模生成的三维影像较好地展现了建筑物侧面和顶面的震害细节信息,然而影像的高维度特性难以直接基于三维影像提取震害信息,经过降低维度转换的二维纹理影像往往会导致建筑物震害信息的不完整性和破碎性。针对这些问题,本文以2017年九寨沟MS7.0地震为例,提出了一种直接从九寨沟震后三维影像获取侧面纹理信息的方法,即将三维模型打散,实现纹理与不规则三角网分离,从而获取完整的纹理影像,然后利用金字塔模型的瓦片坐标范围、瓦片命名规则和建筑物单体的空间位置选取最优纹理影像,再使用加权均值方差法确定纹理影像中建筑物的外墙最佳分割尺度后,采用面向对象方法提取建筑物外墙和墙皮脱落信息,最后通过对这些建筑物震害特征的分析,判定单体建筑物的破坏等级。结果显示,该方法成功获取了建筑物完整的侧面震害纹理影像,并基于纹理影像提取了外墙、裂缝和墙皮脱落区域信息判定建筑物单体为中等、严重两个破坏等级。
    Abstract: The three-dimensional image generated by the unmanned aerial vehicle oblique photography technology can better display the details of seismic damage on the side and top of buildings. However, it is difficult to directly extract the seismic damage information based on the three-dimensional image due to the high latitude characteristics of the image, and the two-dimensional texture image transformed by reducing the dimension often leads to the incompleteness and fragmentation of the seismic damage information of buildings. To solve these problems, this paper takes the 2017 Jiuzhaigou MS7.0 earthquake as an example, and proposes a method for scattering the three-dimensional model, separating texture image from triangulated irregular network, and directly obtaining the complete side texture image after the Jiuzhaigou earthquake. Then, the optimal texture image is selected by using the tile coordinate range of pyramid model, the naming rules of tile and the spatial position of building monomer. After the optimal segmentation scale of building exterior wall in texture image is determined by using weighted mean variance method, this paper adopts the object-oriented method to extract the information of building exterior wall and wall skin shedding. Finally, through the analysis of earthquake damage characteristics of these buildings, the damage level of building monomer is determined. The results show that the method successfully obtains the complete side seismic damage texture images of buildings, and extracts the information of the external wall, crack and wall peeling area based on the texture image to determine the medium and serious damage levels of the building monomer.
  • 图  1   千古情风景区建筑物的三维模型和纹理影像

    (a) 20级三维模型;(b) 21级三维模型;(c) 20级纹理影像;(d) 21级纹理影像

    Figure  1.   Three-dimensional models and texture images of building in Qianguqing scenic spot

    (a) 20-level 3D model;(b) 21-level 3D model;(c) 20-level texture image;(d) 21-level texture image

    图  2   分割尺度分别为30 (a),90 (b),50 (c)和70 (d)的千古情风景区建筑物的纹理影像

    Figure  2.   Texture images of the building in Qianguqing scenic spot with scales of 30 (a),90 (b),50 (c) and 70 (d)

    图  3   对象加权均值方差随分割尺度的变化图

    Figure  3.   Variation of weighted mean variance of object with segmentation scale

    图  4   千古情风景区建筑物震害信息提取结果

    图(d)中蓝色表示墙皮脱落信息,红色表示外墙,青色表示裂缝,图5d和6d与此相同(a) 航拍照片;(b) 三维模型;(c) 纹理影像;(d) 震害信息提取结果

    Figure  4.   Extraction results of building seismic damage information in Qianguqing scenic spot

    In Fig. (d),blue indicates the wall peeling information,red indicates the exterior wall,and cyan indicates the crack,which are the same in Figs. 5d and 6d. (a) Aerial photography;(b) 3D model;(c) Texture image;(d) Extraction results of seismic damage information

    图  5   漳扎镇邮政储蓄银行震害信息提取结果

    (a) 航拍照片;(b) 三维模型;(c) 纹理影像;(d) 震害信息提取结果

    Figure  5.   Extraction results of building seismic damage information in Zhangzha town postal savings bank

    (a) Aerial photography;(b) 3D model;(c) Texture image;(d) Extraction results of seismic damage information

    图  6   藏式碉楼建筑物震害信息提取结果

    (a) 航拍照片;(b) 三维模型;(c) 纹理影像;(d) 震害信息提取结果

    Figure  6.   Seismic damage information extraction results of Tibetan watchtower building

    (a) Aerial photography;(b) 3D model;(c) Texture image;(d) Extraction results of seismic damage information

    表  1   规则集特征参数及阈值

    Table  1   Feature parameters and thresholds of rule sets

    建筑物震害信息提取对象特征参数及其阈值
    外墙面$\tfrac{{\overline R }}{{\overline R {\simfont\text{+}} \overline G {\simfont\text{+}} \overline B }}$>0.42,72<$\tfrac{{{\overline{R}} {\simfont\text{+}} {\overline{B}} {\simfont\text{+}} {\overline{G}} }}{3}$<144,267<A<543,0.5<C<0.8,7<GLDV<32
    墙皮脱落处0.56<Y<1,−41<2$ {\overline { G}} $${\overline { B}} $${\overline { R}} $<−28,16<GLDV<24,1.8<S<2.6,1.3<C<2.3
    下载: 导出CSV
  • 安立强,张景发,赵福军. 2011. 汶川地震次生灾害提取:面向对象影像分类技术的应用[J]. 自然灾害报,20(2):160–168.

    An L Q,Zhang J F,Zhao F J. 2010. Extracting secondary disaster of Wenchuan earthquake:Application of object-oriented image-classifying technology[J]. Journal of Natural Disasters,20(2):160–168 (in Chinese).

    卜松涛,岳凡琦,依兰. 2014. 基于倾斜影像的三维建筑物纹理提取方法研究[J]. 测绘与空间地理信息,37(10):206–208. doi: 10.3969/j.issn.1672-5867.2014.10.069

    Bu S T,Yue F Q,Yi L. 2013. Study on the texture extraction method of 3D buildings based on oblique aerial photography images[J]. Geomatics &Spatial Information Technology,37(10):206–208 (in Chinese).

    方智辉,吴军,彭志勇. 2017. 五方向倾斜航空影像建筑物墙面自动提取方法[J]. 桂林电子科技大学学报,37(2):140–146. doi: 10.3969/j.issn.1673-808X.2017.02.011

    Fang Z H,Wu J,Peng Z Y. 2017. Automatic wall extraction from five direction oblique aerial image[J]. Journal of Guilin University of Electronic Technology,37(2):140–146 (in Chinese).

    黄慧萍. 2003. 面向对象影像分析中的尺度问题研究[D]. 北京: 中国科学院遥感应用研究所: 114−122.

    Huang H P. 2003. Scale Issues in Object-Oriented Image Analysis[D]. Beijing: Institute of Remote Sensing Applications, Chinese Academy of Sciences: 114−122 (in Chinese).

    李静,侯建盛,许建华,张雪华. 2018. 四川九寨沟7.0级地震漳扎镇房屋震害情况分析[J]. 四川地震,(1):19–24.

    Li J,Hou J S,Xu J H,Zhang X H. 2018. Analyze on the house damage of Zhangzha town after the M7.0 Jiuzhaigou earthquake[J]. Earthquake Research in Sichuan,(1):19–24 (in Chinese).

    李胜军. 2013. 基于倾斜航空影像的建筑物结构性损毁评估方法研究[D]. 成都: 西南交通大学: 12−20.

    Li S J. 2013. The Research of Building Structural Damage Assessment Based on Airborne Oblique Images[D]. Chengdu: South-west Jiaotong University: 12−20 (in Chinese).

    李玮玮,帅向华,刘钦. 2016. 基于倾斜摄影三维影像的建筑物震害特征分析[J]. 自然灾害学报,25(2):152–158.

    Li W W,Shuai X H,Liu Q. 2016. Building damage characteristics analysis based on the three-dimensional image from oblique photography[J]. Journal of Natural Disasters,25(2):152–158 (in Chinese).

    林月冠. 2016. 倾斜摄影技术在灾后建筑物损毁评估中的应用分析[J]. 地理信息世界,23(1):108–114. doi: 10.3969/j.issn.1672-1586.2016.01.017

    Lin Y G. 2016. Application analysis of oblique pictometry technology in building damage assessment after disaster[J]. Geomatics World,23(1):108–114 (in Chinese).

    帅向华,刘钦,甄盟,冯蔚,杨海芳. 2018. 倾斜摄影技术在云南鲁甸地震现场的应用研究[J]. 震灾防御技术,13(1):158–167.

    Shuai X H,Liu Q,Zhen M,Feng W,Yang H F. 2018. Application of the UAV oblique photograghy technique in the field of Ludian earthquake,Yunnan[J]. Technology for Earthquake Disaster Prevention,13(1):158–167 (in Chinese).

    薛腾飞,张景发,李强. 2016. 基于相关变化检测与面向对象分类技术的多源遥感图像震害信息提取[J]. 地震学报,38(3):496–505.

    Xue T F,Zhang J F,Li Q. 2016. Extraction of earthquake damage buildings from multi-source remote sensing data based on correlation change detection and object-oriented classification techniques[J]. Acta Seismologica Sinica,38(3):496–505 (in Chinese).

    颜宏娟. 2008. 面向对象的遥感影像模糊分类方法研究[D]. 西安: 西安科技大学: 18−23.

    Yan H J. 2008. Object-Oriented Fuzzy Classification for Remote Sening Image[D]. Xi’an: Xi’an University of Science and Technology: 18−23 (in Chinese).

    张景发,谢礼立,陶夏新. 2001. 典型震害遥感图像的模型分析[J]. 自然灾害学报,10(2):89–95. doi: 10.3969/j.issn.1004-4574.2001.02.015

    Zhang J F,Xie L L,Tao X X. 2001. Pattern analysis of remote sensing imagery for some typical earthquake damages[J]. Journal of Natural Disasters,10(2):89–95 (in Chinese).

    张雪华. 2017. 基于无人机影像的面向对象建筑物震害提取研究[D]. 北京: 中国地震局地震预测研究所: 24−48.

    Zhang X H. 2017. Research on Building Seismic Damage Extraction of Object-Oriented Based on UAV Images[D]. Beijing: Institute of Earthquake Forecasting, China Earthquake Administration: 24−48 (in Chinese).

    赵妍,张景发,姚磊华. 2016. 基于面向对象的高分辨率遥感建筑物震害信息提取与评估[J]. 地震学报,38(6):942–951.

    Zhao Y,Zhang J F,Yao L H. 2016. Seismic damage information extraction and evaluation of buildings with high resolution remote sensing based on object-oriented method[J]. Acta Seismologica Sinica,38(6):942–951 (in Chinese).

    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2009. GB/T 24335—2009建(构)筑物地震破坏等级划分[S]. 北京: 中国标准出版社: 1−8.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. 2009. GB/T 24335—2009 Classification of Earthquake Damage to Buildings and Special Structures[S]. Beijing: Standards Press of China: 1−8 (in Chinese).

    朱红春,蔡丽杰,刘海英,江涛. 2015. 高分辨率影像分类的最优分割尺度计算[J]. 测绘科学,40(3):71–75.

    Zhu H C,Cai L J,Liu H Y,Jiang T. 2015. Optimal segmentation scale calculation for high-resolution remote sensing image[J]. Science of Surveying and Mapping,40(3):71–75 (in Chinese).

    Galarreta J F,Kerle N,Gerke M. 2015. UAV-based urban structural damage assessment using object-based image analysis and semantic reasoning[J]. Nat Hazards Earth Syst Sci,15(6):1087–1101. doi: 10.5194/nhess-15-1087-2015

    Gerke M,Kerle N. 2011. Automatic structural seismic damage assessment with airborne oblique pictometry imagery[J]. Photogr Eng Remote Sens,77(9):885–989. doi: 10.14358/PERS.77.9.885

    Grünthal G. 1998. European Macroseismic Scale 1998, Vol.15[S]. Luxembourg: Cahiers du Centre Europeen de Geodynamique et de Seismologie: 1−99.

    Petrie G. 2009. Systematic oblique aerial photography using multiple digital cameras[J]. Photogr Eng Remote Sens,75(2):102–107.

    Wang M, Bai H, Hu F. 2008. Automatic texture acquisition for 3D model using oblique aerial images[C]//Proceedings of the 1st International Conference on Intelligent Networks and Intelligent Systems. Wuhan, China: IEEE: 495−498.

    Woodcock C E,Strahler A H. 1987. The factor of scale in remote sensing[J]. Remote Sens Environ,21(3):311–332. doi: 10.1016/0034-4257(87)90015-0

图(6)  /  表(1)
计量
  • 文章访问数:  1595
  • HTML全文浏览量:  774
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-30
  • 修回日期:  2019-01-06
  • 网络出版日期:  2019-05-21
  • 发布日期:  2019-04-30

目录

    /

    返回文章
    返回