适用于全周期结构的速度脉冲型地震动强度表征参数研究

赵晓芬, 温增平, 陈波, 刘奕君

赵晓芬, 温增平, 陈波, 刘奕君. 2019: 适用于全周期结构的速度脉冲型地震动强度表征参数研究. 地震学报, 41(4): 536-547. DOI: 10.11939/jass.20190002
引用本文: 赵晓芬, 温增平, 陈波, 刘奕君. 2019: 适用于全周期结构的速度脉冲型地震动强度表征参数研究. 地震学报, 41(4): 536-547. DOI: 10.11939/jass.20190002
Zhao Xiaofen, Wen Zengping, Chen Bo, Liu Yijun. 2019: Intensity measures of pulse-like ground motions in the full periods. Acta Seismologica Sinica, 41(4): 536-547. DOI: 10.11939/jass.20190002
Citation: Zhao Xiaofen, Wen Zengping, Chen Bo, Liu Yijun. 2019: Intensity measures of pulse-like ground motions in the full periods. Acta Seismologica Sinica, 41(4): 536-547. DOI: 10.11939/jass.20190002

适用于全周期结构的速度脉冲型地震动强度表征参数研究

基金项目: 国家重点研发项目(2017YFC1500405)和国家自然科学基金(51378477,51508527,51408561)共同资助
详细信息
    通讯作者:

    温增平: e-mail:wenzp@cea-igp.ac.cn

  • 中图分类号: P315.9

Intensity measures of pulse-like ground motions in the full periods

  • 摘要: 鉴于传统的地震动强度表征参数(IM)不能有效地反映速度脉冲型地震动的破坏特征,需要研究能够在全周期段内表征速度脉冲型地震动强度的参数。本文首先从NGA-West2强震数据库中选取了236条速度脉冲记录,分析了42种地震动参数之间的相似性和相关性,初步给出了速度脉冲型地震动强度的表征参数;其次,利用单自由度体系动力时程分析方法,研究了不同延性μ条件下速度脉冲型地震动强度表征参数与最大非线性位移um之间的相关性系数随周期T的变化特征,并通过线性回归和离差分析方法确定了初步给出的速度脉冲型地震动强度表征参数的有效性及其应用范围;最后,将速度脉冲对加速度反应谱的放大系数Af作为速度脉冲型地震动强度表征参数,并验证其有效性。结果表明:① 当0<T<1 s时,SaT)作为速度脉冲型地震动强度表征参数的有效性较好;② 当1<T<3 s时,Sa,avgSv,avg,PPV,If和PGV作为速度脉冲型地震动强度表征参数的有效性较好;③ 当3<T<6 s时,Sa,avgSv,avg,PPV,If,PGV和SaT)不宜作为速度脉冲型地震动强度表征参数;④ 当0<T<6 s时,Af作为速度脉冲型地震动强度表征参数的有效性较好,而且,当结构自振周期小于速度脉冲周期时,Af作为速度脉冲型地震动强度表征参数时um的离散性最小。
    Abstract: Since the traditional ground motion intensity measure (IM) cannot reflect the des-tructive characteristic of the pulse-like ground motion effectively, thus it is crucial to study the pulse-like ground motion’s IM in full periods. In this paper, 236 pulse-like records were selected from the NGA-West2 database, and the similarities and correlativities among the 42 ground motion parameters were studied; meanwhile, the intensity measures of pulse-like ground motion were preliminary confirmed. Secondly, based on the analysis of the dynamic time-history of the single-degree-of-freedom system, the variation features of correlation coefficients between the pulse-like ground motion’s IM and the maximum nonlinear displacement um with period were studied under different ductility μ conditions. The validity of predetermined pulse-like ground motion’s IM were determined by the linear regression and dispersion analysis. Finally, the acceleration response spectrum amplification factor Af was proposed to be the IM parameter considering pulse-like non-station arity, and its validity was further verified. The results show that: ① SaT) was more suited to be the IM in the period 0−1 s; ② Sa,avg, Sv,avg, PPV, If and PGV are more suitable as IM than SaT) in the period 1−3 s; ③ Sa,avg, Sv,avg, PPV, If, PGV and SaT) are not appropriate to be IM in the period 3−6 s; ④ Af is more specifically suitable to be the parameter of pulse-like ground motion’s IM in the period 0−6 s. And when the natural vibration period of the structure was less than pulse-like period, um has the minimum dispersion with the Af as the IM.
  • 图  1   双线性本构模型

    Figure  1.   Bilinear constitutive model

    图  2   地震动参数间距离之和的平均值

    Figure  2.   The average of the sum of distance between ground motion parameters

    图  3   地震动参数的秩相关系数的绝对值之和

    Figure  3.   The sum of absolute values of rank correlation coefficients of ground motion parameters

    图  4   地震动参数间皮尔森相关系数绝对值和

    Figure  4.   The sum of absolute values of Pearson correlation coefficients of ground motion parameters

    图  5   不同延性系数水平时IM与um的相关性变化趋势

    Figure  5.   The variation trend of the correlation coefficients between IM and um under different ductility coefficients levels

    图  6   不同延性系数水平时选取Sa,avgSv,avg,PPV,If,PGV作为IM的um的对数标准偏差

    Figure  6.   The logarithmic standard deviation of um under different ductility coefficients levels when Sa,avgSv,avg,PPV,If,and PGV are taken as IM,respectively

    图  7   不同延性系数时标准差随周期(a)和周期与脉冲周期之比的变化趋势(b)

    Figure  7.   The variation of the standard deviation with period (a) and the ratio of the period to the pulse period (b) for different ductility coefficient

    表  1   本文所用236条速度脉冲记录的基本信息

    Table  1   The information of 236 pulse-like velocity recordings used in this paper

    震级范围NRrup/kmVp/(cm·s−1Tp/svS30/(m·s−1
    5.0≤MW<6.0163—1723—930.2—4.4190—665
    6.0≤MW<7.01380.1—7824—1550.3—6.9139—2 017
    7.0≤MW<8.0820.3—9327—3420.8—13.2141—1 370
      注:表中N表示速度脉冲记录个数,Rrup表示断层距,Vp表示速度脉冲幅值,Tp表示脉冲周期,vS30表示场地30 m平均剪切波速。
    下载: 导出CSV

    表  2   42种地震动参数

    Table  2   42 ground motion parameters

    编号名称标识符编号名称标识符编号名称标识符
    1脉冲周期Tp15速度反应谱均值Sv,avg29阿里亚斯强度IA
    2脉冲幅值Vp16位移反应谱均值Sd,avg30修正的阿里亚斯强度Imia
    3脉冲因子PI17有效峰值加速度EPA31Faifar指标If
    4线性组合系数PC18有效峰值速度EPV32累积绝对速度CAV
    5最大正负速度峰值差PPV19有效峰值位移EPD33累积绝对位移CAD
    6脉冲循环数Ncycles20豪斯纳强度SI34累积绝对动力CAI
    7归一化累计平方速度差NCSVdiff21峰值速度/峰值加速度V/A35Nau和Hall指标Vrs
    8地震动峰值加速度PGA22Mackie地震动谱强度ASI36Nau和Hall指标Drs
    9地震动峰值速度PGV23Mackie地震动谱强度VSI37地震动均方根强度指标RMSa
    10地震动峰值位移PGD24Mackie地震动谱强度DSI38地震动均方根强度指标RMSv
    11加速度反应谱峰值Sa,max25峰值位移/峰值速度D/V39地震动均方根强度指标RMSd
    12速度反应谱峰值Sv,max26加速度反应谱卓越周期Tpa40Park-Ang指标Ic
    13位移反应谱峰值Sd,max27特征周期Tg41最大增量速度MIV
    14加速度反应谱均值Sa,avg28括号持时Td42最大增量位移MID
     注:表中42种地震动参数的计算方法及意义详见杨迪雄等(2005)叶列平等(2009)Haselton等(2012)陈波(2013).
    下载: 导出CSV
  • 陈波. 2013. 结构非线性动力分析中地震动记录的选择和调整方法研究[D]. 北京: 中国地震局地球物理研究所: 13−25.

    Chen B. 2013. Ground Motion Selection and Modification Methods for Performing Nonlinear Dynamic Analysis of Buildings[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 13−25 (in Chinese).

    陈波,谢俊举,温增平. 2013. 汶川地震近断层地震动作用下结构地震响应特征分析[J]. 地震学报,35(2):250–261. doi: 10.3969/j.issn.0253-3782.2013.02.011

    Chen B,Xie J J,Wen Z P. 2013. Analysis of the seismic response characteristics of building structures subjected to near-fault ground motions from Wenchuan earthquake[J]. Acta Seismologica Sinica,35(2):250–261 (in Chinese).

    陈健云,李静,韩进财,徐强. 2017. 地震动强度指标与框架结构响应的相关性研究[J]. 振动与冲击,36(3):105–112.

    Chen J Y,Li J,Han J C,Xu Q. 2017. Correlation between ground motion intensity indexes and seismic responses of frame structures[J]. Journal of Vibration and Shock,36(3):105–112 (in Chinese).

    李雪红,李晔暄,吴迪,徐秀丽,李枝军. 2014. 地震动强度指标与结构地震响应的相关性研究[J]. 振动与冲击,33(23):184–189.

    Li X H,Li Y X,Wu D,Xu X L,Li Z J. 2014. Correlation between ground motion intensity and structural seismic response[J]. Journal of Vibration and Shock,33(23):184–189 (in Chinese).

    宋帅,钱永久,吴刚. 2016. 地震动参数之间的距离分析及相关分析[J]. 地震工程与工程振动,36(4):170–176.

    Song S,Qian Y J,Wu G. 2016. Correlation and distance analysis of ground motion measures[J]. Earthquake Engineering and Engineering Dynamics,36(4):170–176 (in Chinese).

    王建民,朱晞. 2006. 地面运动强度度量参数与双线性单自由度系统变形需求的相关性研究[J]. 地震学报,28(1):76–84. doi: 10.3321/j.issn:0253-3782.2006.01.010

    Wang J M,Zhu X. 2006. Correlation study between ground motion intensity measure parameters and deformation demands for bilinear SDOF systems[J]. Acta Seismologica Sinica,28(1):76–84 (in Chinese).

    王亚楠,刘星,杜永峰. 2018. 地震动强度指标与隔震等效SDOF体系远场长周期地震位移响应的相关性研究[J]. 地震工程与工程振动,38(3):94–102.

    Wang Y N,Liu X,Du Y F. 2018. Correlation research on the seismic intensity measures and seismic responses of isolated equivalent SDOF system under far-field long-period ground motions[J]. Earthquake Engineering and Engineering Dynamics,38(3):94–102 (in Chinese).

    谢俊举,李小军,温增平. 2017. 近断层速度大脉冲对反应谱的放大作用[J]. 工程力学,34(8):194–211.

    Xie J J,Li X J,Wen Z P. 2017. The amplification effects of near-fault distinct velocity pulses on response spectra[J]. Engineering Mechanics,34(8):194–211 (in Chinese).

    杨迪雄,李刚,程耿东. 2005. 近断层脉冲型地震动作用下隔震结构地震反应分析[J]. 地震工程与工程振动,25(2):119–124. doi: 10.3969/j.issn.1000-1301.2005.02.021

    Yang D X,Li G,Cheng G D. 2005. Seismic analysis of base-isolated structures subjected to near-fault pulse-like ground motions[J]. Earthquake Engineering and Engineering Vibration,25(2):119–124 (in Chinese).

    叶列平,马千里,缪志伟. 2009. 结构抗震分析用地震动强度指标的研究[J]. 地震工程与工程振动,29(4):9–22.

    Ye L P,Ma Q L,Miao Z W. 2009. Study on earthquake intensities for seismic analysis of structures[J]. Journal of Earthquake Engineering and Engineering Vibration,29(4):9–22 (in Chinese).

    赵晓芬. 2015. 近断层地震动速度脉冲的识别方法及对隔震结构的影响研究[D]. 哈尔滨: 中国地震局工程力学研究所: 7−30.

    Zhao X F. 2015. Study on Strong Motion Velocity Pulse Identification Method and Influence on Isolated Structures[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 7−30 (in Chinese).

    周靖,陈凯亮,罗高杰. 2010. 速度脉冲型地震地面运动强度表征参数评估[J]. 振动与冲击,29(7):153–158. doi: 10.3969/j.issn.1000-3835.2010.07.034

    Zhou J,Chen K L,Luo G J. 2010. Evaluation of intensity measures for pulse-like earthquake ground motions[J]. Journal of Vibration and Shock,29(7):153–158 (in Chinese).

    Abrahamson N A. 1988. Statistical properties of peak ground accelerations recorded by the SMART-1 array[J]. Bull Seismol Soc Am,78(1):26–41.

    Baker J W, Cornell A. 2004. Choice of a vector of ground motion intensity measures for seismic demand hazard analysis[C]//Proceedings of the 13th World Conference on Earthquake Engineering. [2018−12−12]. http://web.stanford.edu/~bakerjw/Publications/Baker%20Cornell%20(2004)%2013WCEE%20Manuscript.pdf.

    Baker J W,Cornell C A. 2006. Spectral shape,epsilon and record selection[J]. Earthq Eng Struct Dyn,35(9):1077–1095.

    Baker J W. 2007. Quantitative classification of near-fault ground motions using wavelet analysis[J]. Bull Seismol Soc Am,97(5):1486–1501. doi: 10.1785/0120060255

    Baker J W,Cornell C A. 2008. Vector-valued intensity measures for pulse-like near-fault ground motions[J]. Eng Struct,30(4):1048–1057.

    Baker J W. 2011. Conditional mean spectrum:Tool for ground-motion selection[J]. J Struct Eng,137(3):322–331.

    Haselton C B, Whittaker A S, Hortacsu A, Baker J W, Bray J, Grant D N. 2012. Selecting and scaling earthquake ground motions for performing response-history analysis[C]//Proceedings of the 15th World Conference on Earthquake Engineering. [2018−12−12]. https://ws680.nist.gov/publication/get_pdf.cfm?pub_id=915482.

    Kadas K,Yakut A,Kazaz I. 2011. Spectral ground motion intensity based on capacity and period elongation[J]. J Struct Eng,137(3):401–409.

    Kostinakis K,Athanatopoulou A,Morfidis K. 2015. Correlation between ground motion intensity measures and seismic damage of 3D R/C buildings[J]. Eng Struct,82:151–167.

    Luco N,Cornell C A. 2007. Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions[J]. Earthq Spectra,23(2):357–392.

    Shahi S K, Baker J W. 2013. A Probabilistic Framework to Include the Effects of Near-Fault Directivity in Seismic Hazard Assessment[D]. Berkeley: Pacific Earthquake Engineering Research Center, University of California: 26−27.

    Shome N,Cornell C A,Bazzurro P,Carballo J E. 1998. Earthquakes,records,and nonlinear responses[J]. Earthq Spectra,14(3):469–500. doi: 10.1193/1.1586011

    Tothong P,Cornell C A. 2008. Structural performance assessment under near-source pulse-like ground motions using advanced ground motion intensity measures[J]. Earthq Eng Struct Dyn,37(7):1013–1037.

    Yang D X,Zhou J L. 2015. A stochastic model and synthesis for near-fault impulsive groundmotions[J]. Earthq Eng Struct Dyn,44(2):243–264.

图(7)  /  表(2)
计量
  • 文章访问数:  1141
  • HTML全文浏览量:  578
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-06
  • 修回日期:  2019-02-14
  • 网络出版日期:  2019-07-31
  • 发布日期:  2019-06-30

目录

    /

    返回文章
    返回