Crustal and uppermost mantle velocity structure beneath the central-eastern Tibetan Plateau from P-wave tomography
-
摘要: 为获取青藏高原中东部地壳和上地幔顶部的精细结构,本文基于1万4 484条天然地震的P波(Pg和Pn)到时数据,对青藏高原中东部地壳和上地幔顶部进行P波三维速度结构层析成像,获取了该区域内地壳P波、上地幔顶部Pn波的速度结构和地壳厚度信息。层析成像结果显示,青藏高原中东部地壳P波速度范围为5.2—7.2 km/s,上地幔顶部Pn波速度范围为7.7—8.4 km/s,地壳厚度范围为48.0—68.6 km,地壳和上地幔顶部存在强烈的横向不均匀性,与地质块体分布有较好的对应关系。地壳P波速度结构显示,研究区中、下地壳分布有较大范围的低速区,上地壳与中下地壳P波分布存在明显的差异:羌塘地块和巴颜喀拉地块在上地壳主要表现为高速异常,随着深度增加逐渐表现为低速异常;而柴达木地块在上地壳主要表现为低速异常,下地壳则表现为高速异常;柴达木地块和拉萨地块在上地幔顶部表现为较高的Pn波速度,最高约为8.4 km/s,而在巴颜喀拉地块和羌塘地块东部,Pn波总体上表现为低速,最低约为7.7 km/s。研究区内地壳厚度的总体特征表现为南厚北薄,其中羌塘地块东部和拉萨地块的地壳较厚,而柴达木地块和巴颜喀拉地块东部的地壳相对较薄,羌塘地块西部存在局部的地壳变薄现象,反映了印度板块对欧亚板块北向俯冲作用下的岩石圈变形特征。Abstract: Based on joint inversion with 14 484 P-wave (Pg and Pn) first arrival times, we obtained regional 3-D P velocity structure beneath the central-eastern Tibetan Plateau, including crustal P velocity, uppermost mantle P (Pn) velocity, and Moho depth. The results show that the crustal P velocity ranges from 5.2 to 7.2 km/s, the Pn velocity ranges from 7.7 to 8.4 km/s, and the crustal thickness ranges from 48.0 to 68.6 km. The crustal and uppermost mantle structure is strongly heterogeneous, which generally correlates with geologic blocks. The crustal P velocity structure shows that prominent low velocity zones exist in the middle and lower crust. There are great difference in the distribution of high and low velocity anomalies between upper crust and mid-lower crust. High velocity anomalies primarily exist in the upper crust of the Qiangtang block and the Baryan Har block, while become lower as depth increases. The Qaidam basin shows low velocity anomaly in the upper crust while high in the lower crust. High Pn velocity exists in the Qaidam basin and the Lhasa block with a maximum velocity of about 8.4 km/s, while the Baryan Har block and the Qiangtang block mainly show low Pn velocity anomalies, which reach as low as 7.7 km/s. Crustal thickness is mainly characterized by thick in the south and thin in the north. The crust is thicker in the eastern Qiangtang block and the Lhasa block, while thinner in the Qaidam basin, the eastern Baryan Har block and the western part of the Qiangtang block, which shows the characteristics of lithospheric deformation due to the northward subduction from the Indian Plate to the Eurasian Plate.
-
Keywords:
- P velocity structure /
- tomography /
- central-eastern Tibetan Plateau /
- joint inversion
-
-
图 5 联合反演的残差分析和走时分布
(a) 反演前后走时残差随震中距的分布;(b) 反演前后各震中距范围内走时残差的标准差分布;(c) 联合反演前后走时残差数量分布及其高斯分布拟合曲线;(d) 折合走时(t−d/0.065)分布
Figure 5. Residual analysis and travel time distribution of joint inversion
(a) Travel time residual distribution before and after inversion;(b) Standard deviations of travel time residuals with different epicentral distance before and after inversion;(c) Histogram of residuals and its Gaussian distribution fitting before and after inversion;(d) Reduced time by 0.065 degree per second
-
邓起东,程绍平,马冀,杜鹏. 2014. 青藏高原地震活动特征及当前地震活动形势[J]. 地球物理学报,57(7):2025–2042. doi: 10.6038/cjg20140701 Deng Q D,Cheng S P,Ma J,Du P. 2014. Seismic activities and earthquake potential in the Tibetan Plateau[J]. Chinese Journal of Geophysics,57(7):2025–2042 (in Chinese).
范文渊,陈永顺,唐有彩,周仕勇,冯永革,岳汉,王海洋,金戈,魏松峤,王彦宾,盖增喜,宁杰远. 2015. 青藏高原东部和周边地区地壳速度结构的背景噪声层析成像[J]. 地球物理学报,58(5):1568–1583. doi: 10.6038/cjg20150510 Fan W Y,Chen Y S,Tang Y C,Zhou S Y,Feng Y G,Yue H,Wang H Y,Jin G,Wei S Q,Wang Y B,Ge Z X,Ning J Y. 2015. Crust and upper mantle velocity structure of the eastern Tibetan Plateau and adjacent regions from ambient noise tomography[J]. Chinese Journal of Geophysics,58(5):1568–1583 (in Chinese).
高锐,熊小松,李秋生,卢占武. 2009. 由地震探测揭示的青藏高原莫霍面深度[J]. 地球学报,30(6):761–773. doi: 10.3321/j.issn:1006-3021.2009.06.008 Gao R,Xiong X S,Li Q S,Lu Z W. 2009. The Moho depth of Qinghai-Tibet Plateau revealed by seismic detection[J]. Acta Geoscientica Sinica,30(6):761–773 (in Chinese).
黄忠贤,李红谊,胥颐. 2013. 南北地震带岩石圈 S 波速度结构面波层析成像[J]. 地球物理学报,56(4):1121–1131. doi: 10.6038/cjg20130408 Huang Z X,Li H Y,Xu Y. 2013. Lithospheric S-wave velocity structure of the North-South Seismic Belt of China from surface wave tomography[J]. Chinese Journal of Geophysics,56(4):1121–1131 (in Chinese).
金胜,魏文博,汪硕,叶高峰,邓明,谭捍东. 2010. 青藏高原地壳高导层的成因及动力学意义探讨:大地电磁探测提供的证据[J]. 地球物理学报,53(10):2376–2385. Jin S,Wei W B,Wang S,Ye G F,Deng M,Tan H D. 2010. Discussion of the formation and dynamic signification of the high conductive layer in Tibetan crust[J]. Chinese Journal of Geophysics,53(10):2376–2385 (in Chinese).
李鹏,李振洪,施闯,冯万鹏,梁存任,李陶,曾琪明,刘经南. 2013. 大地水准面高对InSAR大范围地壳形变监测的影响分析[J]. 地球物理学报,56(6):1857–1867. doi: 10.6038/cjg20130608 Li P,Li Z H,Shi C,Feng W P,Liang C R,Li T,Zeng Q M,Liu J N. 2013. Impacts of geoid height on large-scale crustal deformation mapping with InSAR observations[J]. Chinese Journal of Geophysics,56(6):1857–1867 (in Chinese).
黎源,雷建设. 2012. 青藏高原东缘上地幔顶部Pn波速度结构及各向异性研究[J]. 地球物理学报,55(11):3615–3624. doi: 10.6038/j.issn.0001-5733.2012.11.010 Li Y,Lei J S. 2012. Velocity and anisotropy structure of the uppermost mantle under the eastern Tibetan Plateau inferred from Pn tomography[J]. Chinese Journal of Geophysics,55(11):3615–3624 (in Chinese).
王海洋,Hearn T,陈永顺,裴顺平,冯永革,岳汉,金戈,周仕勇,王彦宾,盖增喜,宁杰远,Sandvol E,Ni J. 2013. 青藏高原东部的Pn波层析成像研究[J]. 地球物理学报,56(2):472–480. doi: 10.6038/cjg20130211 Wang H Y,Hearn T,Chen Y S,Pei S P,Feng Y G,Yue H,Jin G,Zhou S Y,Wang Y B,Ge Z X,Ning J Y,Sandvol E,Ni J. 2013. Pn wave tomography of eastern Tibetan Plateau[J]. Chinese Journal of Geophysics,56(2):472–480 (in Chinese).
汪素云,许忠淮,裴顺平. 2003. 华北地区上地幔顶部Pn波速度结构及其构造含义[J]. 中国科学:D辑,33(B04):91–98. Wang S Y,Xu Z H,Pei S P. 2003. Velocity structure of uppermost mantle beneath North China from Pn tomography and its implications[J]. Science in China:Series D,46(S2):130–140.
杨文采,侯遵泽,于常青. 2015. 青藏高原地壳的三维密度结构和物质运动[J]. 地球物理学报,58(11):4223–4234. Yang W C,Hou Z Z,Yu C Q. 2015. Three-dimensional density structure of the Tibetan Plateau and crustal mass movement[J]. Chinese Journal of Geophysics,58(11):4223–4234 (in Chinese).
叶卓,高锐,李秋生,徐啸,黄兴富,熊小松,李文辉. 2018. 青藏高原向东挤出与向北扩展:高原隆升深部过程之探讨[J]. 科学通报,63(31):3217–3228. Ye Z,Gao R,Li Q S,Xu X,Huang X F,Xiong X S,Li W H. 2018. Eastward extrusion and northward expansion of the Tibetan Plateau:Discussions for the deep processes of the plateau uplift[J]. Chinese Science Bulletin,63(31):3217–3228 (in Chinese). doi: 10.1360/N972018-00478
钟世军,吴建平,房立华,王未来,范莉苹,王怀富. 2017. 青藏高原东北缘及周边地区基于程函方程的面波层析成像[J]. 地球物理学报,60(6):2304–2314. doi: 10.6038/cjg20170622 Zhong S J,Wu J P,Fang L H,Wang W L,Fang L P,Wang H F. 2017. Surface wave Eikonal tomography in and around the northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics,60(6):2304–2314 (in Chinese).
Allmendinger R W,Reilinger R,Loveless J. 2007. Strain and rotation rate from GPS in Tibet,Anatolia,and the Altiplano[J]. Tectonics,26(3):TC3013. doi: 10.1029/2006TC002030
Bai D H,Unsworth M J,Meju M A,Ma X B,Teng J W,Kong X R,Sun Y,Sun J,Wang L F,Jiang C S,Zhao C P,Xiao P F,Liu M. 2010. Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging[J]. Nat Geosci,3(5):358–362. doi: 10.1038/ngeo830
Bao X Y,Sandvol E,Ni J,Hearn T,Chen Y J,Shen Y. 2011. High resolution regional seismic attenuation tomography in eastern Tibetan Plateau and adjacent regions[J]. Geophys Res Lett,38(16):L16304. doi: 10.1029/2011GL048012
Bao X W,Song X D,Li J T. 2015. High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography[J]. Earth Planet Sci Lett,417:132–141. doi: 10.1016/j.jpgl.2015.02.024
Black P R,Braile L W. 1982. Pn velocity and cooling of the continental lithosphere[J]. J Geophys Res,87(B13):10557–10568. doi: 10.1029/JB087iB13p10557
Ceylan S,Ni J,Chen J Y,Zhang Q,Tilmann F,Sandvol E. 2012. Fragmented Indian Plate and vertically coherent deformation beneath eastern Tibet[J]. J Geophys Res,117(B11):B11303. doi: 10.1029/2012JB009210
Chen M,Niu F L,Liu Q Y,Tromp J,Zheng X F. 2015. Multiparameter adjoint tomography of the crust and upper mantle beneath East Asia:1. Model construction and comparisons[J]. J Geophys Res,120(3):1762–1786. doi: 10.1002/2014JB011638
Chen M,Niu F L,Tromp J,Lenardic A,Lee CT A,Cao W R,Ribeiro J. 2017. Lithospheric foundering and underthrusting imaged beneath Tibet[J]. Nat Commun,8:15659. doi: 10.1038/ncomms15659
Chen Z,Burchfiel B C,Liu Y,King R W,Royden L H,Tang W,Wang E,Zhao J,Zhang X. 2000. Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation[J]. J Geophys Res,105(B7):16215–16227. doi: 10.1029/2000JB900092
Chung S L,Liu D Y,Ji J Q,Chu M F,Lee H Y,Wen D J,Lo C H,Lee T Y,Qian Q,Zhang Q. 2003. Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet[J]. Geology,31(11):1021–1024. doi: 10.1130/G19796.1
Garthwaite M C,Wang H,Wright T J. 2013. Broadscale interseismic deformation and fault slip rates in the central Tibetan Plateau observed using InSAR[J]. J Geophys Res,118(9):5071–5083. doi: 10.1002/jgrb.50348
Godin L,Grujic D,Law R D,Searle M P. 2006. Channel flow,ductile extrusion and exhumation in continental collision zones:An introduction[J]. Geological Society,London,Special Publications,268(1):1–23. doi: 10.1144/GSL.SP.2006.268.01.01
Grujic D. 2006. Channel flow and continental collision tectonics:An overview[J]. Geological Society,London,Special Publications,268(1):25–37. doi: 10.1144/GSL.SP.2006.268.01.02
Hao M,Freymueller J T,Wang Q L,Cui D X,Qin S L. 2016. Vertical crustal movement around the southeastern Tibetan Plateau constrained by GPS and GRACE data[J]. Earth Planet Sci Lett,437:1–8. doi: 10.1016/j.jpgl.2015.12.038
Harris N. 2007. Channel flow and the Himalayan-Tibetan orogen:A critical review[J]. J Geol Soc,164(3):511–523.
Holt W E,Ni J F,Wallace T C,Haines A J. 1991. The active tectonics of the eastern Himalayan syntaxis and surrounding regions[J]. J Geophys Res,96(B9):14595–14632. doi: 10.1029/91JB01021
Huang H H,Xu Z J,Wu Y M,Song X D,Huang B S,Nguyen L M. 2013. First local seismic tomography for Red River shear zone,northern Vietnam:Stepwise inversion employing crustal P and Pn waves[J]. Tectonophysics,584:230–239. doi: 10.1016/j.tecto.2012.03.030
Huang Z C,Wang P,Zhao D P,Wang L S,Xu M J. 2014. Three-dimensional P wave azimuthal anisotropy in the lithosphere beneath China[J]. J Geophys Res,119(7):5686–5712. doi: 10.1002/2014JB010963
Jiang C X,Yang Y J,Zheng Y. 2014. Penetration of mid-crustal low velocity zone across the Kunlun fault in the NE Tibetan Plateau revealed by ambient noise tomography[J]. Earth Planet Sci Lett,406:81–92. doi: 10.1016/j.jpgl.2014.08.040
Koketsu K,Sekine S. 1998. Pseudo-bending method for three-dimensional seismic ray tracing in a spherical earth with disconti-nuities[J]. Geophys J Int,132(2):339–346. doi: 10.1046/j.1365-246x.1998.00427.x
Le Pape F,Jones A G,Vozar J,Wei W B. 2012. Penetration of crustal melt beyond the Kunlun fault into northern Tibet[J]. Nat Geosci,5(5):330–335. doi: 10.1038/ngeo1449
Lei J S,Li Y,Xie F R,Teng J W,Zhang G W,Sun C Q,Zha X H. 2014. Pn anisotropic tomography and dynamics under eastern Tibetan Plateau[J]. J Geophys Res,119(3):2174–2198. doi: 10.1002/2013JB010847
Lei J S,Zhao D P. 2016. Teleseismic P-wave tomography and mantle dynamics beneath eastern Tibet[J]. Geochem Geophys Geosyst,17(5):1861–1884. doi: 10.1002/2016GC006262
Lévěque J J,Rivera L,Wittlinger G. 1993. On the use of the checker-board test to assess the resolution of tomographic inversions[J]. Geophys J Int,115(1):313–318. doi: 10.1111/gji.1993.115.issue-1
Li H Y,Li S,Song X D,Gong M,Li X,Jia J. 2012. Crustal and uppermost mantle velocity structure beneath northwestern China from seismic ambient noise tomography[J]. Geophys J Int,188(1):131–143. doi: 10.1111/gji.2012.188.issue-1
Li J T,Song X D. 2018. Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet[J]. Proc Natl Acad Sci USA,115(33):8296–8300. doi: 10.1073/pnas.1717258115
Li X B,Song X D,Li J T. 2017. Pn tomography of South China Sea,Taiwan Island,Philippine archipelago,and adjacent regions[J]. J Geophys Res,122(2):1350–1366. doi: 10.1002/jgrb.v122.2
Liang C T,Song X D. 2006. A low velocity belt beneath northern and eastern Tibetan Plateau from Pn tomography[J]. Geophys Res Lett,33(22):L22306. doi: 10.1029/2006GL027926
Liang C T,Song X D,Huang J L. 2004. Tomographic inversion of Pn travel times in China[J]. J Geophys Res,109(B11):B11304. doi: 10.1029/2003JB002789
Liu S,Hu R Z,Feng C X,Zou H B,Li C,Chi X G,Peng J T,Zhong H,Qi L,Qi Y Q,Wang T. 2008. Cenozoic high Sr/Y volcanic rocks in the Qiangtang terrane,northern Tibet:Geochemical and isotopic evidence for the origin of delaminated lower continental melts[J]. Geol Mag,145(4):463–474. doi: 10.1017/S0016756808004548
Long X P,Wilde S A,Wang Q,Yuan C,Wang X C,Li J,Jiang Z Q,Dan W. 2015. Partial melting of thickened continental crust in central Tibet:Evidence from geochemistry and geochronology of Eocene adakitic rhyolites in the northern Qiangtang terrane[J]. Earth Planet Sci Lett,414:30–44. doi: 10.1016/j.jpgl.2015.01.007
Lü Y,Ni S D,Chen L,Chen Q F. 2017. Pn tomography with Moho depth correction from eastern Europe to western China[J]. J Geophys Res,122(2):1284–1301. doi: 10.1002/jgrb.v122.2
Mechie J,Zhao W,Karplus M S,Wu Z,Meissner R,Shi D,Klemperer S L,Su H,Kind R,Xue G,Brown L D. 2012. Crustal shear (S) velocity and Poisson’s ratio structure along the INDEPTH Ⅳ profile in northeast Tibet as derived from wide-angle seismic data[J]. Geophys J Int,191(2):369–384. doi: 10.1111/gji.2012.191.issue-2
Molnar P,Tapponnier P. 1975. Cenozoic tectonics of Asia:Effects of a continental collision[J]. Science,189(4201):419–426. doi: 10.1126/science.189.4201.419
Nelson K D,Zhao W J,Brown L D,Kuo J,Che J K,Liu X W,Klemperer S L,Makovsky Y,Meissner R,Mechie J,Kind R,Wenzel F,Ni J,Nabelek J,Leshou C,Tan H,Wei W,Jones A G,Booker J,Unsworth M,Kidd W S F,Hauck M,Alsdorf D,Ross A,Cogan M,Wu C,Sandvol E,Edwards M. 1996. Partially molten middle crust beneath southern Tibet:Synthesis of project INDEPTH results[J]. Science,274(5293):1684–1688. doi: 10.1126/science.274.5293.1684
Owens T J,Zandt G. 1997. Implications of crustal property variations for models of Tibetan Plateau evolution[J]. Nature,387(6628):37–43. doi: 10.1038/387037a0
Paige C C,Saunders M A. 1982a. Algorithm 583:LSQR:Sparse linear equations and least squares problems[J]. ACM T Math Software,8(2):195–209. doi: 10.1145/355993.356000
Paige C C,Saunders M A. 1982b. LSQR:An algorithm for sparse linear equations and sparse least squares[J]. ACM T Math Software,8(1):43–71. doi: 10.1145/355984.355989
Pandey S,Yuan X H,Debayle E,Tilmann F,Priestley K,Li X Q. 2015. Depth-variant azimuthal anisotropy in Tibet revealed by surface wave tomography[J]. Geophys Res Lett,42(11):4326–4334. doi: 10.1002/2015GL063921
Shin Y H,Xu H Z,Braitenberg C,Fang J,Wang Y. 2007. Moho undulations beneath Tibet from GRACE-integrated gravity data[J]. Geophys J Int,170(3):971–985. doi: 10.1111/gji.2007.170.issue-3
Shin Y H,Shum C K,Braitenberg C,Lee S M,Na S H,Choi K S,Hsu H,Park Y S,Lim M. 2015. Moho topography,ranges and folds of Tibet by analysis of global gravity models and GOCE data[J]. Sci Rep,5:11681. doi: 10.1038/srep11681
Tian X B,Liu Z,Si S K,Zhang Z J. 2014. The crustal thickness of NE Tibet and its implication for crustal shortening[J]. Tectonophysics,634:198–207. doi: 10.1016/j.tecto.2014.07.001
Wang Q,Zhang P Z,Freymueller J T,Bilham R,Larson K M,Lai X A,You X Z,Niu Z J,Wu J C,Li Y X,Liu J N,Yang Z Q,Chen Q Z. 2001. Present-day crustal deformation in China constrained by Global Positioning System measurements[J]. Science,294(5542):574–577. doi: 10.1126/science.1063647
Wang Q,Zhu D C,Zhao Z D,Liu S A,Chung S L,Li S M,Liu D,Dai J G,Wang L Q,Mo X X. 2014. Origin of the ca. 90 Ma magnesia-rich volcanic rocks in SE Nyima,central Tibet:Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone[J]. Lithos,198/199:24–37. doi: 10.1016/j.lithos.2014.03.019
Xu Z J,Song X D. 2010. Joint inversion for crustal and Pn velocities and Moho depth in eastern margin of the Tibetan Plateau[J]. Tectonophysics,491(1/4):185–193.
Yang Y J,Zheng Y,Chen J,Zhou S Y,Celyan S,Sandvol E,Tilmann F,Priestley K,Hearn T M,Ni J F,Brown L D,Ritzwoller M H. 2010. Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography[J]. Geochem Geophys Geosyst,11(8):Q08010. doi: 10.1029/2010GC003119
Yang Y J,Ritzwoller M H,Zheng Y,Shen W S,Levshin A L,Xie Z J. 2012. A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet[J]. J Geophys Res,117(B4):B04303. doi: 10.1029/2011JB008810
Yao H J,van der Hilst R D,de Hoop M V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis:I. Phase velocity maps[J]. Geophys J Int,166(2):732–744. doi: 10.1111/gji.2006.166.issue-2
Yin A,Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annu Rev Earth Planet Sci,28(1):211–280. doi: 10.1146/annurev.earth.28.1.211
Yue H,Chen Y J,Sandvol E,Ni J,Hearn T,Zhou S Y,Feng Y G,Ge Z X,Trujillo A,Wang Y B,Jin G,Jiang M M,Tang Y C,Liang X F,Wei S Q,Wang H Y,Fan W Y,Liu Z. 2012. Lithospheric and upper mantle structure of the northeastern Tibetan Plateau[J]. J Geophys Res,117:B5307. doi: 10.1029/2011JB008545
Zhang H,Zhao J M,Xu Q. 2012. Crustal and upper mantle velocity structure beneath central Tibet by P-wave teleseismic tomography[J]. Geophys J Int,190(3):1325–1334. doi: 10.1111/gji.2012.190.issue-3
Zhang P Z,Shen Z K,Wang M,Gan W J,Bürgmann R,Molnar P,Wang Q,Niu Z J,Sun J Z,Wu J C,Sun H R,You X Z. 2004. Continuous deformation of the Tibetan Plateau from Global Positioning System data[J]. Geology,32(9):809–812. doi: 10.1130/G20554.1
Zhao L F,Xie X B,He J K,Tian X B,Yao Z X. 2013. Crustal flow pattern beneath the Tibetan Plateau constrained by regional Lg-wave Q tomography[J]. Earth Planet Sci Lett,383:113–122. doi: 10.1016/j.jpgl.2013.09.038
Zhao W L,Amelung F,Doin M P,Dixon T H,Wdowinski S,Lin G Q. 2016. InSAR observations of lake loading at Yangzhuo-yong Lake,Tibet:Constraints on crustal elasticity[J]. Earth Planet Sci Lett,449:240–245. doi: 10.1016/j.jpgl.2016.05.044
Zhou Z G,Lei J S. 2016. Pn anisotropic tomography and mantle dynamics beneath China[J]. Phys Earth Planet Inter,257:193–204. doi: 10.1016/j.pepi.2016.06.005