汉中盆地及邻区地壳结构和地震活动性研究

危自根, 储日升, 杨小林, 谢军, 田忠华, 凌媛, 董非非

危自根, 储日升, 杨小林, 谢军, 田忠华, 凌媛, 董非非. 2019: 汉中盆地及邻区地壳结构和地震活动性研究. 地震学报, 41(4): 445-458. DOI: 10.11939/jass.20180145
引用本文: 危自根, 储日升, 杨小林, 谢军, 田忠华, 凌媛, 董非非. 2019: 汉中盆地及邻区地壳结构和地震活动性研究. 地震学报, 41(4): 445-458. DOI: 10.11939/jass.20180145
Wei Zigen, Chu Risheng, Yang Xiaolin, Xie Jun, Tian Zhonghua, Ling Yuan, Dong Feifei. 2019: Crustal structure and seismic activity in the Hanzhong basin and its adjacent areas. Acta Seismologica Sinica, 41(4): 445-458. DOI: 10.11939/jass.20180145
Citation: Wei Zigen, Chu Risheng, Yang Xiaolin, Xie Jun, Tian Zhonghua, Ling Yuan, Dong Feifei. 2019: Crustal structure and seismic activity in the Hanzhong basin and its adjacent areas. Acta Seismologica Sinica, 41(4): 445-458. DOI: 10.11939/jass.20180145

汉中盆地及邻区地壳结构和地震活动性研究

基金项目: 国家重点研发计划 “深地资源勘查开采” 重点专项(2016YFC0600402)和国家自然科学基金(41604056)联合资助
详细信息
    通讯作者:

    储日升: e-mail:chur@asch.whigg.ac.cn

  • 中图分类号: P315.2

Crustal structure and seismic activity in the Hanzhong basin and its adjacent areas

  • 摘要: 为了进一步探查汉中盆地的深部动力学机制和孕震构造特征,本文基于背景噪声成像、多频接收函数和面波联合反演以及莫霍面Ps震相时深转换方法反演了汉中盆地及其邻区的地壳S波速度和厚度,并进一步对比分析了研究区深部结构与地震活动性之间的关系。结果表明:汉中盆地不同区域的浅表沉积厚度和速度存在差异;部分区域莫霍面处的速度变化平缓,Ps震相与P震相的振幅比<0.2;汉中盆地内部鲜有地震发生,其周边10 km范围内地震分布主要受到断层控制;4—16 km震源深度上下界面大致对应于低速体底层和高速体顶层。本文获得的非均匀分布的沉积厚度、渐变的壳幔过渡带结构与汉中盆地长期处于秦岭构造带、大巴山褶皱带以及青藏地块交界区的三联点构造位置密切相关。
    Abstract: In order to explore the deep dynamic mechanism and seismogenic structural characteristics in the Hanzhong basin, this paper used the ambient noise tomography, joint inversion of the multi-frequency receiver function and surface wave, and the time-depth conversion method of Ps phase from the Moho to image the crustal S-wave velocity and thickness in the Hanzhong basin and its adjacent areas. Then, we further analyzed the relationship between the crustal structure and seismic activity in the studied region. The results show that the sedimentary thickness and velocity of shallow surface are different in different areas of the Hanzhong basin; in some areas of the studied region Moho surface varies gently with a Ps/P ratio less than 0.2. There are few earthquakes in the Hanzhong basin, and the earthquake distribution within 10 km around the basin is mainly controlled by faults. The upper and lower interfaces of the focal depth (4−16 km) correspond to the bottom of the low-velocity region and the top of the high-velocity region, respectively. The uneven sedimentary thickness and gradual crust-mantle transitional zone obtained in this paper are closely related to the triple junction tectonic position of the Hanzhong basin among the Qinling tectonic belt, the Dabashan folded belt and the Tibetan Plateau. The crustal structure and seismicity characteristics obtained in this paper can provide useful information for the study on the deep dynamic mechanism and seismogenic environment in the Hanzhong basin.
  • 图  1   汉中盆地及其邻区地质构造背景(邓起东等,2002) (a)以及2009年以来的地震和台站分布(b)

    图中红色圆圈为4次M5—5½ 历史地震。F1:勉略断裂;F2:汉中北缘断裂;F3:青川断裂;F4:茶坝—林庵寺断裂;F5:梁山南缘断裂;F6:汉中南缘断裂,下同

    Figure  1.   Regional geological tectonic settings (Deng et al,2003) (a) and distribution of earthquakes since 2009 and stations (b) in the Hanzhong basin and its adjacent regions

    The red circles represent the four historical earthquakes with M5−5½ . F1:Mianlüe fault;F2:Hanzhong north edge fault;F3:Qingchuan fault;F4:Chaba-Lin’ansi fault;F5:Liangshan south edge fault;F6:Hanzhong south edge fault;the same below

    图  2   典型台站对垂直分量波形之间的互相关函数(a),邻域算法反演结果(b),群速度频散曲线(c,黄色线条所示)及其拟合结果(d)

    Figure  2.   Vertical-component cross-correlation functions (a),neighborhood algorithm inversion results (b),group velocity dispersion measurement denoted by the yellow curve (c) and the fitting of group velocity dispersion curves (d) for typical station-pairs

    图  3   汉中盆地及其邻区浅层频散曲线路径覆盖(a)和不同深度hS波速度分布(b−f)

    Figure  3.   Path coverage of dispersion curves (a) and distribution of S-wave velocity at different depths h (b−f) in the Hanzhong basin and its surrounding areas

    (a) h=0.3 km;(b) h=0.7 km;(c) h=1.1 km;(d) h=1.7 km;(e) h=2.5 km;(f) h=3.9 km

    图  4   多频接收函数及面波频散联合反演示例图

    图(a),(b)和(c)分别为典型台站NSHT反演所得S波速度以及接收函数和频散曲线的拟合情况,其中图(b)中F为拟合系数,G为高斯系数,D为平均震中距;图(d)为研究区6个宽频带地震台的联合反演结果

    Figure  4.   The schematic diagrams for the joint inversion of multi-frequency receiver function and surface wave dispersion

    Figs. (a),(b) and (c) show the inverted S-wave velocity,fitting for the receiver functions and dispersion curves for a typical station NSHT. In Fig. (b),FG and D are the fitting coefficient,Gaussian factor and average epicentral distance,respec-tively. Fig. (d) shows the inversion results for six stations equipped with broadband seismometers in the studied region

    图  5   16个台站远震接收函数叠加后的前8 s波形(a)和两个典型台站S22 (b)和LUYA (c)叠加前的接收函数波形

    Figure  5.   The stacked teleseismic receiver functions from −1 s to 8 s for 16 stations (a)and original receiver functions for two typical stations S22 (b) 和LUYA (c)

    图  6   汉中盆地及其邻区地形(a)和地壳厚度(b)

    图(b)中黄色三角形旁边的数字标明该处的地壳厚度值,单位为km

    Figure  6.   Topography (a) and crustal thickness (b) in Hanzhong basin and its adjacent areas

    In Fig.(b),the numbers next to the yellow triangles (stations) show the crustal thickness values with unit of km beneath the stations

    图  7   2009年1月1日至2018年9月1日汉中盆地及其周边10 km范围内的地震分布(a)及最大震级统计分析(b)

    Figure  7.   Distribution of the earthquakes in the Hanzhong basin and its surrounding areas (<10 km) from 1 January 2009 to 1 September 2018 (a) and statistic on corresponding maximum magnitude (b)

    图  8   研究区E−W (a)和WS−EN (b)方向两条典型剖面(位置见图7)下方的地壳S波速度和地震分布(虚线表示从图6中提取的地壳厚度)

    Figure  8.   Distribution of the crustal S-wave velocity and earthquakes beneath the profiles (Fig. 7) in E−W (a) and WS−EN (b) directions,where dashed lines show the crustal thickness extracted from Fig. 6

  • 邓起东,张培震,冉勇康,杨晓平,闵伟,楚全芝. 2002. 中国活动构造基本特征[J]. 中国科学:D辑,32(12):1020–1030.

    Deng Q D,Zhang P Z,Ran Y K,Yang X P,Min W,Chu Q Z. 2003. Basic characteristics of active tectonics of China[J]. Science in China:Series D,46(4):356–372.

    甘卫军,沈正康,张培震,任金卫,万永革,周德敏. 2004. 青藏高原地壳水平差异运动的GPS观测研究[J]. 大地测量与地球动力学,24(1):29–35.

    Gan W J,Shen Z K,Zhang P Z,Ren J W,Wan Y G,Zhou D M. 2004. Horizontal crustal movement of Tibetan Plateau from GPS measurements[J]. Journal of Geodesy and Geodynamics,24(1):29–35 (in Chinese).

    国家测震台网数据备份中心. 2007. 国家测震台网地震波形数据[DB/OL]. 中国地震局地球物理研究所. http://www.seisdmc.ac.cn. doi: 10.11998/SeisDmc/SN.

    Data Management Centre of China National Seismic Network. 2007. Waveform data of China National Seismic Network[DB/OL]. Institute of Geophysics, China Earthquake Administration. http://www.seisdmc.ac.cn. doi:10.11998/SeisDmc/SN (in Chinese).

    国家地震局震害防御司. 1995. 中国历史强震目录(公元前23世纪—公元1911年)[M]. 北京: 地震出版社: 1−514.

    Department of Earthquake Disaster Prevention, State Seismological Bureau. 1995. Catalog of Chinese History Strong Earthquakes From 23rd Century BC to 1911 AD)[M]. Beijing: Seismological Press: 1−514 (in Chinese).

    胡家富,朱雄关,夏静瑜,陈赟. 2005. 利用面波和接收函数联合反演滇西地区壳幔速度结构[J]. 地球物理学报,48(5):1069–1076. doi: 10.3321/j.issn:0001-5733.2005.05.013

    Hu J F,Zhu X G,Xia J Y,Chen Y. 2005. Using surface wave and receiver function to jointly inverse the crust-mantle velocity structure in the west Yunnan area[J]. Chinese Journal of Geophysics,48(5):1069–1076 (in Chinese). doi: 10.1002/cjg2.750

    李晓妮,冯希杰,任隽,李高阳,李苗,王夫运,姬计法. 2013. 陕南汉中盆地西部梁山南缘断裂隐伏段的活动性鉴定[J]. 地震学报,35(4):534–542. doi: 10.3969/j.issn.0253-3782.2013.04.008

    Li X N,Feng X J,Ren J,Li G Y,Li M,Wang F Y,Ji J F. 2013. Activity identification of the buried segment of Liangshan south margin fault in the west of Hanzhong basin[J]. Acta Seismologica Sinica,35(4):534–542 (in Chinese).

    刘启元,李昱,陈九辉,van der Hilst R D,郭飚,王峻,齐少华,李顺成. 2010. 基于贝叶斯理论的接收函数与环境噪声联合反演[J]. 地球物理学报,53(11):2603–2612.

    Liu Q Y,Li Y,Chen J H,van der Hilst R D,Guo B,Wang J,Qi S H,Li S C. 2010. Joint inversion of receiver function and ambient noise based on Bayesian theory[J]. Chinese Journal of Geophysics,53(11):2603–2612 (in Chinese).

    唐明帅,葛粲,郑勇,王海涛. 2013. 短周期地震仪接收函数的可行性分析:以新疆和田地震台阵为例[J]. 地球物理学报,56(8):2670–2680. doi: 10.6038/cjg20130816

    Tang M S,Ge C,Zheng Y,Wang H T. 2013. Feasibility analysis of short-period seismograph receiver function:An example of Hotan Seismic Array,Xinjiang[J]. Chinese Journal of Geophysics,56(8):2670–2680 (in Chinese).

    王明明. 2013. 汉中盆地发育机制及构造演化研究[D]. 北京: 中国地震局地质研究所: 4−8.

    Wang M M. 2013. A Study on Developmental Mechanism and Tectonic Evolution of the Hanzhong Basin[D]. Beijing: Institute of Geology, China Earthquake Administrator: 4−8 (in Chinese).

    徐杰,计凤桔,周本刚. 2012. 有关我国新构造运动起始时间的探讨[J]. 地学前缘,19(5):284–292.

    Xu J,Ji F J,Zhou B G. 2012. On the lower chronological boundary of the Neotectonic period in China[J]. Earth Science Frontiers,19(5):284–292 (in Chinese).

    张国伟,程顺有,郭安林,董云鹏,赖绍聪,姚安平. 2004. 秦岭—大别中央造山系南缘勉略古缝合带的再认识:兼论中国大陆主体的拼合[J]. 地质通报,23(9/10):846–853.

    Zhang G W,Cheng S Y,Guo A L,Dong Y P,Lai S C,Yao A P. 2004. Mianlüe paleo-suture on the southern margin of the Central Orogenic System in Qinling-Dabie:With a discussion of the assembly of the main part of the continent of China[J]. Geological Bulletin of China,23(9/10):846–853 (in Chinese).

    郑秀芬,欧阳飚,张东宁,姚志祥,梁建宏,郑洁. 2009. " 国家数字测震台网数据备份中心”技术系统建设及其对汶川大地震研究的数据支撑[J]. 地球物理学报,52(5):1412–1417. doi: 10.3969/j.issn.0001-5733.2009.05.031

    Zheng X F,Ouyang B,Zhang D N,Yao Z X,Liang J H,Zheng J. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake[J]. Chinese Journal of Geophysics,52(5):1412–1417 (in Chinese). doi: 10.3969/j.issn.0001-5733.2009.05.031

    Aki K, Richards P G. 1980. Quantitative Seismology: Theory and Methods[M]. San Francisco: W. H. Freeman and Company: 133−155.

    Bao X W,Song X D,Xu M J,Wang L S,Sun X X,Mi N,Yu D Y,Li H. 2013. Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications[J]. Earth Planet Sci Lett,369/370:129–137. doi: 10.1016/j.jpgl.2013.03.015

    Bensen G D,Ritzwoller M H,Barmin M P,Levshin A L,Lin F,Moschetti M P,Shapiro N M,Yang Y. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophys J Int,169(3):1239–1260. doi: 10.1111/gji.2007.169.issue-3

    Campillo M, Roux P. 2014. Crust and lithospheric structure: Seismic imaging and monitoring with ambient noise corre-lations[G]//Treatise on Geophysics (2nd ed). Amsterdam: Elsevier: 391–417.

    Chang S J,Baag C E. 2005. Crustal structure in southern Korea from joint analysis of teleseismic receiver functions and surface-wave dispersion[J]. Bull Seismol Soc Am,95(4):1516–1534. doi: 10.1785/0120040080

    Chen Y L,Niu F L,Liu R F,Huang Z B,Tkalčić H,Sun L,Chan W. 2010. Crustal structure beneath China from receiver function analysis[J]. J Geophys Res,115(B3):B03307. doi: 10.1029/2009JB006386

    Ditmar P G, Yanovskaya T B. 1987. A generalization of the Backus-Gilbert method for estimation of lateral variations of surface wave velocity[J]. Izv Akad Nauk SSSIt, Fiz Zemli, 6: 30−60 (in Russian).

    He R Z,Shang X F,Yu C Q,Zhang H J,van der Hilst R D. 2014. A unified map of Moho depth and vP/vS ratio of continental China by receiver function analysis[J]. Geophys J Int,199(3):1910–1918. doi: 10.1093/gji/ggu365

    Herrmann R B. 2013. Computer programs in seismology:An evolving tool for instruction and research[J]. Seismol Res Lett,84(6):1081–1088. doi: 10.1785/0220110096

    Julià J,Ammon C J,Herrmann R B,Correig A M. 2000. Joint inversion of receiver function and surface wave dispersion observations[J]. Geophys J Int,143(1):99–112. doi: 10.1046/j.1365-246x.2000.00217.x

    Laske G, Masters G, Ma Z T, Pasyanos M. 2013. Update on CRUST1.0: A 1-degree global model of Earth’s crust[C]//EGU General Assembly Conference Abstract, Vol. 15. Vienna, Austria: EGU: 2658.

    Li Z W,Ni S D,Zhang B L,Bao F,Zhang S Q,Deng Y,Yuen D A. 2016. Shallow magma chamber under the Wudalianchi Volcanic Field unveiled by seismic imaging with dense array[J]. Geophys Res Lett,43(10):4954–4961. doi: 10.1002/grl.v43.10

    Lin A M,Rao G,Yan B. 2014. Structural analysis of the right-lateral strike-slip Qingchuan fault,northeastern segment of the Longmen Shan thrust belt,central China[J]. J Struct Geol,68:227–244. doi: 10.1016/j.jsg.2014.09.014

    Ling Y,Chen L,Wei Z G,Jiang M M,Wang X. 2017. Crustal S-velocity structure and radial anisotropy beneath the southern part of central and western North China Craton and the adjacent Qilian Orogenic Belt from ambient noise tomography[J]. Science China Earth Science,60(10):1752–1768. doi: 10.1007/s11430-017-9092-8

    Liu Z,Tian X B,Gao R,Wang G C,Wu Z B,Zhou B B,Tan P,Nie S T,Yu G P,Zhu G H,Xu X. 2017. New images of the crustal structure beneath eastern Tibet from a high-density seismic array[J]. Earth Planet Sci Lett,480:33–41. doi: 10.1016/j.jpgl.2017.09.048

    Okay A I,Kaşlılar-Özcan A,Imren C,Boztepe-Güney A,Demirbağ E,Kuşçu İ. 2000. Active faults and evolving strike-slip basins in the Marmara Sea,northwest Turkey:A multichannel seismic reflection study[J]. Tectonophysics,321(2):189–218. doi: 10.1016/S0040-1951(00)00046-9

    Sambridge M. 1999. Geophysical inversion with a neighbourhood algorithm:I. Searching a parameter space[J]. Geophys J Int,138(2):479–494. doi: 10.1046/j.1365-246X.1999.00876.x

    Shen W S,Ritzwoller M H,Kang D,Kim Y H,Lin F C,Ning J Y,Wang W T,Zheng Y,Zhou L Q. 2016. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophys J Int,206(2):954–979. doi: 10.1093/gji/ggw175

    Wang C Y,Sandvol E,Zhu L P,Lou H,Yao Z X,Luo X H. 2014. Lateral variation of crustal structure in the Ordos block and surrounding regions,North China,and its tectonic implications[J]. Earth Planet Sci Lett,387:198–211. doi: 10.1016/j.jpgl.2013.11.033

    Wang W L,Wu J P,Fang L H,Lai G J,Cai Y. 2017. Sedimentary and crustal thicknesses and Poisson’s ratios for the NE Tibetan Plateau and its adjacent regions based on dense seismic arrays[J]. Earth Planet Sci Lett,462:76–85. doi: 10.1016/j.jpgl.2016.12.040

    Wei Z G,Chen L,Xu W W. 2011. Crustal thickness and vP/vS ratio of the central and western North China Craton and its tectonic implications[J]. Geophys J Int,186(2):385–389. doi: 10.1111/j.1365-246X.2011.05089.x

    Wei Z G,Chen L,Wang B Y. 2013. Regional variations in crustal thickness and vP/vS ratio beneath the central-western North China Craton and adjacent regions[J]. Geol J,48(5):531–542. doi: 10.1002/gj.v48.5

    Wei Z G,Chu R S,Chen L. 2015. Regional differences in crustal structure of the North China Craton from receiver functions[J]. Science China Earth Sciences,58(12):2200–2210. doi: 10.1007/s11430-015-5162-y

    Wei Z G,Chen L,Li Z W,Ling Y,Li J. 2016. Regional variation in Moho depth and Poisson’s ratio beneath eastern China and its tectonic implications[J]. J Asian Earth Sci,115:308–320. doi: 10.1016/j.jseaes.2015.10.010

    Xu X W,Wen X Z,Yu G H,Chen G H,Klinger Y,Hubbard J,Shaw J. 2009. Coseismic reverse- and oblique-slip surface faulting generated by the 2008 MW7.9 Wenchuan earthquake,China[J]. Geology,37(6):515–518. doi: 10.1130/G25462A.1

    Yao H J,van der Hilst R D,de Hoop M V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis:I. Phase velocity maps[J]. Geophys J Int,166(2):732–744. doi: 10.1111/gji.2006.166.issue-2

    Zhang P Z,Wen X Z,Shen Z K,Chen J H. 2010. Oblique,high-angle,listric-reverse faulting and associated development of strain:The Wenchuan earthquake of May 12,2008,Sichuan,China[J]. Ann Rev Earth Planet Sci,38:353–382. doi: 10.1146/annurev-earth-040809-152602

图(9)
计量
  • 文章访问数:  1433
  • HTML全文浏览量:  712
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-16
  • 修回日期:  2019-01-28
  • 网络出版日期:  2019-07-25
  • 发布日期:  2019-06-30

目录

    /

    返回文章
    返回