青藏高原中东部地壳和上地幔顶部P波层析成像

张戈铭, 李细兵, 郑晨, 宋晓东

张戈铭, 李细兵, 郑晨, 宋晓东. 2019: 青藏高原中东部地壳和上地幔顶部P波层析成像. 地震学报, 41(4): 411-424. DOI: 10.11939/jass.20190003
引用本文: 张戈铭, 李细兵, 郑晨, 宋晓东. 2019: 青藏高原中东部地壳和上地幔顶部P波层析成像. 地震学报, 41(4): 411-424. DOI: 10.11939/jass.20190003
Zhang Geming, Li Xibing, Zheng Chen, Song Xiaodong. 2019: Crustal and uppermost mantle velocity structure beneath the central-eastern Tibetan Plateau from P-wave tomography. Acta Seismologica Sinica, 41(4): 411-424. DOI: 10.11939/jass.20190003
Citation: Zhang Geming, Li Xibing, Zheng Chen, Song Xiaodong. 2019: Crustal and uppermost mantle velocity structure beneath the central-eastern Tibetan Plateau from P-wave tomography. Acta Seismologica Sinica, 41(4): 411-424. DOI: 10.11939/jass.20190003

青藏高原中东部地壳和上地幔顶部P波层析成像

基金项目: 国家自然科学基金(41774056,41704046)资助
详细信息
    通讯作者:

    宋晓东: e-mail:xiao.d.song@gmail.com

  • 中图分类号: P315.2

Crustal and uppermost mantle velocity structure beneath the central-eastern Tibetan Plateau from P-wave tomography

  • 摘要: 为获取青藏高原中东部地壳和上地幔顶部的精细结构,本文基于1万4 484条天然地震的P波(Pg和Pn)到时数据,对青藏高原中东部地壳和上地幔顶部进行P波三维速度结构层析成像,获取了该区域内地壳P波、上地幔顶部Pn波的速度结构和地壳厚度信息。层析成像结果显示,青藏高原中东部地壳P波速度范围为5.2—7.2 km/s,上地幔顶部Pn波速度范围为7.7—8.4 km/s,地壳厚度范围为48.0—68.6 km,地壳和上地幔顶部存在强烈的横向不均匀性,与地质块体分布有较好的对应关系。地壳P波速度结构显示,研究区中、下地壳分布有较大范围的低速区,上地壳与中下地壳P波分布存在明显的差异:羌塘地块和巴颜喀拉地块在上地壳主要表现为高速异常,随着深度增加逐渐表现为低速异常;而柴达木地块在上地壳主要表现为低速异常,下地壳则表现为高速异常;柴达木地块和拉萨地块在上地幔顶部表现为较高的Pn波速度,最高约为8.4 km/s,而在巴颜喀拉地块和羌塘地块东部,Pn波总体上表现为低速,最低约为7.7 km/s。研究区内地壳厚度的总体特征表现为南厚北薄,其中羌塘地块东部和拉萨地块的地壳较厚,而柴达木地块和巴颜喀拉地块东部的地壳相对较薄,羌塘地块西部存在局部的地壳变薄现象,反映了印度板块对欧亚板块北向俯冲作用下的岩石圈变形特征。
    Abstract: Based on joint inversion with 14 484 P-wave (Pg and Pn) first arrival times, we obtained regional 3-D P velocity structure beneath the central-eastern Tibetan Plateau, including crustal P velocity, uppermost mantle P (Pn) velocity, and Moho depth. The results show that the crustal P velocity ranges from 5.2 to 7.2 km/s, the Pn velocity ranges from 7.7 to 8.4 km/s, and the crustal thickness ranges from 48.0 to 68.6 km. The crustal and uppermost mantle structure is strongly heterogeneous, which generally correlates with geologic blocks. The crustal P velocity structure shows that prominent low velocity zones exist in the middle and lower crust. There are great difference in the distribution of high and low velocity anomalies between upper crust and mid-lower crust. High velocity anomalies primarily exist in the upper crust of the Qiangtang block and the Baryan Har block, while become lower as depth increases. The Qaidam basin shows low velocity anomaly in the upper crust while high in the lower crust. High Pn velocity exists in the Qaidam basin and the Lhasa block with a maximum velocity of about 8.4 km/s, while the Baryan Har block and the Qiangtang block mainly show low Pn velocity anomalies, which reach as low as 7.7 km/s. Crustal thickness is mainly characterized by thick in the south and thin in the north. The crust is thicker in the eastern Qiangtang block and the Lhasa block, while thinner in the Qaidam basin, the eastern Baryan Har block and the western part of the Qiangtang block, which shows the characteristics of lithospheric deformation due to the northward subduction from the Indian Plate to the Eurasian Plate.
  • 图  1   研究区地质概况及各台网台站分布

    Figure  1.   Topography of the study region and distribution of stations of seismic networks

    图  2   2008年12月18日ML5.1地震事件的初至波走时拾取效果

    该事件的震中位置为(96.47°E,36.78°N),震源深度为0 km,相对走时为每条地震记录相对于初至波的走时

    Figure  2.   First arrival time picks from an ML5.1 earthquake on December 18,2008

    The epicentre of the event is (96.47°E,36.78°N) with a focal depth of 0 km. Travel times are relative to first arrivals

    图  3   一维模型及其初始模型

    Figure  3.   One-dimensional model and its initial model

    图  4   联合反演射线覆盖

    Figure  4.   Ray coverage of joint inversion

    图  5   联合反演的残差分析和走时分布

    (a) 反演前后走时残差随震中距的分布;(b) 反演前后各震中距范围内走时残差的标准差分布;(c) 联合反演前后走时残差数量分布及其高斯分布拟合曲线;(d) 折合走时(td/0.065)分布

    Figure  5.   Residual analysis and travel time distribution of joint inversion

    (a) Travel time residual distribution before and after inversion;(b) Standard deviations of travel time residuals with different epicentral distance before and after inversion;(c) Histogram of residuals and its Gaussian distribution fitting before and after inversion;(d) Reduced time by 0.065 degree per second

    图  6   1.5°×1.5°网格下的检测板检测

    Figure  6.   Checkerboard test with squares of 1.5 degree by degree

    图  7   地壳Pg波速度结构和上地幔顶部Pn波速度结构

    各子图右下角给出了相应深度的P波平均速度,速度扰动相对于该层平均速度

    Figure  7.   Velocity structure of Pg and Pn waves

    The velocity perturbation in each layer is related to the average velocity given in the lower-right corner of the sub-figures

    图  8   青藏高原中东部的莫霍面深度分布

    Figure  8.   Distribution of Moho depth of the central-eastern Tibetan Plateau

  • 邓起东,程绍平,马冀,杜鹏. 2014. 青藏高原地震活动特征及当前地震活动形势[J]. 地球物理学报,57(7):2025–2042. doi: 10.6038/cjg20140701

    Deng Q D,Cheng S P,Ma J,Du P. 2014. Seismic activities and earthquake potential in the Tibetan Plateau[J]. Chinese Journal of Geophysics,57(7):2025–2042 (in Chinese).

    范文渊,陈永顺,唐有彩,周仕勇,冯永革,岳汉,王海洋,金戈,魏松峤,王彦宾,盖增喜,宁杰远. 2015. 青藏高原东部和周边地区地壳速度结构的背景噪声层析成像[J]. 地球物理学报,58(5):1568–1583. doi: 10.6038/cjg20150510

    Fan W Y,Chen Y S,Tang Y C,Zhou S Y,Feng Y G,Yue H,Wang H Y,Jin G,Wei S Q,Wang Y B,Ge Z X,Ning J Y. 2015. Crust and upper mantle velocity structure of the eastern Tibetan Plateau and adjacent regions from ambient noise tomography[J]. Chinese Journal of Geophysics,58(5):1568–1583 (in Chinese).

    高锐,熊小松,李秋生,卢占武. 2009. 由地震探测揭示的青藏高原莫霍面深度[J]. 地球学报,30(6):761–773. doi: 10.3321/j.issn:1006-3021.2009.06.008

    Gao R,Xiong X S,Li Q S,Lu Z W. 2009. The Moho depth of Qinghai-Tibet Plateau revealed by seismic detection[J]. Acta Geoscientica Sinica,30(6):761–773 (in Chinese).

    黄忠贤,李红谊,胥颐. 2013. 南北地震带岩石圈 S 波速度结构面波层析成像[J]. 地球物理学报,56(4):1121–1131. doi: 10.6038/cjg20130408

    Huang Z X,Li H Y,Xu Y. 2013. Lithospheric S-wave velocity structure of the North-South Seismic Belt of China from surface wave tomography[J]. Chinese Journal of Geophysics,56(4):1121–1131 (in Chinese).

    金胜,魏文博,汪硕,叶高峰,邓明,谭捍东. 2010. 青藏高原地壳高导层的成因及动力学意义探讨:大地电磁探测提供的证据[J]. 地球物理学报,53(10):2376–2385.

    Jin S,Wei W B,Wang S,Ye G F,Deng M,Tan H D. 2010. Discussion of the formation and dynamic signification of the high conductive layer in Tibetan crust[J]. Chinese Journal of Geophysics,53(10):2376–2385 (in Chinese).

    李鹏,李振洪,施闯,冯万鹏,梁存任,李陶,曾琪明,刘经南. 2013. 大地水准面高对InSAR大范围地壳形变监测的影响分析[J]. 地球物理学报,56(6):1857–1867. doi: 10.6038/cjg20130608

    Li P,Li Z H,Shi C,Feng W P,Liang C R,Li T,Zeng Q M,Liu J N. 2013. Impacts of geoid height on large-scale crustal deformation mapping with InSAR observations[J]. Chinese Journal of Geophysics,56(6):1857–1867 (in Chinese).

    黎源,雷建设. 2012. 青藏高原东缘上地幔顶部Pn波速度结构及各向异性研究[J]. 地球物理学报,55(11):3615–3624. doi: 10.6038/j.issn.0001-5733.2012.11.010

    Li Y,Lei J S. 2012. Velocity and anisotropy structure of the uppermost mantle under the eastern Tibetan Plateau inferred from Pn tomography[J]. Chinese Journal of Geophysics,55(11):3615–3624 (in Chinese).

    王海洋,Hearn T,陈永顺,裴顺平,冯永革,岳汉,金戈,周仕勇,王彦宾,盖增喜,宁杰远,Sandvol E,Ni J. 2013. 青藏高原东部的Pn波层析成像研究[J]. 地球物理学报,56(2):472–480. doi: 10.6038/cjg20130211

    Wang H Y,Hearn T,Chen Y S,Pei S P,Feng Y G,Yue H,Jin G,Zhou S Y,Wang Y B,Ge Z X,Ning J Y,Sandvol E,Ni J. 2013. Pn wave tomography of eastern Tibetan Plateau[J]. Chinese Journal of Geophysics,56(2):472–480 (in Chinese).

    汪素云,许忠淮,裴顺平. 2003. 华北地区上地幔顶部Pn波速度结构及其构造含义[J]. 中国科学:D辑,33(B04):91–98.

    Wang S Y,Xu Z H,Pei S P. 2003. Velocity structure of uppermost mantle beneath North China from Pn tomography and its implications[J]. Science in China:Series D,46(S2):130–140.

    杨文采,侯遵泽,于常青. 2015. 青藏高原地壳的三维密度结构和物质运动[J]. 地球物理学报,58(11):4223–4234.

    Yang W C,Hou Z Z,Yu C Q. 2015. Three-dimensional density structure of the Tibetan Plateau and crustal mass movement[J]. Chinese Journal of Geophysics,58(11):4223–4234 (in Chinese).

    叶卓,高锐,李秋生,徐啸,黄兴富,熊小松,李文辉. 2018. 青藏高原向东挤出与向北扩展:高原隆升深部过程之探讨[J]. 科学通报,63(31):3217–3228.

    Ye Z,Gao R,Li Q S,Xu X,Huang X F,Xiong X S,Li W H. 2018. Eastward extrusion and northward expansion of the Tibetan Plateau:Discussions for the deep processes of the plateau uplift[J]. Chinese Science Bulletin,63(31):3217–3228 (in Chinese). doi: 10.1360/N972018-00478

    钟世军,吴建平,房立华,王未来,范莉苹,王怀富. 2017. 青藏高原东北缘及周边地区基于程函方程的面波层析成像[J]. 地球物理学报,60(6):2304–2314. doi: 10.6038/cjg20170622

    Zhong S J,Wu J P,Fang L H,Wang W L,Fang L P,Wang H F. 2017. Surface wave Eikonal tomography in and around the northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics,60(6):2304–2314 (in Chinese).

    Allmendinger R W,Reilinger R,Loveless J. 2007. Strain and rotation rate from GPS in Tibet,Anatolia,and the Altiplano[J]. Tectonics,26(3):TC3013. doi: 10.1029/2006TC002030

    Bai D H,Unsworth M J,Meju M A,Ma X B,Teng J W,Kong X R,Sun Y,Sun J,Wang L F,Jiang C S,Zhao C P,Xiao P F,Liu M. 2010. Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging[J]. Nat Geosci,3(5):358–362. doi: 10.1038/ngeo830

    Bao X Y,Sandvol E,Ni J,Hearn T,Chen Y J,Shen Y. 2011. High resolution regional seismic attenuation tomography in eastern Tibetan Plateau and adjacent regions[J]. Geophys Res Lett,38(16):L16304. doi: 10.1029/2011GL048012

    Bao X W,Song X D,Li J T. 2015. High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography[J]. Earth Planet Sci Lett,417:132–141. doi: 10.1016/j.jpgl.2015.02.024

    Black P R,Braile L W. 1982. Pn velocity and cooling of the continental lithosphere[J]. J Geophys Res,87(B13):10557–10568. doi: 10.1029/JB087iB13p10557

    Ceylan S,Ni J,Chen J Y,Zhang Q,Tilmann F,Sandvol E. 2012. Fragmented Indian Plate and vertically coherent deformation beneath eastern Tibet[J]. J Geophys Res,117(B11):B11303. doi: 10.1029/2012JB009210

    Chen M,Niu F L,Liu Q Y,Tromp J,Zheng X F. 2015. Multiparameter adjoint tomography of the crust and upper mantle beneath East Asia:1. Model construction and comparisons[J]. J Geophys Res,120(3):1762–1786. doi: 10.1002/2014JB011638

    Chen M,Niu F L,Tromp J,Lenardic A,Lee CT A,Cao W R,Ribeiro J. 2017. Lithospheric foundering and underthrusting imaged beneath Tibet[J]. Nat Commun,8:15659. doi: 10.1038/ncomms15659

    Chen Z,Burchfiel B C,Liu Y,King R W,Royden L H,Tang W,Wang E,Zhao J,Zhang X. 2000. Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation[J]. J Geophys Res,105(B7):16215–16227. doi: 10.1029/2000JB900092

    Chung S L,Liu D Y,Ji J Q,Chu M F,Lee H Y,Wen D J,Lo C H,Lee T Y,Qian Q,Zhang Q. 2003. Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet[J]. Geology,31(11):1021–1024. doi: 10.1130/G19796.1

    Garthwaite M C,Wang H,Wright T J. 2013. Broadscale interseismic deformation and fault slip rates in the central Tibetan Plateau observed using InSAR[J]. J Geophys Res,118(9):5071–5083. doi: 10.1002/jgrb.50348

    Godin L,Grujic D,Law R D,Searle M P. 2006. Channel flow,ductile extrusion and exhumation in continental collision zones:An introduction[J]. Geological Society,London,Special Publications,268(1):1–23. doi: 10.1144/GSL.SP.2006.268.01.01

    Grujic D. 2006. Channel flow and continental collision tectonics:An overview[J]. Geological Society,London,Special Publications,268(1):25–37. doi: 10.1144/GSL.SP.2006.268.01.02

    Hao M,Freymueller J T,Wang Q L,Cui D X,Qin S L. 2016. Vertical crustal movement around the southeastern Tibetan Plateau constrained by GPS and GRACE data[J]. Earth Planet Sci Lett,437:1–8. doi: 10.1016/j.jpgl.2015.12.038

    Harris N. 2007. Channel flow and the Himalayan-Tibetan orogen:A critical review[J]. J Geol Soc,164(3):511–523.

    Holt W E,Ni J F,Wallace T C,Haines A J. 1991. The active tectonics of the eastern Himalayan syntaxis and surrounding regions[J]. J Geophys Res,96(B9):14595–14632. doi: 10.1029/91JB01021

    Huang H H,Xu Z J,Wu Y M,Song X D,Huang B S,Nguyen L M. 2013. First local seismic tomography for Red River shear zone,northern Vietnam:Stepwise inversion employing crustal P and Pn waves[J]. Tectonophysics,584:230–239. doi: 10.1016/j.tecto.2012.03.030

    Huang Z C,Wang P,Zhao D P,Wang L S,Xu M J. 2014. Three-dimensional P wave azimuthal anisotropy in the lithosphere beneath China[J]. J Geophys Res,119(7):5686–5712. doi: 10.1002/2014JB010963

    Jiang C X,Yang Y J,Zheng Y. 2014. Penetration of mid-crustal low velocity zone across the Kunlun fault in the NE Tibetan Plateau revealed by ambient noise tomography[J]. Earth Planet Sci Lett,406:81–92. doi: 10.1016/j.jpgl.2014.08.040

    Koketsu K,Sekine S. 1998. Pseudo-bending method for three-dimensional seismic ray tracing in a spherical earth with disconti-nuities[J]. Geophys J Int,132(2):339–346. doi: 10.1046/j.1365-246x.1998.00427.x

    Le Pape F,Jones A G,Vozar J,Wei W B. 2012. Penetration of crustal melt beyond the Kunlun fault into northern Tibet[J]. Nat Geosci,5(5):330–335. doi: 10.1038/ngeo1449

    Lei J S,Li Y,Xie F R,Teng J W,Zhang G W,Sun C Q,Zha X H. 2014. Pn anisotropic tomography and dynamics under eastern Tibetan Plateau[J]. J Geophys Res,119(3):2174–2198. doi: 10.1002/2013JB010847

    Lei J S,Zhao D P. 2016. Teleseismic P-wave tomography and mantle dynamics beneath eastern Tibet[J]. Geochem Geophys Geosyst,17(5):1861–1884. doi: 10.1002/2016GC006262

    Lévěque J J,Rivera L,Wittlinger G. 1993. On the use of the checker-board test to assess the resolution of tomographic inversions[J]. Geophys J Int,115(1):313–318. doi: 10.1111/gji.1993.115.issue-1

    Li H Y,Li S,Song X D,Gong M,Li X,Jia J. 2012. Crustal and uppermost mantle velocity structure beneath northwestern China from seismic ambient noise tomography[J]. Geophys J Int,188(1):131–143. doi: 10.1111/gji.2012.188.issue-1

    Li J T,Song X D. 2018. Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet[J]. Proc Natl Acad Sci USA,115(33):8296–8300. doi: 10.1073/pnas.1717258115

    Li X B,Song X D,Li J T. 2017. Pn tomography of South China Sea,Taiwan Island,Philippine archipelago,and adjacent regions[J]. J Geophys Res,122(2):1350–1366. doi: 10.1002/jgrb.v122.2

    Liang C T,Song X D. 2006. A low velocity belt beneath northern and eastern Tibetan Plateau from Pn tomography[J]. Geophys Res Lett,33(22):L22306. doi: 10.1029/2006GL027926

    Liang C T,Song X D,Huang J L. 2004. Tomographic inversion of Pn travel times in China[J]. J Geophys Res,109(B11):B11304. doi: 10.1029/2003JB002789

    Liu S,Hu R Z,Feng C X,Zou H B,Li C,Chi X G,Peng J T,Zhong H,Qi L,Qi Y Q,Wang T. 2008. Cenozoic high Sr/Y volcanic rocks in the Qiangtang terrane,northern Tibet:Geochemical and isotopic evidence for the origin of delaminated lower continental melts[J]. Geol Mag,145(4):463–474. doi: 10.1017/S0016756808004548

    Long X P,Wilde S A,Wang Q,Yuan C,Wang X C,Li J,Jiang Z Q,Dan W. 2015. Partial melting of thickened continental crust in central Tibet:Evidence from geochemistry and geochronology of Eocene adakitic rhyolites in the northern Qiangtang terrane[J]. Earth Planet Sci Lett,414:30–44. doi: 10.1016/j.jpgl.2015.01.007

    Lü Y,Ni S D,Chen L,Chen Q F. 2017. Pn tomography with Moho depth correction from eastern Europe to western China[J]. J Geophys Res,122(2):1284–1301. doi: 10.1002/jgrb.v122.2

    Mechie J,Zhao W,Karplus M S,Wu Z,Meissner R,Shi D,Klemperer S L,Su H,Kind R,Xue G,Brown L D. 2012. Crustal shear (S) velocity and Poisson’s ratio structure along the INDEPTH Ⅳ profile in northeast Tibet as derived from wide-angle seismic data[J]. Geophys J Int,191(2):369–384. doi: 10.1111/gji.2012.191.issue-2

    Molnar P,Tapponnier P. 1975. Cenozoic tectonics of Asia:Effects of a continental collision[J]. Science,189(4201):419–426. doi: 10.1126/science.189.4201.419

    Nelson K D,Zhao W J,Brown L D,Kuo J,Che J K,Liu X W,Klemperer S L,Makovsky Y,Meissner R,Mechie J,Kind R,Wenzel F,Ni J,Nabelek J,Leshou C,Tan H,Wei W,Jones A G,Booker J,Unsworth M,Kidd W S F,Hauck M,Alsdorf D,Ross A,Cogan M,Wu C,Sandvol E,Edwards M. 1996. Partially molten middle crust beneath southern Tibet:Synthesis of project INDEPTH results[J]. Science,274(5293):1684–1688. doi: 10.1126/science.274.5293.1684

    Owens T J,Zandt G. 1997. Implications of crustal property variations for models of Tibetan Plateau evolution[J]. Nature,387(6628):37–43. doi: 10.1038/387037a0

    Paige C C,Saunders M A. 1982a. Algorithm 583:LSQR:Sparse linear equations and least squares problems[J]. ACM T Math Software,8(2):195–209. doi: 10.1145/355993.356000

    Paige C C,Saunders M A. 1982b. LSQR:An algorithm for sparse linear equations and sparse least squares[J]. ACM T Math Software,8(1):43–71. doi: 10.1145/355984.355989

    Pandey S,Yuan X H,Debayle E,Tilmann F,Priestley K,Li X Q. 2015. Depth-variant azimuthal anisotropy in Tibet revealed by surface wave tomography[J]. Geophys Res Lett,42(11):4326–4334. doi: 10.1002/2015GL063921

    Shin Y H,Xu H Z,Braitenberg C,Fang J,Wang Y. 2007. Moho undulations beneath Tibet from GRACE-integrated gravity data[J]. Geophys J Int,170(3):971–985. doi: 10.1111/gji.2007.170.issue-3

    Shin Y H,Shum C K,Braitenberg C,Lee S M,Na S H,Choi K S,Hsu H,Park Y S,Lim M. 2015. Moho topography,ranges and folds of Tibet by analysis of global gravity models and GOCE data[J]. Sci Rep,5:11681. doi: 10.1038/srep11681

    Tian X B,Liu Z,Si S K,Zhang Z J. 2014. The crustal thickness of NE Tibet and its implication for crustal shortening[J]. Tectonophysics,634:198–207. doi: 10.1016/j.tecto.2014.07.001

    Wang Q,Zhang P Z,Freymueller J T,Bilham R,Larson K M,Lai X A,You X Z,Niu Z J,Wu J C,Li Y X,Liu J N,Yang Z Q,Chen Q Z. 2001. Present-day crustal deformation in China constrained by Global Positioning System measurements[J]. Science,294(5542):574–577. doi: 10.1126/science.1063647

    Wang Q,Zhu D C,Zhao Z D,Liu S A,Chung S L,Li S M,Liu D,Dai J G,Wang L Q,Mo X X. 2014. Origin of the ca. 90 Ma magnesia-rich volcanic rocks in SE Nyima,central Tibet:Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone[J]. Lithos,198/199:24–37. doi: 10.1016/j.lithos.2014.03.019

    Xu Z J,Song X D. 2010. Joint inversion for crustal and Pn velocities and Moho depth in eastern margin of the Tibetan Plateau[J]. Tectonophysics,491(1/4):185–193.

    Yang Y J,Zheng Y,Chen J,Zhou S Y,Celyan S,Sandvol E,Tilmann F,Priestley K,Hearn T M,Ni J F,Brown L D,Ritzwoller M H. 2010. Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography[J]. Geochem Geophys Geosyst,11(8):Q08010. doi: 10.1029/2010GC003119

    Yang Y J,Ritzwoller M H,Zheng Y,Shen W S,Levshin A L,Xie Z J. 2012. A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet[J]. J Geophys Res,117(B4):B04303. doi: 10.1029/2011JB008810

    Yao H J,van der Hilst R D,de Hoop M V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis:I. Phase velocity maps[J]. Geophys J Int,166(2):732–744. doi: 10.1111/gji.2006.166.issue-2

    Yin A,Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annu Rev Earth Planet Sci,28(1):211–280. doi: 10.1146/annurev.earth.28.1.211

    Yue H,Chen Y J,Sandvol E,Ni J,Hearn T,Zhou S Y,Feng Y G,Ge Z X,Trujillo A,Wang Y B,Jin G,Jiang M M,Tang Y C,Liang X F,Wei S Q,Wang H Y,Fan W Y,Liu Z. 2012. Lithospheric and upper mantle structure of the northeastern Tibetan Plateau[J]. J Geophys Res,117:B5307. doi: 10.1029/2011JB008545

    Zhang H,Zhao J M,Xu Q. 2012. Crustal and upper mantle velocity structure beneath central Tibet by P-wave teleseismic tomography[J]. Geophys J Int,190(3):1325–1334. doi: 10.1111/gji.2012.190.issue-3

    Zhang P Z,Shen Z K,Wang M,Gan W J,Bürgmann R,Molnar P,Wang Q,Niu Z J,Sun J Z,Wu J C,Sun H R,You X Z. 2004. Continuous deformation of the Tibetan Plateau from Global Positioning System data[J]. Geology,32(9):809–812. doi: 10.1130/G20554.1

    Zhao L F,Xie X B,He J K,Tian X B,Yao Z X. 2013. Crustal flow pattern beneath the Tibetan Plateau constrained by regional Lg-wave Q tomography[J]. Earth Planet Sci Lett,383:113–122. doi: 10.1016/j.jpgl.2013.09.038

    Zhao W L,Amelung F,Doin M P,Dixon T H,Wdowinski S,Lin G Q. 2016. InSAR observations of lake loading at Yangzhuo-yong Lake,Tibet:Constraints on crustal elasticity[J]. Earth Planet Sci Lett,449:240–245. doi: 10.1016/j.jpgl.2016.05.044

    Zhou Z G,Lei J S. 2016. Pn anisotropic tomography and mantle dynamics beneath China[J]. Phys Earth Planet Inter,257:193–204. doi: 10.1016/j.pepi.2016.06.005

图(9)
计量
  • 文章访问数:  1516
  • HTML全文浏览量:  609
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-07
  • 修回日期:  2019-03-28
  • 网络出版日期:  2019-09-01
  • 发布日期:  2019-06-30

目录

    /

    返回文章
    返回