2017年8月9日精河MS6.6地震余震序列精定位及发震构造分析

翟亮, 张晓东, 王伟君

翟亮, 张晓东, 王伟君. 2019: 2017年8月9日精河MS6.6地震余震序列精定位及发震构造分析. 地震学报, 41(3): 314-328. DOI: 10.11939/jass.20180124
引用本文: 翟亮, 张晓东, 王伟君. 2019: 2017年8月9日精河MS6.6地震余震序列精定位及发震构造分析. 地震学报, 41(3): 314-328. DOI: 10.11939/jass.20180124
Zhai Liang, Zhang Xiaodong, Wang Weijun. 2019: Precise location and seismogenic structure analysis of aftershock sequence of Jinghe MS6.6 earthquake on August 9,2017. Acta Seismologica Sinica, 41(3): 314-328. DOI: 10.11939/jass.20180124
Citation: Zhai Liang, Zhang Xiaodong, Wang Weijun. 2019: Precise location and seismogenic structure analysis of aftershock sequence of Jinghe MS6.6 earthquake on August 9,2017. Acta Seismologica Sinica, 41(3): 314-328. DOI: 10.11939/jass.20180124

2017年8月9日精河MS6.6地震余震序列精定位及发震构造分析

基金项目: 精河科考项目资助
详细信息
    通讯作者:

    张晓东: e-mail:zxd@cea-ies.ac.cn

  • 中图分类号: P315.3

Precise location and seismogenic structure analysis of aftershock sequence of Jinghe MS6.6 earthquake on August 9,2017

  • 摘要: 为确定2017年8月9日精河MS6.6地震的发震构造,本文使用双差定位方法对发震时刻至2017年10月震源区所发生的余震进行了精定位,同时利用CAP波形反演方法,得到了主震的震源机制解,同时使用GPAT方法反演得到了部分余震的震源机制解,并基于两者对本次地震的发震构造予以分析。结果显示:精定位后主震位于(44.27°N,82.85°E),震源深度为17 km;主震最佳双力偶解对应的节面Ⅰ的走向为260°、倾角为51°、滑动角为84°,节面Ⅱ的走向为89.5°、倾角为39.4°、滑动角为97.4°;余震序列位于主震东侧,并向东展布约30 km,在3—18 km深度范围内均有分布,其优势方向为近EW向,次优势方向为SW向。结果表明,本次地震是一次逆冲型地震,通过反演得到的大量小震震源机制解的结果与主震震源机制解结果相一致。结合余震震中分布、主震及余震的震源机制解以及震源区的地质构造,本文推断近EW走向具有逆冲性质的库松木楔克山前断裂为精河主震的发震构造。
    Abstract: On August 9, 2017, an earthquake with MS6.6 occurred in the Jinghe of Bortala Mongolia Autonomous Prefecture, Xinjiang, and the highest intensity is estimated up to Ⅷ, but no major surface ruptures had been observed in field survey. In order to determine the seismogenic structure of the Jinghe earthquake, this paper precisely locates the aftershocks occurred from the origin time of the main shock to December of 2017 in the source region by the double-difference location method. At the same time, the focal mechanism of the main shock is obtained by using the CAP waveform inversion method, and the focal mechanisms of some aftershocks are obtained by using the generalized polarization amplitude technology. The results show that the main shock is located at (44.27°N, 82.85°E) and the focal depth is 17 km. The aftershock sequence is located to the east of the main shock with focal depth of 33−18 km and an extending length nearly 30 km towards east. The predominant direction of the sequence is EW direction, and the subdominant direction is SW direction. The best double-couple solution of the main shock has one nodal plane with strike 260°, dip 51°, rake 84°, and the other nodal plane with strike 89.5°, dip 39.4°, rake 97.4°. The result suggests that the Jinghe earthquake is of thrusting type, and the focal mechanisms of a large number of small earthquakes obtained by inversion are consistent with that of the main shock. Combined with aftershock epicenters, focal mechanism solutions for the main shock and the aftershocks, as well as geological structure of the source region, it is inferred that the thrusted Kusongmuxieke piedmont fault extending in near EW direction is the seismogenic structure for the Jinghe main shock.
  • 图  1   精河地震震源区及邻区构造背景

    Figure  1.   Tectonic settings of the source region of Jinghe earthquake and its neighbouring areas

    图  2   精河MS6.6地震震中及台站分布

    Figure  2.   Epicenter location of Jinghe MS6.6 earthquake and stations distribution

    图  3   重定位前(a)、后(b)的走时均方根误差

    Figure  3.   RMS error of travel time before (a) and after (b) relocation

    图  4   精河MS6.6地震序列重定位前的震中分布

    Figure  4.   Epicentral distribution of Jinghe MS6.6 earthquake sequence before relocation

    图  5   精定位后事件分布的剖面图

    (a) 精定位后地震震中分布图;(b) 沿着断层走向的剖面图;(c) 沿垂直于断层走向的剖面图

    Figure  5.   Cross sections of the relocated earthquakes

    (a) Distribution of epicenters after precise locating;(b) The section along the strike of the fault;(c) The profile along the direction perpendicular to the fault

    图  6   2017年8月9号精河主震的CAP反演震源机制解结果

    红线表示理论地震波形,黑线表示观测地震波形,波形下方第一行数字表示理论波形相对实际观测波形的时移(单位:s),第二行数字表示两波形的相关系数;波形左侧为台站名及震中距(单位:km)

    Figure  6.   Focal mechanism solution results of Jinghe earthquake on August 9,2017 by the CAP method

    The red curves represent the theoretical waveforms,and the black ones represent the observed waveforms. The numbers of the first line below the waveforms are the time shift (in s) of theoretical waveforms relative to observed ones,and the positive values indi-cate the theoretical waveform being ahead of the observed one. The numbers of the second line indicate the correlative coefficients between them. The name of stations and corresponding epicentral distances (in km) are given at the left side of waveforms

    图  7   精河地震的拟合差和震源机制解(下半球投影)随矩心深度的变化

    震源球上方数字表示各个深度的拟合矩震级

    Figure  7.   Misfit plots as a function of centroid depth for Jinghe earthquake (lower-hemisphere projection)

    The numbers above the beach balls represent the fitting moment magnitude for each depth

    图  8   精河地震序列中ML>3.0事件的震源机制解

    Figure  8.   Focal mechanism solutions for the ML>3.0 events of Jinghe earthquake sequence

    图  9   精河地震序列的节面走向(a)、倾角(b)、滑动角(c)玫瑰花图

    Figure  9.   Rose maps of the strike (a),dip (b) and rake (c) of nodal planes for the Jinghe earthquake sequence

    图  10   精河地震序列P轴(左)和T轴(右)的方位角(a)和倾角(b)的玫瑰花图

    Figure  10.   Rose maps of the azimuth (a) and plunge (b) of P-axis (left panels) and T-axis (right panels) for the Jinghe earthquake sequence

    表  1   速度结构(邵学钟等,1996

    Table  1   Velocity structure (after Shao et al,1996

    地层深度/kmvP/(km·s−1vS/(km·s−1
    0—44.002.31
    4—165.813.36
    16—256.103.53
    25—346.653.84
    34—456.833.95
    >458.094.68
    下载: 导出CSV

    表  2   2017年8月9日精河MS6.6主震震源机制解结果对比

    Table  2   Comparison of focal mechanism solutions of Jinghe MS6.6 main shock on August 9,2017

    来源MW矩心深度/km走向/°倾角/°滑动角/°
    USGS (2017)6.3202693087
    GCMT (2017)6.327.82445266
    中国地震局地球物理研究所 (2017)6.25202624580
    中国地震台网中心 (2017)6.3232694799
    本文6.15172605184
    下载: 导出CSV

    表  3   使用GPAT和CAP方法所得2017年9月9日ML4.3地震反演结果的对比

    Table  3   Comparison of inversion results for the ML4.3 earthquake on September 9,2017 by using GPAT and CAP methods

    反演方法节面Ⅰ节面Ⅱ短心深度/km
    走向/°倾角/°滑动角/°走向/°倾角/°滑动角/°
    GPAT28141731235110414
    CAP2794483108.74696.718
    下载: 导出CSV

    表  4   2017年8月9日精河地震余震的震源机制解

    Table  4   Focal mechanism solutions for the aftershocks of Jinghe earthquake on August 9,2017

    事件震中位置深度
    /km
    ML节面ⅠPT
    东经/°北纬/°走向/°倾角/°滑动角/°方位角/°倾角/°方位角/°倾角/°
    182.6144.2913.04.1270.344.193.1178.10.9−68.387.6
    282.7444.318.03.5258.337.088.7169.28.0−5.182.0
    382.7844.217.03.1332.053.0157.3210.018.0310.040.0
    482.6544.268.03.1230.289.013.04.38.495.89.9
    582.7444.325.03.0240.081.090.2−30.236.0150.254.0
    682.8544.306.03.8234.080.0−18.0−170.419.8−78.55.3
    782.6544.2511.03.0321.032.090.0−129.013.051.077.0
    882.7644.2511.02.5223.058.39.4179.515.980.828.0
    982.7444.2511.03.8285.615.0−37.3−52.152.6152.334.9
    1082.6844.248.03.1251.456.171.7−5.69.4115.172.1
    1182.6444.2612.02.7221.043.0131.0103.08.8−150.261.8
    1282.7344.287.02.5286.79.1173.6121.843.3−76.145.3
    1382.7144.2412.02.2211.062.0−9.0171.725.475.113.6
    1482.7544.2912.02.5280.638.03.2−112.932.2130.435.6
    1582.7144.2915.03.9227.564.3109.8−57.017.0172.065.0
    1682.6744.287.01.8284.320.270.5−150.525.746.163.4
    1782.6944.276.01.7315.645.5−103.1143.380.7−125.20.3
    1882.8944.108.01.8210.539.3−76.3−122.979.2110.86.4
    1982.5744.266.02.1294.650.9144.2169.37.2−92.150.1
    2082.7544.2912.03.1270.240.564.8−162.17.085.072.4
    2182.8744.298.03.6270.957.1−138.2123.551.232.70.7
    2282.7144.2413.01.6305.626.8157.4166.330.6−61.148.9
    2382.7344.2811.01.5232.479.1−172.996.412.7−173.02.7
    2482.7544.2710.01.6218.186.164.3−29.636.0103.343.1
    2582.6944.3111.01.5257.559.163.26.410.3119.164.8
    2682.7044.298.02.1290.178.4145.2−16.814.7−116.432.5
    2782.7244.2813.02.9279.841.9118.3170.16.3−81.770.4
    2882.6044.2911.02.3233.073.438.9−2.612.998.038.9
    2982.4044.109.03.0259.649.647.6−161.93.5102.458.9
    3082.7744.297.03.2272.049.8−139.2116.354.0−145.45.9
    3182.7744.296.03.6282.840.395.9169.327.8−48.356.4
    3282.7744.2911.04.0183.068.093.0−89.322.998.466.9
    3382.7744.297.03.1286.853.9−120.7137.465.238.04.3
    3482.7844.198.02.6235.682.419.28.07.9100.718.9
    3582.7244.2918.03.7277.144.4122.9164.45.2−93.367.0
    3682.9644.3414.01.8268.340.040.0122.2155.99.0−91.0
    3782.7044.306.02.0279.849.2108.3−3.02.6−103.776.0
    3882.5944.256.03.0263.332.772.4−174.013.442.473.6
    3982.3444.2611.01.8244.461.343.35.54.9−101.449.9
    4082.7144.3211.02.0227.415.037.3−179.334.925.152.6
    4182.4144.149.02.1231.085.097.0−45.539.6148.649.5
    4282.6744.2517.04.3277.224.929.6−127.829.695.452.0
    4382.7144.2917.01.4246.426.765.0175.020.125.966.9
    4482.6644.2612.02.4261.055.065.18.56.9116.468.6
    4582.7044.325.01.6261.951.0−164.5114.236.3−142.617.3
    4682.6844.2311.02.0260.348.257.5−167.41.599.166.3
    4782.4743.586.01.8184.640.0176.939.131.1153.634.5
    4882.6544.278.01.9253.750.057.0−173.6096.365.3
    4982.9444.3311.02.0276.274.8120.8−17.123.6−139.150.5
    5083.3244.288.02.1286.437.2−163.3127.843.3−114.626.1
    5183.3544.2817.03.8290.032.779.0−152.012.754.775.9
    5283.1344.345.02.1237.480.350.0−2.724.2110.540.9
    5382.9944.316.01.7278.445.5103.1179.20.3−89.380.7
    5482.7344.2910.02.4281.952.769.226.55.6134.772.6
    5582.4944.2611.02.3309.545.2117.6−159.73.1−60.970.5
    5682.7544.2816.02.0334.439.6126.1−140.710.4−27.065.4
    5782.8343.499.03.7272.846.187.14.91.1121.887.7
      注:表中黑体数字为精河地震序列中部分 ML>3.0余震及其震源机制解。
    下载: 导出CSV
  • 常想德,孙静,李帅. 2017. 2017年8月9日精河6.6级地震烈度分布与房屋震害特征分析[J]. 中国地震,33(4):771–780. doi: 10.3969/j.issn.1001-4683.2017.04.034

    Chang X D,Sun J,Li S. 2017. Analysis of seismic intensity distribution and characteristics of housing earthquake damage of the Jinghe MS6.6 earthquake on August 9,2017[J]. Earthquake Research in China,33(4):771–780 (in Chinese).

    陈晨,胥颐. 2013. 芦山MS7.0级地震余震序列重新定位及构造意义[J]. 地球物理学报,56(12):4028–4036. doi: 10.6038/cjg20131208

    Chen C,Xu Y. 2013. Relocation of the Lushan MS7.0 earthquake sequence and its tectonic implication[J]. Chinese Journal of Geophysics,56(12):4028–4036 (in Chinese).

    陈建波,沈军,李军,杨继林,胡伟华,赵欣,曾宪伟. 2007. 北天山西段库松木楔克山山前断层新活动特征初探[J]. 西北地震学报,29(4):335–340. doi: 10.3969/j.issn.1000-0844.2007.04.008

    Chen J B,Shen J,Li J,Yang J L,Hu W H,Zhao X,Zeng X W. 2007. Preliminary study on new active characteristics of Kusongmuxieke mountain front fault in the west segment of north Tianshan[J]. Northwestern Seismological Journal,29(4):335–340 (in Chinese).

    陈运泰, 顾浩鼎. 2007. 震源理论基础[M]. 北京: 中国科学院研究生院: 1−184.

    Chen Y T, Gu H D. 2007. Basis of Focal Theory[M]. Beijing: Graduate University of Chinese Academy of Sciences: 1−184 (in Chinese).

    崔效锋,谢富仁,赵建涛. 2005. 中国及邻区震源机制解的分区特征[J]. 地震地质,27(2):298–307. doi: 10.3969/j.issn.0253-4967.2005.02.012

    Cui X F,Xie F R,Zhao J T. 2005. The regional characteristics of focal mechanism solutions in China and its adjacent areas[J]. Seismology and Geology,27(2):298–307 (in Chinese).

    邓起东, 冯先岳, 张培震, 徐锡伟, 杨晓平, 彭斯震, 李军. 2000. 天山活动构造[M]. 北京: 地震出版社: 1−399.

    Deng Q D, Feng X Y, Zhang P Z, Xu X W, Yang X P, Peng S Z, Li J. 2000. Active Tectonics of the Chinese Tianshan Mountains[M]. Beijing: Seismological Press: 1−399 (in Chinese).

    高原,周蕙兰,郑斯华,马林,车时,刘卫红. 1997. 测定震源深度的意义的初步讨论[J]. 中国地震,13(4):321–329.

    Gao Y,Zhou H L,Zheng S H,Ma L,Che S,Liu W H. 1997. Preliminary discussion on implication of determination on source depth of earthquake[J]. Earthquake Research in China,13(4):321–329 (in Chinese).

    姜祥华,韩颜颜,杨文,孟令媛. 2017. 2017年精河MS6.6地震序列及震源特征初步分析[J]. 中国地震,33(4):682–693. doi: 10.3969/j.issn.1001-4683.2017.04.024

    Jiang X H,Han Y Y,Yang W,Meng L Y. 2017. Preliminary analysis of the 2017 Jinghe MS6.6 earthquake sequence and its seismic source characteristics[J]. Earthquake Research in China,33(4):682–693 (in Chinese).

    罗艳,赵里,曾祥方,高原. 2015. 芦山地震序列震源机制及其构造应力场空间变化[J]. 中国科学: 地球科学,45(4):538–550.

    Luo Y,Zhao L,Zeng X F,Gao Y. 2015. Focal mechanisms of the Lushan earthquake sequence and spatial variation of the stress field[J]. Science China Earth Sciences,58(7):1148–1158. doi: 10.1007/s11430-014-5017-y

    吕坚,王晓山,苏金蓉,潘林山,李正,尹利文,曾新福,邓辉. 2013. 芦山7.0级地震序列的震源位置与震源机制解特征[J]. 地球物理学报,56(5):1753–1763.

    Lü J,Wang X S,Su J R,Pan L S,Li Z,Yin L W,Zeng X F,Deng H. 2013. Hypocentral location and source mechanism of the MS7.0 Lushan earthquake sequence[J]. Chinese Journal of Geophysics,56(5):1753–1763 (in Chinese).

    邵学钟,张家茹,范会吉,郑剑东,胥颐,张华卿,Pomahxob I O,Tapacehko I O. 1996. 天山造山带地壳结构与构造:乌鲁木齐—库尔勒地震转换波测深剖面[J]. 地球物理学报,39(3):336–346. doi: 10.3321/j.issn:0001-5733.1996.03.007

    Shao X Z,Zhang J R,Fan H J,Zheng J D,Xu Y,Zhang H Q,Pomahxob I O,Tapacehko I O. 1996. The crust structures of Tianshan orogenic belt: A deep sounding work by converted waves of earthquakes along Rmqi-Korla profile[J]. Chinese Journal of Geophysics,39(3):336–346 (in Chinese).

    沈军,柏美祥,石广岭. 2011. 新疆及邻区地震构造图简介[J]. 内陆地震,25(2):97–108. doi: 10.3969/j.issn.1001-8956.2011.02.001

    Shen J,Bai M X,Shi G L. 2011. Brief introduction on the seismotectonic map of Xinjiang and its neighborhood[J]. Inland Earthquake,25(2):97–108 (in Chinese).

    沈军,汪一鹏,李莹甄,姜慧,向志勇. 2003. 中国新疆天山博阿断裂晚第四纪右旋走滑运动特征[J]. 地震地质,25(2):183–194. doi: 10.3969/j.issn.0253-4967.2003.02.002

    Shen J,Wang Y P,Li Y Z,Jiang H,Xiang Z Y. 2003. Late Quaternary right-lateral strike-slip faulting along the Bolokenu-Aqikekuduke fault in Chinese Tian Shan[J]. Seismology and Geology,25(2):183–194 (in Chinese).

    魏柏林. 1980. 余震震源机制变化的原因[J]. 地球物理学报,23(1):25–34. doi: 10.3321/j.issn:0001-5733.1980.01.004

    Wei B L. 1980. Cause of the change of focal mechanisms of aftershocks[J]. Chinese Journal of Geophysics,23(1):25–34 (in Chinese).

    谢祖军,金笔凯,郑勇,葛粲,熊熊,熊诚,许厚泽. 2013. 近远震波形反演2013年芦山地震震源参数[J]. 中国科学: 地球科学,43(6):1010–1019.

    Xie Z J,Jin B K,Zheng Y,Ge C,Xiong X,Xiong C,Xu H Z. 2013. Source parameters inversion of the 2013 Lushan earthquake by combining teleseismic waveforms and local seismograms[J]. Science China Earth Science,56(7):1177–1186. doi: 10.1007/s11430-013-4640-3

    徐志国, 梁姗姗, 刘杰, 邹立晔, 刘敬光. 2019. 2017年新疆精河MS6.6级主震震源机制解反演及余震序列重定位[J/OL]. [2018−09−18]. 地球物理学进展, http://kns.cnki.net/kcms/detail/11.2982.P.20190308.1202.005.html.

    Xu Z G, Liang S S, Liu J, Zhou L Y, Liu J G. 2019. Focal mechanism solution and relocation of the aftershock sequences of the 2017 Jinghe MS6.6 earthquake in Xinjiang[J/OL]. [2018−09−18]. Progress in Geophysics, http://kns.cnki.net/kcms/detail/11.2982.P.20190308.1202.005.html (in Chinese).

    许忠淮,汪素云,黄雨蕊,高阿甲. 1989. 由大量的地震资料推断的我国大陆构造应力场[J]. 地球物理学报,32(6):636–647. doi: 10.3321/j.issn:0001-5733.1989.06.004

    Xu Z H,Wang S Y,Huang Y R,Gao A J. 1989. The tectonic stress field of Chinese continent deduced from a great number of earthquakes[J]. Chinese Journal of Geophysics,32(6):636–647 (in Chinese).

    严川. 2015. 小震震源机制与应力场反演方法及其应用研究[D]. 北京: 中国地震局地球物理研究所: 16−38.

    Yan C. 2015. Inversion Methods for the Focal Mechanisms of Small Earthquakes and the Stress Field and Their Application[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 16−38 (in Chinese).

    易桂喜,龙锋,梁明剑,张会平,赵敏,叶有清,张致伟,祁玉萍,王思维,宫悦,乔惠珍,汪智,邱桂兰,苏金蓉. 2017. 2017年8月8日九寨沟M7.0地震及余震震源机制解与发震构造分析[J]. 地球物理学报,60(10):4083–4097. doi: 10.6038/cjg20171033

    Yi G X,Long F,Liang M J,Zhang H P,Zhao M,Ye Y Q,Zhang Z W,Qi Y P,Wang S W,Gong Y,Qiao H Z,Wang Z,Qiu G L,Su J R. 2017. Focal mechanism solutions and seismogenic structure of the 8 August 2017 M7.0 Jiuzhaigou earthquake and its aftershocks,northern Sichuan[J]. Chinese Journal of Geophysics,60(10):4083–4097 (in Chinese).

    张致伟,周龙泉,程万正,阮祥,梁明剑. 2015. 2015. 芦山MW6.6地震序列的震源机制及震源区应力场[J]. 地球科学:中国地质大学学报,40(10):1710–1722.

    Zhang Z W,Zhou L Q,Cheng W Z,Ruan X,Liang M J. 2015. Focal mechanism solutions of Lushan MW6.6 earthquake sequence and stress field for aftershock zone[J]. Earth Science:Journal of China University of Geosciences,40(10):1710–1722 (in Chinese). doi: 10.3799/dqkx.2015.154

    郑勇,马宏生,吕坚,倪四道,李迎春,韦生吉. 2009. 汶川地震强余震(MS≥5.6)的震源机制解及其与发震构造的关系[J]. 中国科学: D辑,39(4):413–426.

    Zheng Y,Ma H S,Lü J,Ni S D,Li Y C,Wei S J. 2009. Source mechanism of strong aftershocks (MS≥5.6) of the 2008/05/12 Wenchuan earthquake and the implication for seismotectonics[J]. Science in China:Series D,52(6):739–753. doi: 10.1007/s11430-009-0074-3

    中国地震局地球物理研究所. 2017. 2017年8月9日新疆精河6.6级地震[EB/OL]. [2017−12−29]. http://www.cenc.ac.cn/cenc/_300651/335684/index.html

    Institute of Geophysics, China Earthquake Administration. 2017. Jinghe MS6.6 earthquake on August 9, 2017[EB/OL]. [2017−12−29]. http://www.cenc.ac.cn/cenc/_300651/335684/index.html (in Chinese).

    中国地震台网中心. 2017. 2017年8月9日新疆精河6.6级地震[EB/OL]. [2017−12−29]. http://www.cenc.ac.cn/cenc/_300651/335684/index.html.

    China Earthquake Networks Center. 2017.Jinghe MS6.6 earthquake on August 9, 2017[EB/OL].[2017−12−29]. http://www.cenc.ac.cn/cenc/_300651/335684/index.html (in Chinese).

    Aki K. 1966. Earthquake generating stress in Japan for the years 1961 to 1963 obtained by smoothing the first motion radiation patterns[J]. Bull Earthq Res Inst,44(2):447–471.

    GCMT. 2017. Global CMT catalog search[EB/OL]. [2017−12−12]. http://www.globalcmt.org/CMTsearch.html.

    Godano M,Deschamps A,Lambotte S,Lyon-Caen H,Bernard P,Pacchiani F. 2014. Focal mechanisms of earthquake multi-plets in the western part of the Corinth Rift (Greece) : Influence of the velocity model and constraints on the geometry of the active faults[J]. Geophys J Int,197(3):1660–1680. doi: 10.1093/gji/ggu059

    Hardebeck J L,Shearer P M. 2002. A new method for determining first-motion focal mechanisms[J]. Bull Seismol Soc Am,92(6):2264–2276. doi: 10.1785/0120010200

    Hardebeck J L,Michael A J. 2006. Damped regional-scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence[J]. J Geophys Res,111(B11):B11310.

    Lomax A,Zollo A,Capuano P,Virieux J. 2001. Precise,absolute earthquake location under Somma-Vesuvius volcano using a new three-dimensional velocity model[J]. Gephys J Int,146(2):313–331. doi: 10.1046/j.0956-540x.2001.01444.x

    USGS. 2017. M6.3-109 km SSE of Dostyq, Kazakhstan[EB/OL]. [2017−12−12]. https://earthquak.eusgs.gov/earthquakes/eventpage/us2000a65e#moment-tensor.

    Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm: Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368. doi: 10.1785/0120000006

    Zhu L P,Helmberger D V. 1996. Advancement in source estimation techniques using broadband regional seismograms[J]. Bull Seismol Soc Am,86(5):1634–1641.

图(10)  /  表(4)
计量
  • 文章访问数:  1755
  • HTML全文浏览量:  1242
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-16
  • 修回日期:  2019-02-24
  • 网络出版日期:  2019-05-13
  • 发布日期:  2019-04-30

目录

    /

    返回文章
    返回