Intensity measures of pulse-like ground motions in the full periods
-
摘要: 鉴于传统的地震动强度表征参数(IM)不能有效地反映速度脉冲型地震动的破坏特征,需要研究能够在全周期段内表征速度脉冲型地震动强度的参数。本文首先从NGA-West2强震数据库中选取了236条速度脉冲记录,分析了42种地震动参数之间的相似性和相关性,初步给出了速度脉冲型地震动强度的表征参数;其次,利用单自由度体系动力时程分析方法,研究了不同延性μ条件下速度脉冲型地震动强度表征参数与最大非线性位移um之间的相关性系数随周期T的变化特征,并通过线性回归和离差分析方法确定了初步给出的速度脉冲型地震动强度表征参数的有效性及其应用范围;最后,将速度脉冲对加速度反应谱的放大系数Af作为速度脉冲型地震动强度表征参数,并验证其有效性。结果表明:① 当0<T<1 s时,Sa(T)作为速度脉冲型地震动强度表征参数的有效性较好;② 当1<T<3 s时,Sa,avg,Sv,avg,PPV,If和PGV作为速度脉冲型地震动强度表征参数的有效性较好;③ 当3<T<6 s时,Sa,avg,Sv,avg,PPV,If,PGV和Sa(T)不宜作为速度脉冲型地震动强度表征参数;④ 当0<T<6 s时,Af作为速度脉冲型地震动强度表征参数的有效性较好,而且,当结构自振周期小于速度脉冲周期时,Af作为速度脉冲型地震动强度表征参数时um的离散性最小。Abstract: Since the traditional ground motion intensity measure (IM) cannot reflect the des-tructive characteristic of the pulse-like ground motion effectively, thus it is crucial to study the pulse-like ground motion’s IM in full periods. In this paper, 236 pulse-like records were selected from the NGA-West2 database, and the similarities and correlativities among the 42 ground motion parameters were studied; meanwhile, the intensity measures of pulse-like ground motion were preliminary confirmed. Secondly, based on the analysis of the dynamic time-history of the single-degree-of-freedom system, the variation features of correlation coefficients between the pulse-like ground motion’s IM and the maximum nonlinear displacement um with period were studied under different ductility μ conditions. The validity of predetermined pulse-like ground motion’s IM were determined by the linear regression and dispersion analysis. Finally, the acceleration response spectrum amplification factor Af was proposed to be the IM parameter considering pulse-like non-station arity, and its validity was further verified. The results show that: ① Sa(T) was more suited to be the IM in the period 0−1 s; ② Sa,avg, Sv,avg, PPV, If and PGV are more suitable as IM than Sa(T) in the period 1−3 s; ③ Sa,avg, Sv,avg, PPV, If, PGV and Sa(T) are not appropriate to be IM in the period 3−6 s; ④ Af is more specifically suitable to be the parameter of pulse-like ground motion’s IM in the period 0−6 s. And when the natural vibration period of the structure was less than pulse-like period, um has the minimum dispersion with the Af as the IM.
-
Keywords:
- pulse-like /
- intensity measure /
- validity /
- acceleration response spectrum /
- amplification factor
-
-
表 1 本文所用236条速度脉冲记录的基本信息
Table 1 The information of 236 pulse-like velocity recordings used in this paper
震级范围 N Rrup/km Vp/(cm·s−1) Tp/s vS30/(m·s−1) 5.0≤MW<6.0 16 3—17 23—93 0.2—4.4 190—665 6.0≤MW<7.0 138 0.1—78 24—155 0.3—6.9 139—2 017 7.0≤MW<8.0 82 0.3—93 27—342 0.8—13.2 141—1 370 注:表中N表示速度脉冲记录个数,Rrup表示断层距,Vp表示速度脉冲幅值,Tp表示脉冲周期,vS30表示场地30 m平均剪切波速。 表 2 42种地震动参数
Table 2 42 ground motion parameters
编号 名称 标识符 编号 名称 标识符 编号 名称 标识符 1 脉冲周期 Tp 15 速度反应谱均值 Sv,avg 29 阿里亚斯强度 IA 2 脉冲幅值 Vp 16 位移反应谱均值 Sd,avg 30 修正的阿里亚斯强度 Imia 3 脉冲因子 PI 17 有效峰值加速度 EPA 31 Faifar指标 If 4 线性组合系数 PC 18 有效峰值速度 EPV 32 累积绝对速度 CAV 5 最大正负速度峰值差 PPV 19 有效峰值位移 EPD 33 累积绝对位移 CAD 6 脉冲循环数 Ncycles 20 豪斯纳强度 SI 34 累积绝对动力 CAI 7 归一化累计平方速度差 NCSVdiff 21 峰值速度/峰值加速度 V/A 35 Nau和Hall指标 Vrs 8 地震动峰值加速度 PGA 22 Mackie地震动谱强度 ASI 36 Nau和Hall指标 Drs 9 地震动峰值速度 PGV 23 Mackie地震动谱强度 VSI 37 地震动均方根强度指标 RMSa 10 地震动峰值位移 PGD 24 Mackie地震动谱强度 DSI 38 地震动均方根强度指标 RMSv 11 加速度反应谱峰值 Sa,max 25 峰值位移/峰值速度 D/V 39 地震动均方根强度指标 RMSd 12 速度反应谱峰值 Sv,max 26 加速度反应谱卓越周期 Tpa 40 Park-Ang指标 Ic 13 位移反应谱峰值 Sd,max 27 特征周期 Tg 41 最大增量速度 MIV 14 加速度反应谱均值 Sa,avg 28 括号持时 Td 42 最大增量位移 MID 注:表中42种地震动参数的计算方法及意义详见杨迪雄等(2005)、叶列平等(2009)、Haselton等(2012)和陈波(2013). -
陈波. 2013. 结构非线性动力分析中地震动记录的选择和调整方法研究[D]. 北京: 中国地震局地球物理研究所: 13−25. Chen B. 2013. Ground Motion Selection and Modification Methods for Performing Nonlinear Dynamic Analysis of Buildings[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 13−25 (in Chinese).
陈波,谢俊举,温增平. 2013. 汶川地震近断层地震动作用下结构地震响应特征分析[J]. 地震学报,35(2):250–261. doi: 10.3969/j.issn.0253-3782.2013.02.011 Chen B,Xie J J,Wen Z P. 2013. Analysis of the seismic response characteristics of building structures subjected to near-fault ground motions from Wenchuan earthquake[J]. Acta Seismologica Sinica,35(2):250–261 (in Chinese).
陈健云,李静,韩进财,徐强. 2017. 地震动强度指标与框架结构响应的相关性研究[J]. 振动与冲击,36(3):105–112. Chen J Y,Li J,Han J C,Xu Q. 2017. Correlation between ground motion intensity indexes and seismic responses of frame structures[J]. Journal of Vibration and Shock,36(3):105–112 (in Chinese).
李雪红,李晔暄,吴迪,徐秀丽,李枝军. 2014. 地震动强度指标与结构地震响应的相关性研究[J]. 振动与冲击,33(23):184–189. Li X H,Li Y X,Wu D,Xu X L,Li Z J. 2014. Correlation between ground motion intensity and structural seismic response[J]. Journal of Vibration and Shock,33(23):184–189 (in Chinese).
宋帅,钱永久,吴刚. 2016. 地震动参数之间的距离分析及相关分析[J]. 地震工程与工程振动,36(4):170–176. Song S,Qian Y J,Wu G. 2016. Correlation and distance analysis of ground motion measures[J]. Earthquake Engineering and Engineering Dynamics,36(4):170–176 (in Chinese).
王建民,朱晞. 2006. 地面运动强度度量参数与双线性单自由度系统变形需求的相关性研究[J]. 地震学报,28(1):76–84. doi: 10.3321/j.issn:0253-3782.2006.01.010 Wang J M,Zhu X. 2006. Correlation study between ground motion intensity measure parameters and deformation demands for bilinear SDOF systems[J]. Acta Seismologica Sinica,28(1):76–84 (in Chinese).
王亚楠,刘星,杜永峰. 2018. 地震动强度指标与隔震等效SDOF体系远场长周期地震位移响应的相关性研究[J]. 地震工程与工程振动,38(3):94–102. Wang Y N,Liu X,Du Y F. 2018. Correlation research on the seismic intensity measures and seismic responses of isolated equivalent SDOF system under far-field long-period ground motions[J]. Earthquake Engineering and Engineering Dynamics,38(3):94–102 (in Chinese).
谢俊举,李小军,温增平. 2017. 近断层速度大脉冲对反应谱的放大作用[J]. 工程力学,34(8):194–211. Xie J J,Li X J,Wen Z P. 2017. The amplification effects of near-fault distinct velocity pulses on response spectra[J]. Engineering Mechanics,34(8):194–211 (in Chinese).
杨迪雄,李刚,程耿东. 2005. 近断层脉冲型地震动作用下隔震结构地震反应分析[J]. 地震工程与工程振动,25(2):119–124. doi: 10.3969/j.issn.1000-1301.2005.02.021 Yang D X,Li G,Cheng G D. 2005. Seismic analysis of base-isolated structures subjected to near-fault pulse-like ground motions[J]. Earthquake Engineering and Engineering Vibration,25(2):119–124 (in Chinese).
叶列平,马千里,缪志伟. 2009. 结构抗震分析用地震动强度指标的研究[J]. 地震工程与工程振动,29(4):9–22. Ye L P,Ma Q L,Miao Z W. 2009. Study on earthquake intensities for seismic analysis of structures[J]. Journal of Earthquake Engineering and Engineering Vibration,29(4):9–22 (in Chinese).
赵晓芬. 2015. 近断层地震动速度脉冲的识别方法及对隔震结构的影响研究[D]. 哈尔滨: 中国地震局工程力学研究所: 7−30. Zhao X F. 2015. Study on Strong Motion Velocity Pulse Identification Method and Influence on Isolated Structures[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 7−30 (in Chinese).
周靖,陈凯亮,罗高杰. 2010. 速度脉冲型地震地面运动强度表征参数评估[J]. 振动与冲击,29(7):153–158. doi: 10.3969/j.issn.1000-3835.2010.07.034 Zhou J,Chen K L,Luo G J. 2010. Evaluation of intensity measures for pulse-like earthquake ground motions[J]. Journal of Vibration and Shock,29(7):153–158 (in Chinese).
Abrahamson N A. 1988. Statistical properties of peak ground accelerations recorded by the SMART-1 array[J]. Bull Seismol Soc Am,78(1):26–41.
Baker J W, Cornell A. 2004. Choice of a vector of ground motion intensity measures for seismic demand hazard analysis[C]//Proceedings of the 13th World Conference on Earthquake Engineering. [2018−12−12]. http://web.stanford.edu/~bakerjw/Publications/Baker%20Cornell%20(2004)%2013WCEE%20Manuscript.pdf.
Baker J W,Cornell C A. 2006. Spectral shape,epsilon and record selection[J]. Earthq Eng Struct Dyn,35(9):1077–1095.
Baker J W. 2007. Quantitative classification of near-fault ground motions using wavelet analysis[J]. Bull Seismol Soc Am,97(5):1486–1501. doi: 10.1785/0120060255
Baker J W,Cornell C A. 2008. Vector-valued intensity measures for pulse-like near-fault ground motions[J]. Eng Struct,30(4):1048–1057.
Baker J W. 2011. Conditional mean spectrum:Tool for ground-motion selection[J]. J Struct Eng,137(3):322–331.
Haselton C B, Whittaker A S, Hortacsu A, Baker J W, Bray J, Grant D N. 2012. Selecting and scaling earthquake ground motions for performing response-history analysis[C]//Proceedings of the 15th World Conference on Earthquake Engineering. [2018−12−12]. https://ws680.nist.gov/publication/get_pdf.cfm?pub_id=915482.
Kadas K,Yakut A,Kazaz I. 2011. Spectral ground motion intensity based on capacity and period elongation[J]. J Struct Eng,137(3):401–409.
Kostinakis K,Athanatopoulou A,Morfidis K. 2015. Correlation between ground motion intensity measures and seismic damage of 3D R/C buildings[J]. Eng Struct,82:151–167.
Luco N,Cornell C A. 2007. Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions[J]. Earthq Spectra,23(2):357–392.
Shahi S K, Baker J W. 2013. A Probabilistic Framework to Include the Effects of Near-Fault Directivity in Seismic Hazard Assessment[D]. Berkeley: Pacific Earthquake Engineering Research Center, University of California: 26−27.
Shome N,Cornell C A,Bazzurro P,Carballo J E. 1998. Earthquakes,records,and nonlinear responses[J]. Earthq Spectra,14(3):469–500. doi: 10.1193/1.1586011
Tothong P,Cornell C A. 2008. Structural performance assessment under near-source pulse-like ground motions using advanced ground motion intensity measures[J]. Earthq Eng Struct Dyn,37(7):1013–1037.
Yang D X,Zhou J L. 2015. A stochastic model and synthesis for near-fault impulsive groundmotions[J]. Earthq Eng Struct Dyn,44(2):243–264.