吉兰泰断陷盆地周缘断裂带气体释放及其对断层活动性的指示意义

刘兆飞, 李营, 陈志, 崔月菊, 路畅, 杨江, 赵元鑫

刘兆飞, 李营, 陈志, 崔月菊, 路畅, 杨江, 赵元鑫. 2019: 吉兰泰断陷盆地周缘断裂带气体释放及其对断层活动性的指示意义. 地震学报, 41(5): 613-632. DOI: 10.11939/jass.20190025
引用本文: 刘兆飞, 李营, 陈志, 崔月菊, 路畅, 杨江, 赵元鑫. 2019: 吉兰泰断陷盆地周缘断裂带气体释放及其对断层活动性的指示意义. 地震学报, 41(5): 613-632. DOI: 10.11939/jass.20190025
Liu Zhaofei, Li Ying, Chen Zhi, Cui Yueju, Lu Chang, Yang Jiang, Zhao Yuanxin. 2019: Gas emission from active fault zones around the Jilantai faulted depression basin and its implications for fault activities. Acta Seismologica Sinica, 41(5): 613-632. DOI: 10.11939/jass.20190025
Citation: Liu Zhaofei, Li Ying, Chen Zhi, Cui Yueju, Lu Chang, Yang Jiang, Zhao Yuanxin. 2019: Gas emission from active fault zones around the Jilantai faulted depression basin and its implications for fault activities. Acta Seismologica Sinica, 41(5): 613-632. DOI: 10.11939/jass.20190025

吉兰泰断陷盆地周缘断裂带气体释放及其对断层活动性的指示意义

基金项目: 中国地震局地震预测研究所基本科研业务费专项(2016IES0101,2016IES0102)和国家重点研发项目(2018YFC1503602)共同资助
详细信息
    通讯作者:

    李营: e-mail: subduction6@hotmail.com

  • 中图分类号: P315.72

Gas emission from active fault zones around the Jilantai faulted depression basin and its implications for fault activities

  • 摘要: 为了研究吉兰泰断陷盆地周缘断裂带气体排放及其对断层活动性的指示意义,在盆地周缘4条活动断裂上布设了5条土壤气测量剖面和1条电磁测量剖面,观测了土壤气中Rn,Hg和CO2的浓度、释放通量和地电阻率,对各测量剖面进行了土壤化学组分分析,计算得到了断层活动性相对指数KQ。研究结果显示:土壤气体CO2和Rn受渗透性较低的粉砂土阻挡,主要沿结构破碎的断层上盘逃逸,并形成浓度高峰;吉兰泰盆地南缘土壤气Rn,Hg和CO2的浓度和释放通量最高,可能与盆地西南缘花岗岩中U和Ra的运移以及盆地南缘碳酸盐岩的分解有一定的关系。各测量剖面的断层活动性相对指数KQ值的变化特征表明,正断层和逆断层的KQ值大于走滑断层,且巴彦乌拉山山前断裂上的KQ值最高,揭示其活动性最强,有可能是地震发生的潜在危险区。
    Abstract: Soil gases from fault zones are good indicators of tectonic and seismic activities, to which many seismologists and geochemists have been paid much attention. Five measuring sections for soil gas and one for earth resistivity were designed on the four active faults around the Jilantai basin, northwestern China. The data of earth resistivity, concentration and flux of soil gases Rn, Hg and CO2 were attained, and the chemical compositions of soil were analyzed in all sections and the relative index KQ of fault activity was calculated. All the results showed that soil gases CO2 and Rn were blocked by sandy soil layers with low permeability and escaped along the hanging wall of the faults with broken structures, easily forming concentration peaks. High concentrations and fluxes of Rn, Hg and CO2 were distributed in the southern margin of the Jilantai basin, which might be related to the migration of U and Ra in granites in southwestern margin of the basin and the decomposition of local carbonate rocks in south margin of the basin. The variation characteristics of relative index KQ of fault activity in each section indicated normal and reverse faults with higher KQ values than strike-slip faults. The maximum KQ value was observed in the piedmont fault of Bayanwula mountains, probably indicating that this fault is of the strongest activity and is also a potential area of high seismic hazards.
  • 图  1   研究区构造简图和1970年7月19日至2018年6月10日的地震分布(a)以及垂向剖面AA' 简图(b)

    F1:巴彦乌拉山山前断裂;F2:狼山山前断裂;F3:桌子山西缘断裂;F4:正谊关断裂

    Figure  1.   The tectonic settings and distribution of earthquakes from 19 July 1970 to 10 June 2018 in the studied area (a) and the vertical profile AA' (b)

    F1:Bayanwula mountain Piedmont fault;F2:Langshan mountain Piedmont fault;F3:Zhuozi mountain Western margin fault of;F4:Zhengyiguan fault

    图  2   土壤气浓度和通量布点示意图

    Figure  2.   Measuring sites for the concentration and flux of soil gases

    图  3   可控源音频大地电磁(CSAMT)工作布置图

    Figure  3.   CSAMT work layout map

    图  4   BYWL剖面测线1 (左)和2 (右)上的土壤气浓度Q变化曲线

    Figure  4.   Soil gas concentration Q curves of measuring lines 1 (left panels) and 2 (right panels) on the section BYWL

    图  8   ZYG剖面测线1 (左)和2 (右)上的土壤气浓度变化曲线

    Figure  8.   Soil gas concentration curves of measuring lines 1 (left panels) and 2 (right panels) on the section ZYG

    图  5   WLBX剖面测线1 (左)和2 (右)上的土壤气浓度变化曲线

    Figure  5.   Soil gas concentration curves of measuring lines 1 (left panels) and 2 (right panels) on the section WLBX

    图  6   NRWBEGC剖面测线上的土壤气浓度变化曲线

    Figure  6.   Soil gas concentration curves of measuring line on the section NRWBEGC

    图  7   DLG剖面测线1 (左)和2 (右)上的土壤气浓度变化曲线

    Figure  7.   Soil gas concentration curves of measuring lines 1 (left panels) and 2 (right panels) on the section DLG

    图  9   WLBX剖面物探布线(左)和电阻率层析成像图(右)

    Figure  9.   Layout map of geophysical prospecting line (left) and the electric resistivitytomography for the section WLBX (right)

    图  10   电阻率层析成像刻面图(a)与WLBX剖面的气体浓度曲线图(b)

    图中Rn,Hg和CO2浓度为两条测线上浓度的平均值

    Figure  10.   The electric resistivity tomography (a) and the concentration curves (b) for the section WLBX

    The concentrations of Rn,Hg and CO2 are the average concentrations on the two measuring lines

    图  11   狼山山前断裂土壤气排放模式图

    Figure  11.   Mode of soil gas emission of Langshan piedmont fault

    图  12   各测点断层气浓度Q和释放通量F的空间分布示意图

    Figure  12.   Spatial distribution map of concentration Q and flux F of fault gases at all the measuring sites

    图  13   研究区气体排放模型图

    Figure  13.   Schematic diagram for gas degassing model of the studied area

    图  14   中国不同地区土壤气浓度和释放通量对比图

    数据引自Li等(2013),Zhou等(2016)杨江(2018)

    Figure  14.   Contrast map of concentrations and fluxes of soil gases from different places in China

    Data is after Li et al (2013),Zhou et al (2016) and Yang (2018)

    图  15   9条测线的KQ值递减序列图

    Figure  15.   The decrement sequence for KQ of the nine sections

    表  1   土壤气Rn,Hg和CO2测量剖面基本信息

    Table  1   Basic information about the measurement sections for soil gases Rn,Hg and CO2

    剖面   剖面编号 断裂 断裂编号 断裂性质 北纬/° 东经/°
      巴彦乌拉   BYWL   巴彦乌拉山山前断裂 F1 正断层 39.5 105.2
      乌兰巴兴   WLBX   狼山山前断裂 F2 正断层 40.4 106.2
      那仁乌布尔嘎查   NRWBEGC   狼山山前断裂 F2 正断层 40.9 106.6
      大路盖   DLG   桌子山西缘断裂 F3 逆断层 40.0 106.8
      正义关   ZYG   正谊关断裂 F4 左旋走滑 39.3 106.7
      注:土壤气剖面的经纬度是测线中央(剖面与断层相交处)的经纬度。
    下载: 导出CSV

    表  2   土壤气Rn,Hg和CO2浓度的测量结果

    Table  2   Measurement results of the concentrations of soil gases Rn,Hg and CO2

      测线编号 测项 Qmean σ Qmeanσ/2 Qmeanσ/2 Qmax Qmin KQ
      BYWL-1 CO2 0.08% 0.03 0.09% 0.07% 0.14% 0.06% 2.33
      BYWL-2 0.11% 0.04 0.13% 0.09% 0.18% 0.04% 4.50
      DLG-1 0.10% 0.02 0.11% 0.08% 0.14% 0.06% 2.33
      DLG-2 0.10% 0.04 0.12% 0.08% 0.23% 0.07% 3.29
      NRWBEGC-1 0.22% 0.06 0.25% 0.19% 0.38% 0.14% 2.71
      WLBX-1 0.14% 0.05 0.16% 0.11% 0.28% 0.11% 2.55
      WLBX-2 0.12% 0.03 0.13% 0.10% 0.16% 0.07% 2.29
      ZYG-1 0.23% 0.06 0.26% 0.20% 0.32% 0.16% 2.00
      ZYG-2 0.22% 0.06 0.25% 0.19% 0.36% 0.15% 2.48
      BYWL-1 Hg 13 6 16 10 30 6 5.00
      BYWL-2 10 3 11 8 15 6 2.50
      DLG-1 12 4 14 10 24 8 3.00
      DLG-2 12 3 13 11 19 8 2.38
      NRWBEGC-1 10 4 12 8 18 4 4.50
      WLBX-1 10 3 11 8 16 8 2.13
      WLBX-2 10 3 11 9 15 7 2.14
      ZYG-1 9 2 10 8 12 7 1.85
      ZYG-2 11 3 12 9 15 7 2.14
      BYWL-1 Rn 9.784 6.768 13.168 6.400 27.827 4.403 6.32
      BYWL-2 16.966 18.015 25.973 7.958 60.091 3.974 15.12
      DLG-1 2.486 1.099 3.036 1.937 4.975 0.739 6.73
      DLG-2 2.417 0.947 2.891 1.944 4.381 1.008 4.35
      NRWBEGC-1 9.394 2.899 10.843 7.944 13.376 5.818 2.30
      WLBX-1 2.215 0.417 2.423 2.007 2.842 1.643 1.73
      WLBX-2 2.018 0.674 2.355 1.681 3.764 0.739 5.09
      ZYG-1 7.058 2.409 8.263 5.854 10.420 3.833 2.72
      ZYG-2 7.289 1.970 8.274 6.304 10.822 4.706 2.30
      注:Rn和Hg的浓度Q的单位分别为kBq·m−3和ng·m−3QmeanσQmeanσ/2,Qmeanσ/2,QmaxQmin分别为每条测线上浓度的平均值、标准偏差、异常上限、异常下限、最大值和最小值;KQ为断层活动性指数。
    下载: 导出CSV

    表  3   土壤气剖面的平均浓度Q和释放通量F

    Table  3   The average values of concentration Q and flux F at each soil gas section

    剖面 FCO2/(g·m−2·d−1 FRn/(mBq·m−2·s−1 FHg/(ng·m−2·h−1 QCO2 QRn/(kBq·m−3 QHg/(ng·m−3
     BYWL 11.76 39.07 7.46 0.09% 13.375 11
     ZYG 15.17 12.71 0 0.23% 7.174 10
     DLG 10.52 22.82 0 0.10% 2.452 12
     NRWBEGC 9.38 17.25 3.69 0.22% 9.394 10
     WLBX 6.54 5.17 0.62 0.13% 2.117 10
     平均值 10.67 19.40 2.35 0.15% 6.902 11
    下载: 导出CSV

    表  4   土样化学组分分析测试结果

    Table  4   The test results of chemical composition analysis of soil samples

    剖面 CU/(Bq·kg−1 CTh/(Bq·kg−1 CRa/(Bq·kg−1 CK/(Bq·kg−1 TC含量 CHg/(ng·g−1
    BYWL 39.8 46.2 28.7 616 0.972% 1.54
    DLG 24.2 36.8 23.7 546 0.762% 13.30
    NRWBEGC 40.2 52.7 30.6 944 0.163% 5.67
    WLBX 17.6 17.6 13.0 553 0.577% 5.85
    ZYG 8.1 44.5 27.2 559 2.420% 28.90
      注:所采土样于2017年8月由核工业地质研究所进行检测;C为质量活度。
    下载: 导出CSV
  • 曹刚. 2001. 内蒙古地震研究[M]. 北京: 地震出版社: 1−174.

    Cao G. 2001. Earthquake Research in Inner Mongolia[M]. Beijing: Seismological Press: 1−174 (in Chinese).

    程鉴基. 1997. 汞断层气异常与活断层关系浅析[J]. 地壳形变与地震,17(2):97–100.

    Cheng J J. 1997. Elementary analysis of relationship between mercury anomaly of fault product gas and active fault[J]. Crustal Deformation and Earthquake,17(2):97–100 (in Chinese).

    杜建国, 李营, 崔月菊, 孙凤霞. 2018. 地震流体地球化学[M]. 北京: 地震出版社: 1−272.

    Du J G, Li Y, Cui Y J, Sun F X. 2018. Seismic Fluid Geochemistry[M]. Beijing: Seismological Press: 1−272 (in Chinese).

    付碧宏,王萍,孔屏,郑国东,王刚,时丕龙. 2008. 四川汶川5·12大地震同震滑动断层泥的发现及构造意义[J]. 岩石学报,24(10):2237–2243.

    Fu B H,Wang P,Kong P,Zheng G D,Wang G,Shi P L. 2008. Preliminary study of coseismic fault gouge occurred in the slip zone of the Wenchuan MS8.0 earthquake and its tectonic implication[J]. Acta Petrologica Sinica,24(10):2237–2243 (in Chinese).

    高立新,孙加林,张晖. 2010. 中强地震平静是汶川8.0级地震前最显著的地震活动异常[J]. 地震,30(1):90–97. doi: 10.3969/j.issn.0253-4967.2010.01.009

    Gao L X,Sun J L,Zhang H. 2010. Moderate-to-strong earthquake quiescence is the most significant seismic anomaly before the Wenchuan 8.0 earthquake[J]. Earthquake,30(1):90–97 (in Chinese).

    高立新,戴勇,贾宁. 2012. 鄂尔多斯块体周缘地震活动特征分析[J]. 防灾科技学院学报,14(4):70–79. doi: 10.3969/j.issn.1673-8047.2012.04.014

    Gao L X,Dai Y,Jia N. 2012. Study on seismic activity characteristics in Ordos block and seismic risk analysis of northern edge[J]. Journal of Institute of Disaster Prevention,14(4):70–79 (in Chinese).

    高立新,韩晓明,戴勇,李娟,杨红缨. 2017. 鄂尔多斯地块的运动特性与现今地震活动性[J]. 大地测量与地球动力学,37(4):349–354.

    Gao L X,Han X M,Dai Y,Li J,Yang H Y. 2017. Movement characteristics and the present seismic behavior of the Ordos block[J]. Journal of Geodesy and Geodynamics,37(4):349–354 (in Chinese).

    郭正府,郑国东,孙玉涛,张茂亮,张丽红,成智慧. 2017. 中国大陆地质源温室气体释放[J]. 矿物岩石地球化学通报,36(2):204–212. doi: 10.3969/j.issn.1007-2802.2017.02.003

    Guo Z F,Zheng G D,Sun Y T,Zhang M L,Zhang L H,Cheng Z H. 2017. Greenhouse gases emitted from geological sources in China[J]. Bulletin of Mineralogy,Petrology and Geochemistry,36(2):204–212 (in Chinese).

    韩清. 1982. 乌兰布和沙漠的土壤地球化学特征[J]. 中国沙漠,2(3):24–31.

    Han Q. 1982. The geochemical characteristics of the soils in the Ulanbuh desert[J]. Journal of Desert Research,2(3):24–31 (in Chinese).

    何继善. 1990. 可控源音频大地电磁法[M]. 长沙: 中南工业大学出版社: 1−169.

    He J S. 1990. Control Source Audio-Frequency Magnetotelluric[M]. Changsha: Central South University of Technology Press: 1−169 (in Chinese).

    李帝铨,底青云,王光杰,李英贤,石昆法,岳安平,白大为. 2008. CSAMT探测断层在北京新区规划中的应用[J]. 地球物理学进展,23(6):1963–1969.

    Li D Q,Di Q Y,Wang G J,Li Y X,Shi K F,Yu A P,Bai D W. 2008. Fault detection by CSAMT and its application to new district planning in Beijing[J]. Progress in Geophysics,23(6):1963–1969 (in Chinese).

    李营,杜建国,王富宽,周晓成,盘晓东,魏汝庆. 2009. 延怀盆地土壤气体地球化学特征[J]. 地震学报,31(1):82–91. doi: 10.3321/j.issn:0253-3782.2009.01.009

    Li Y,Du J G,Wang F K,Zhou X C,Pan X D,Wei R Q. 2009. Geochemical characteristics of soil gas in Yanqing-Huailai basin,North China[J]. Acta Seismologica Sinica,31(1):82–91 (in Chinese).

    刘菁华. 2006. 活断层上覆盖层中氡迁移的数值模拟及反演拟合[D]. 吉林: 吉林大学: 23−27.

    Liu J H. 2006. Numerical Simulation, Inversion Fitting of Radon Migration in the Overburden Above Active Fault[D]. Jilin: Jilin University: 23−27 (in Chinese).

    马向贤,郑国东,梁收运,樊成意,王自翔,梁明亮. 2012. 地质甲烷对大气甲烷源与汇的贡献[J]. 矿物岩石地球化学通报,31(2):139–145. doi: 10.3969/j.issn.1007-2802.2012.02.007

    Ma X X,Zheng G D,Liang S Y,Fan C Y,Wang Z X,Liang M L. 2012. Contributions of geologic methane to atmospheric methane sources and sinks[J]. Bulletin of Mineralogy,Petrology and Geochemistry,31(2):139–145 (in Chinese).

    牟雪松,马俊,王永达,范育新. 2018. 粒度分布的端元建模分析及检验:以 " 吉兰泰—河套” 盆地西部DK-12钻孔晚第四纪沉积物为例[J]. 古地理学报,20(3):489–500. doi: 10.7605/gdlxb.2018.03.036

    Mou X S,Ma J,Wang Y D,Fan Y X. 2018. End-member modeling analysis and test of grain-size distribution:A case from the Late Quaternary sediments of borehole DK-12 in the western Jilantai-Hetao basin[J]. Journal of Paleogeography,20(3):489–500 (in Chinese).

    邵永新. 2012. 土壤氡方法用于断层活动性研究的讨论[J]. 中国地震,28(1):51–60. doi: 10.3969/j.issn.1001-4683.2012.01.006

    Shao Y X. 2012. A discussion of fault activity research using the measurement results of soil radon[J]. Earthquake Research in China,28(1):51–60 (in Chinese).

    石昆法,张庚利,李英贤,于昌明. 2001. CSAMT法在山东蓬家夼地区层间滑动角砾型金矿成矿预测中的应用[J]. 地质与勘探,37(1):86–90. doi: 10.3969/j.issn.0495-5331.2001.01.020

    Shi K F,Zhang G L,Li Y X,Yu C M. 2001. Application of CSAMT method in predicting interlayer sliding breccia type gold deposits in Pengjiakuang region,Shandong Province[J]. Geology and Prospecting,37(1):86–90 (in Chinese).

    谭儒蛟,胡瑞林,徐文杰,梁辉,曾如意,龚飞. 2007. 金沙江龙蟠变形体隐伏构造CSAMT探测与解译[J]. 地球物理学进展,22(1):283–288. doi: 10.3969/j.issn.1004-2903.2007.01.042

    Tan R J,Hu R L,Xu W J,Liang H,Zeng R Y,Gong F. 2007. CSAMT exploration and geological interpretation of perdue tectonic structures of Longpan deformation slope in Jinsha River[J]. Progress in Geophysics,22(1):283–288 (in Chinese).

    王华林,郑国东,王纪强,付海清,马向贤,胡超. 2017. 山东黄县弧形断裂带断层泥铁元素化学种分布特征及其地震地质意义[J]. 中国地震,33(2):248–259. doi: 10.3969/j.issn.1001-4683.2017.02.006

    Wang H L,Zheng G D,Wang J Q,Fu H Q,Ma X X,Hu C. 2017. Iron speciation of fault gouge from the Huangxian arc fault in Shandong Province,eastern China and its seismo-geological implications[J]. Earthquake Research in China,33(2):248–259 (in Chinese).

    王萍,付碧宏,张斌,孔屏,王刚. 2009. 汶川8.0级地震地表破裂带与岩性关系[J]. 地球物理学报,52(1):131–139.

    Wang P,Fu B H,Zhang B,Kong P,Wang G. 2009. Relationships between surface ruptures and lithologic characteristics of the Wenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics,52(1):131–139 (in Chinese).

    王喜龙,李营,杜建国,陈志,周晓成,李新艳,崔月菊,王海燕,张志宏. 2017. 首都圈地区土壤气Rn,Hg,CO2地球化学特征及其成因[J]. 地震学报,39(1):85–101. doi: 10.11939/jass.2017.01.008

    Wang X L,Li Y,Du J G,Chen Z,Zhou X C,Li X Y,Cui Y J,Wang H Y,Zhang Z H. 2017. Geochemical characteristics of soil gases Rn,Hg and CO2 and their genesis in the capital area of China[J]. Acta Seismologica Sinica,39(1):85–101 (in Chinese).

    王云,赵慈平,冉华,陈坤华. 2015. 地壳流体CO2的释放与地震关系:回顾与展望[J]. 地震研究,38(1):119–130. doi: 10.3969/j.issn.1000-0666.2015.01.016

    Wang Y,Zhao C P,Ran H,Chen K H. 2015. The relationship between the release of crustal fluid CO2 and earthquake:Retrospect and prospect[J]. Journal of Seismological Research,38(1):119–130 (in Chinese).

    魏国孝. 2011. 现代吉兰泰盆地地下水演化规律及古大湖补给水源研究[D]. 兰州: 兰州大学: 1−143.

    Wei G X. 2011. Research on Groundwater Recharge and Evolution in Jilantai Basin and Water Supply for Jilantai-Hetao Paleo-Megalake[D]. Lanzhou: Lanzhou University: 1−143 (in Chinese).

    徐伟进,高孟潭,任雪梅,冯希杰. 2008. 鄂尔多斯地块区内地震活动特征的初步研究[J]. 中国地震,24(4):388–398. doi: 10.3969/j.issn.1001-4683.2008.04.009

    Xu W J,Gao M T,Ren X M,Feng X J. 2008. Study on seismic activity characteristics in the Ordos block[J]. Earthquake Research in China,24(4):388–398 (in Chinese).

    杨江. 2018. 首都圈地区土壤气体地球化学特征[D]. 北京: 中国地震局地震预测研究所: 1−63.

    Yang J. 2018. Soil Gas Geochemistry Characteristics in the Capital Area of China[D]. Beijing: Institute of Earthquake Forecasting, China Earthquake Administration: 1−63 (in Chinese).

    杨丽萍. 2008. 基于遥感与DEM的 " 吉兰泰—河套” 古大湖重建研究[D]. 兰州: 兰州大学: 1−10.

    Yang L P. 2008. Reconstruction of Paleo-Megalake Jilantai-Hetao Based on Remote Sensing and DEM[D]. Lanzhou: Lanzhou University: 1−10 (in Chinese).

    于昌明. 1998. CSAMT方法在寻找隐伏金矿中的应用[J]. 地球物理学报,41(1):133–138. doi: 10.3321/j.issn:0001-5733.1998.01.015

    Yu C M. 1998. The application of CSAMT method in looking for hidden gold mine[J]. Acta Geophysica Sinica,41(1):133–138 (in Chinese).

    张复. 2015. 吉兰泰盆地MIS 3阶段沉积环境及生态环境研究[D]. 兰州: 兰州大学: 50−60.

    Zhang F. 2015. The Sedimentary and Ecological Environment Research of Jilantai Basin During the MIS 3[D]. Lanzhou: Lanzhou University: 50−60 (in Chinese).

    赵建明,李营,陈志,刘兆飞,赵荣琦,荣伟健. 2018. 蔚县—广灵断裂和口泉断裂气体排放和断裂活动性关系[J]. 地震地质,40(6):1402–1416.

    Zhao J M,Li Y,Chen Z,Liu Z F,Zhao R Q,Rong W J. 2018. Correlation between gas geochemical emission and fault activity of the Yuxian-Guangling and Kouquan faults[J]. Seismology and Geology,40(6):1402–1416 (in Chinese).

    周晓成,郭文生,杜建国,王传远,刘雷. 2007. 呼和浩特地区隐伏断层土壤气氡、汞地球化学特征[J]. 地震,27(1):70–76. doi: 10.3969/j.issn.1001-8662.2007.01.010

    Zhou X C,Guo W S,Du J G,Wang C Y,Liu L. 2007. The geochemical characteristics of radon and mercury in the soil gas of buried faults in the Hohhot district[J]. Earthquake,27(1):70–76 (in Chinese).

    周晓成,孙凤霞,陈志,吕超甲,李静,仵柯田,杜建国. 2017. 汶川MS8.0地震破裂带CO2、CH4、Rn和Hg脱气强度[J]. 岩石学报,33(1):291–303.

    Zhou X C,Sun F X,Chen Z,Lü C J,Li J,Wu K T,Du J G. 2017. Degassing of CO2,CH4,Rn and Hg in the rupture zones produced by Wenchuan MS8.0 earthquake[J]. Acta Petrologica Sinica,33(1):291–303 (in Chinese).

    Annunziatellis A,Beaubien S E,Bigi S,Ciotoli G,Coltella M,Lombardi S. 2008. Gas migration along fault systems and through the vadose zone in the Latera caldera (central Italy):Implications for CO2 geological storage[J]. Int J Greenh Gas Con,2(3):353–372. doi: 10.1016/j.ijggc.2008.02.003

    Baixeras C,Erlandsson B,Font L,Jönsson G. 2001. Radon emanation from soil samples[J]. Radiat Meas,34(1/6):441–443.

    Baubron J C,Rigo A,Toutain J P. 2002. Soil gas profiles as a tool to characterise active tectonic areas:The Jaut Pass example (Pyrenees,France)[J]. Earth Planet Sci Lett,196(1/2):69–81.

    Becken M,Ritter O,Park S K,Bedrosian P A,Weckmann U,Weber M. 2008. A deep crustal fluid channel into the San Andreas fault system near Parkfield,California[J]. Geophys J Int,173(2):718–732. doi: 10.1111/j.1365-246X.2008.03754.x

    Chen Z,Zhou X,Du J,Xie C,Liu L,Li Y,Yi L,Liu H,Cui Y. 2015. Hydrochemical characteristics of hot spring waters in the Kangding district related to the Lushan MS=7.0 earthquake in Sichuan,China[J]. Nat Hazards Earth Syst Sci,15(6):1149–1156. doi: 10.5194/nhess-15-1149-2015

    Chen Z,Li Y,Liu Z F,Wang J,Zhou X C,Du J G. 2018. Radon emission from soil gases in the active fault zones in the capital of China and its environmental effects[J]. Sci Rep,8(1):16772. doi: 10.1038/s41598-018-35262-1

    Chen Z,Li Y,Liu Z F,Zheng G D,Xu W,Yan W,Yi L. 2019. CH4 and CO2 emissions from mud volcanoes on the southern margin of the Junggar Basin,NW China:Origin,output,and relation to regional tectonics[J]. J Geophys Res,124(5):1–15. doi: 10.1029/2018JB016822

    Etiope G,Martinelli G. 2002. Migration of carrier and trace gases in the geosphere:An overview[J].Phys Earth Planet Inter,129(3/4):185–204.

    Faulkner D R,Lewis A C,Rutter E H. 2003. On the internal structure and mechanics of large strike-slip fault zones:Field observations of the Carboneras fault in southeastern Spain[J]. Tectonophysics,367(3/4):235–251.

    Finizola A,Aubert M,Revil A,Schütze C,Sortino F. 2009. Importance of structural history in the summit area of Stromboli during the 2002−2003 eruptive crisis inferred from temperature,soil CO2,self-potential,and electrical resistivity tomography[J]. J Volcanol Geoth Res,183(3/4):213–227.

    Fu C C,Yang T F,Chen C H,Lee L C,Wu Y M,Liu T K,Walia V,Kumar A,Lai T H. 2017. Spatial and temporal anomalies of soil gas in northern Taiwan and its tectonic and seismic implications[J]. J Asian Earth Sci,149:64–77. doi: 10.1016/j.jseaes.2017.02.032

    Ghosh D,Deb A,Sengupta R. 2009. Anomalous radon emission as precursor of earthquake[J]. J Appl Geophys,69(2):67–81. doi: 10.1016/j.jappgeo.2009.06.001

    Giammanco S,Immè G,Mangano G,Morelli D,Neri M. 2009. Comparison between different methodologies for detecting radon in soil along an active fault:The case of the Pernicana fault system,Mt. Etna (Italy)[J]. Appl Radiat Isotopes,67(1):178–185. doi: 10.1016/j.apradiso.2008.09.007

    Han X,Li Y,Du J,Zhou X,Xie C,Zhang W. 2014. Rn and CO2 geochemistry of soil gas across the active fault zones in the capital area of China[J]. Nat Hazards Earth Syst Sci,14(10):2803–2815. doi: 10.5194/nhess-14-2803-2014

    Irwin W P,Barnes I. 1980. Tectonic relations of carbon dioxide discharges and earthquakes[J]. J Geophys Res,85(B6):3115–3121. doi: 10.1029/JB085iB06p03115

    Italiano F,Bonfanti P,Ditta M,Petrini R,Slejko F. 2009. Helium and carbon isotopes in the dissolved gases of Friuli region (NE Italy):Geochemical evidence of CO2 production and degassing over a seismically active area[J]. Chem Geol,266(1/2):76–85.

    King C Y. 1986. Gas geochemistry applied to earthquake prediction:An overview[J]. J Geophys Res,91(B12):12269–12281. doi: 10.1029/JB091iB12p12269

    King C Y,King B S,Evans W C,Zhang W. 1996. Spatial radon anomalies on active faults in California[J]. Appl Geochem,11(4):497–510. doi: 10.1016/0883-2927(96)00003-0

    Lehmann B E,Lehmann M,Neftel A,Tarakanov S V. 2000. Radon-222 monitoring of soil diffusivity[J]. Geophys Res Lett,27(23):3917–3920. doi: 10.1029/1999GL008469

    Lehmann B E,Ihly B,Salzmann S,Conen F,Simon E. 2004. An automatic static chamber for continuous 220Rn and 222Rn flux measurements from soil[J]. Radiat Meas,38(1):43–50. doi: 10.1016/j.radmeas.2003.08.001

    Li Y,Du J G,Wang X,Zhou X C,Xie C,Cui Y J. 2013. Spatial variations of soil gas geochemistry in the Tangshan area of northern China[J]. Terr Atmos Ocean Sci,24(3):323–332. doi: 10.3319/TAO.2012.11.26.01(TT)

    Ma X X,Zheng G D,Liang S Y,Xu W. 2015. Geochemical characteristics of absorbed gases in fault gouge from the Daliushu Dam area,NW China[J]. Geochem J,49(4):413–419. doi: 10.2343/geochemj.2.0365

    Papp B,Deák F,Horváth Á,Kiss Á,Rajnai G,Szabó C. 2008. A new method for the determination of geophysical parameters by radon concentration measurements in bore-hole[J]. J Environ Radioactiv,99(11):1731–1735. doi: 10.1016/j.jenvrad.2008.05.005

    Revil A,Finizola A,Sortino F,Ripepe M. 2004. Geophysical investigations at Stromboli volcano,Italy:Implications for ground water flow and paroxysmal activity[J]. Geophys J Int,157(1):426–440. doi: 10.1111/j.1365-246X.2004.02181.x

    Schütze C,Vienken T,Werban U,Dietrich P,Finizola A,Leven C. 2012. Joint application of geophysical methods and direct push-soil gas surveys for the improved delineation of buried fault zones[J]. J Appl Geophys,82:129–136. doi: 10.1016/j.jappgeo.2012.03.002

    Seminsky K Z,Bobrov A A. 2009. Radon activity of faults (western Baikal and southern Angara areas)[J]. Russ Geol Geophys,50(8):682–692. doi: 10.1016/j.rgg.2008.12.010

    Seminsky K Z,Demberel S. 2013. The first estimations of soil-radon activity near faults in Central Mongolia[J]. Radiat Meas,49(1):19–34.

    Seminsky K Z,Bobrov A A,Demberel S. 2014. Variations in radon activity in the crustal fault zones:Spatial characteristics[J]. Izv-Phys Solid Eart+,50(6):795–813. doi: 10.1134/S1069351314060081

    Sun X L,Yang P T,Xiang Y,Si X Y,Liu D Y. 2018. Across-fault distributions of radon concentrations in soil gas for different tectonic environments[J]. Geosci J,22(2):227–239. doi: 10.1007/s12303-017-0028-2

    Toutain J P,Baubron J C. 1999. Gas geochemistry and seismotectonics:A review[J]. Tectonophysics,304(1/2):1–27.

    Wang D Y,He L,Shi X J,Wei S Q,Feng X B. 2006. Release flux of mercury from different environmental surfaces in Chongqing,China[J]. Chemosphere,64(11):1845–1854. doi: 10.1016/j.chemosphere.2006.01.054

    Winkler R,Ruckerbauer F,Bunzl K. 2001. Radon concentration in soil gas:A comparison of the variability resulting from different methods,spatial heterogeneity and seasonal fluctuations[J]. Sci Total Environ,272(1/3):273–282.

    Woodruff L G,Cannon W F,Eberl D D,Smith D B,Kilburn J E,Horton J D,Garrett R G,Klassen R A. 2009. Continental-scale patterns in soil geochemistry and mineralogy:Results from two transects across the United States and Canada[J]. Appl Geochem,24(8):1369–1381. doi: 10.1016/j.apgeochem.2009.04.009

    Yang Y,Li Y,Guan Z J,Chen Z,Zhang L,Lü C J,Sun F X. 2018. Correlations between the radon concentrations in soil gas and the activity of the Anninghe and the Zemuhe faults in Sichuan,southwestern of China[J]. Appl Geochem,89:23–33. doi: 10.1016/j.apgeochem.2017.11.006

    Zarroca M,Linares R,Bach J,Roqué C,Moreno V,Font L,Baixeras C. 2012. Integrated geophysics and soil gas profiles as a tool to characterize active faults:The Amer fault example (Pyrenees,NE Spain)[J].Environ Earth Sci,67(3):889–910. doi: 10.1007/s12665-012-1537-y

    Zheng G D,Fu B H,Takahashi Y,Miyahara M,Kuno A,Matsuo M,Miyashita Y. 2008. Iron speciation in fault gouge from the Ushikubi fault zone central Japan[J]. Hyperfine Interact,186(1/3):39–52.

    Zheng G D,Xu S,Liang S Y,Shi P L,Zhao J. 2013. Gas emission from the Qingzhu River after the 2008 Wenchuan earthquake,Southwest China[J]. Chem Geol,339:187–193. doi: 10.1016/j.chemgeo.2012.10.032

    Zhou X C,Du J G,Chen Z,Cheng J W,Tang Y,Yang L M,Xie C,Cui Y J,Liu L,Yi L,Yang P X,Li Y. 2010. Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan MS8.0 earthquake,southwestern China[J]. Geochem Trans,11(1):5. doi: 10.1186/1467-4866-11-5

    Zhou X C,Chen Z,Cui Y J. 2016. Environmental impact of CO2,Rn,Hg degassing from the rupture zones produced by Wenchuan MS8.0 earthquake in western Sichuan,China[J]. Environ Geochem Health,38(5):1067–1082. doi: 10.1007/s10653-015-9773-1

图(16)  /  表(4)
计量
  • 文章访问数:  1121
  • HTML全文浏览量:  600
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-14
  • 修回日期:  2019-06-13
  • 网络出版日期:  2019-10-13
  • 发布日期:  2019-08-31

目录

    /

    返回文章
    返回