九江—瑞昌地区显著地震动态库仑破裂应力变化分析

董非非, 袁丽文, 邓辉, 汤兰荣, 郭雨帆, 查小惠, 罗丽

董非非, 袁丽文, 邓辉, 汤兰荣, 郭雨帆, 查小惠, 罗丽. 2019: 九江—瑞昌地区显著地震动态库仑破裂应力变化分析. 地震学报, 41(4): 494-501. DOI: 10.11939/jass.20190055
引用本文: 董非非, 袁丽文, 邓辉, 汤兰荣, 郭雨帆, 查小惠, 罗丽. 2019: 九江—瑞昌地区显著地震动态库仑破裂应力变化分析. 地震学报, 41(4): 494-501. DOI: 10.11939/jass.20190055
Dong Feifei, Yuan Liwen, Deng Hui, Tang Lanrong, Guo Yufan, Zha Xiaohui, Luo Li. 2019: Dynamic Coulomb failure stress changes caused by significant earthquakes in Jiujiang-Ruichang region. Acta Seismologica Sinica, 41(4): 494-501. DOI: 10.11939/jass.20190055
Citation: Dong Feifei, Yuan Liwen, Deng Hui, Tang Lanrong, Guo Yufan, Zha Xiaohui, Luo Li. 2019: Dynamic Coulomb failure stress changes caused by significant earthquakes in Jiujiang-Ruichang region. Acta Seismologica Sinica, 41(4): 494-501. DOI: 10.11939/jass.20190055

九江—瑞昌地区显著地震动态库仑破裂应力变化分析

详细信息
    通讯作者:

    董非非: e-mail:agnes516@126.com

  • 中图分类号: P315.727

Dynamic Coulomb failure stress changes caused by significant earthquakes in Jiujiang-Ruichang region

  • 摘要: 为了探究九江—瑞昌地区内的地震活动是否存在动态应力触发关系,本文选用多层黏弹性介质模型,计算了2005年九江—瑞昌MS5.7地震和2011年瑞昌—阳新MS4.6地震产生的动态库仑破裂应力变化。结果显示:九江—瑞昌MS5.7地震产生的动态库仑破裂应力变化,能触发其北东方向的53次地震;瑞昌—阳新MS4.6地震发生后15天内,小震活动增强区及九江—瑞昌MS5.7地震震源区的多次地震活动,可能与其动态应力触发作用有关。
    Abstract: In order to explore whether there was a dynamic stress trigger relationship between seismic activities in Jiujiang-Ruichang region, this paper calculated the dynamic Coulomb failure stress (CFS) changes caused by the 2005 MS5.7 Jiujiang-Ruichang earthquake and 2011 MS4.6 Ruichang-Yangxin earthquake based on the multi-layer viscoelastic medium model. The results show that the dynamic CFS changes caused by the Jiujiang-Ruichang MS5.7 earthquake had a triggering effect on the occurrence of 53 earthquakes in the northeast direction. Within 15 days after the occurrence of the Ruichang-Yangxin MS4.6 earthquake, the multiple events in the triggered region and the source region of the Jiujiang-Ruichang MS5.7 earthquake were all subjected to the triggering effect of dynamic CFS change caused by the MS4.6 earthquake.
  • 图  1   九江—瑞昌地区主要断裂构造与地震活动图像

    区域A表示九江—瑞昌MS5.7地震震中及邻域;区域B表示研究区北东方向发生的53次地震;区域C表示瑞昌—阳新MS4.6地震震中及邻域;区域D为小震活动增强区

    Figure  1.   Main fault structures and seismic activity images in Jiujiang-Ruichang area

    The area A is the epicenter of Jiujiang-Ruichang MS5.7 earthquake and its vicinity,B is the location of the 53 events in NE direction,C is the epicenter of Ruichang-Yangxin MS4.6 earthquake and its vicinity,and D is the triggered area

    图  2   九江—瑞昌MS5.7地震产生的ΔCFS动态演化

    Figure  2.   Dynamic evolution of ΔCFS generated by the Jiujiang-Ruichang MS5.7 earthquake

    (a) t=3 s;(b) t=4 s;(c) t=5 s;(d) t=7 s;(e) t=9 s;(f) t=10 s;(g) t=12 s;(h) t=13 s;(i) t=14 s;(j) t=16 s;(k) t=20 s;(l) t=25 s

    图  3   瑞昌—阳新MS4.6地震产生的ΔCFS动态演化

    Figure  3.   Dynamic evolution of ΔCFS generated by Ruichang-Yangxin MS4.6 earthquake

    (a) t=3 s;(b) t=4 s;(c) t=5 s;(d) t=6 s;(e) t=9 s;(f) t=10 s;(g) t=11 s;(h) t=12 s;(i) t=13 s;(j) t=14 s;(k) t=20 s;(l) t=25 s

    表  1   九江—瑞昌MS5.7地震和瑞昌—阳新MS4.6地震的断层参数

    Table  1   Fault parameters of Jiujiang-Ruichang MS5.7 earthquake and Ruichang-Yangxin MS4.6 earthquake

    MS 断层上沿深度/km 断层下沿深度/km 震源深度/km 走向/° 倾角/° 滑动角/° 断层破裂长度/km 滑动量/m
    5.7 8.0 14 11.0 324 55 18 6.0 0.26
    4.6 3.1 10 9.6 205.9 67.48 159.64 5.6 0.24
    下载: 导出CSV
  • 董非非,邓辉,胡睿,李正. 2016. 瑞昌—阳新4.6级地震序列震源位置及震源机制研究[J]. 大地测量与地球动力学,36(12):1047–1051.

    Dong F F,Deng H,Hu R,Li Z. 2016. Study on source location and focal mechanism of Ruichang-Yangxin magnitude 4.6 earthquake sequence[J]. Journal of Geodesy and Geodynamics,36(12):1047–1051 (in Chinese).

    虎雄林,吴小平,杨润海,付虹,胡家富,黄雍. 2008. 云南武定M6.5地震动态库仑破裂应力变化的数值模拟及其与余震活动的关系[J]. 地震学报,30(1):26–35.

    Hu X L,Wu X P,Yang R H,Fu H,Hu J F,Huang Y. 2008. Numerical simulation of dynamic Coulomb rupture stress changes induced by M6.5 earthquake in Wuding,Yunnan and its relationship with aftershocks[J]. Acta Seismologica Sinica,30(1):26–35 (in Chinese).

    刘桂萍,傅征祥. 2001. 海原大地震对古浪大地震的静应力触发研究[J]. 地球物理学报,44(增刊1):107–115.

    Liu G P,Fu Z X. 2001. A study on the great Gulang earthquake triggered probably by static stress change resulting from the great Haiyuan earthquake[J]. Chinese Journal of Geophysics,44(S1):107–115 (in Chinese).

    吕坚,郑勇,倪四道,高建华. 2008. 2005年11月26日九江—瑞昌MS5.7、MS4.8地震的震源机制解与发震构造研究[J]. 地球物理学报,51(1):158–164.

    Lü J,Zheng Y,Ni S D,Gao J H. 2008. Focal mechanisms and seismogenic structures of the MS5.7 and MS4.8 Jiujiang-Ruichang earthquakes of Nov. 26,2005[J]. Chinese Journal of Geophysics,51(1):158–164 (in Chinese).

    吕坚,曾文敬,谢祖军,曾新福,张勇,邓辉,胡睿,黎斌,李雨泽. 2012. 2011年9月10日瑞昌—阳新4.6级地震的震源破裂特征与区域强震危险性[J]. 地球物理学报,55(11):3625–3633.

    Lü J,Zeng W J,Xie Z J,Zeng X F,Zhang Y,Deng H,Hu R,Li B,Li Y Z. 2012. Rupture characteristics of the MS4.6 Ruichang-Yangxin earthquake of Sep. 10,2011 and the strong earthquake risk in the region[J]. Chinese Journal of Geophy-sics,55(11):3625–3633 (in Chinese).

    邵志刚,傅容珊,薛霆虓,查显杰. 2009. 库仑应力变化与余震对应关系的初步探讨:以集集地震为例[J]. 地球物理学进展,24(2):367–374.

    Shao Z G,Fu R S,Xue T X,Zha X J. 2009. Discussion about the relation of Coulomb stress changes and distribution of aftershocks for the case of the Chi-Chi earthquake[J]. Progress in Geophysics,24(2):367–374 (in Chinese).

    沈建文,邱瑛,赵志贺. 1990. 震级-破裂长度关系与断层破裂模型[J]. 地球物理学报,33(2):242–248.

    Shen J W,Qiu Y,Zhao Z H. 1990. Rupture versus length magnitude relationship and fault-rupture model[J]. Acta Geophysica Sinica,33(2):242–248 (in Chinese).

    汤兰荣,吕坚,曾新福,杨雅琼,曾文敬,段莉莉. 2018. 九江—瑞昌地震震源机制和应力场特征[J]. 大地测量与地球动力学,38(8):791–795.

    Tang L R,Lü J,Zeng X F,Yang Y Q,Zeng W J,Duan L L. 2018. Characteristics of focal mechanisms and stress field in the border region of Jiujiang and Ruichang[J]. Journal of Geodesy and Geodynamics,38(8):791–795 (in Chinese).

    万永革,吴忠良,周公威,黄静. 2000. 几次复杂地震中不同破裂事件之间的 " 应力触发” 问题[J]. 地震学报,22(6):568–576.

    Wan Y G,Wu Z L,Zhou G W,Huang J. 2000. " Stress triggering” between different rupture events in several earthquakes[J]. Acta Seismologica Sinica,22(6):568–576 (in Chinese).

    万永革,吴忠良,周公威,黄静,秦立新. 2002. 地震应力触发研究[J]. 地震学报,24(5):533–551.

    Wan Y G,Wu Z L,Zhou G W,Huang J,Qin L X. 2002. Research on seismic stress triggering[J]. Acta Seismologica Sinica,24(5):533–551 (in Chinese).

    王俊,孙业君,詹小艳,霍祝青,阮祥,郑江蓉. 2011. 2005年江西九江—瑞昌MS5.7地震破裂参数及余震静态应力触发研究[J]. 地震研究,34(1):52–58.

    Wang J,Sun Y J,Zhan X Y,Huo Z Q,Ruan X,Zheng J R. 2011. Investigation on rupture parameters of the 2005 MS5.7 Jiujiang-Ruichang,Jiangxi earthquake and static stress triggering of its aftershocks[J]. Journal of Seismological Research,34(1):52–58 (in Chinese).

    吴小平,虎雄林,Bouchon M,黄雍,胡家富,解朝娣,王绍晋,胡毅力. 2007. 云南澜沧—耿马MS7.6地震的完全库仑破裂应力变化与后续地震的动态、静态应力触发[J]. 中国科学:D辑,37(6):746–752.

    Wu X P,Hu X I,Bouchon M ,Huang Y,Hu J F,Xie C D,Wang S J,Hu Y I. 2007. Complete Coulomb failure stress changes and dynamic and static stress triggering on the subsequent earthquakes of Yunnan Lancang-Gengma MS7.6 earthquake[J]. Science in China:Sereis D,37(6):746–752 (in Chinese).

    解朝娣,吴小平,虎雄林. 2006. 地震破裂产生的动态应变场的模拟计算研究[J]. 地震研究,29(2):137–142.

    Xie C D,Wu X P,Hu X L. 2006. Simulated calculation research of dynamic strain field caused by seismic rupture[J]. Journal of Seismological Research,29(2):137–142 (in Chinese).

    解朝娣. 2007. 巨震的动态库仑破裂应力及其对远场地震活动的触发作用[D]. 昆明: 云南大学: 2.

    Xie C D. 2007. Dynamic Coulomb Failure Stress of Great Earthquake and its Triggering Effect on Far-Field Seismic Activity[D]. Kunming: Yunnan University: 2 (in Chinese).

    解朝娣,朱元清,Lei X L,于海英,虎雄林. 2010. MS8.0汶川地震产生的应力变化空间分布及其对地震活动性的影响[J]. 中国科学:地球科学,40(6):688–698.

    Xie C D,Zhu Y Q,Lei X L,Yu H Y,Hu X L. 2010. Pattern of stress change and its effect on seismicity rate caused by 8.0 Wenchuan earthquake[J]. Science China Earth Sciences,53(9):1260–1270. doi: 10.1007/s11430-010-4025-9

    Bouchon M,Aki K. 1977. Discrete wave-number representation of seismic-source wave fields[J]. Bull Seismol Soc Am,67(2):259–277.

    Chinnery M A. 1963. The stress changes that accompany strike-slip faulting[J]. Bull Seismol Soc Am,53(5):921–932.

    Harris R A,Simpson R W. 1998. Suppression of large earthquakes by stress shadows:A comparison of Coulomb and rate-and-state failure[J]. J Geophys Res,103(B10):24439–24451. doi: 10.1029/98JB00793

    Hill D P,Reasenberg P A,Michael A,Arabaz W J,Beroza G,Brumbaugh D,Brune J N,Castro R,Davis S,Depolo D,Ellsworth W L,Gomberg J,Harmsen S,House L,Jackson S M,Johnston M J,Jones L,Keller R,Malone S,Munguia L,Nava S,Pechmann J C,Sanford A,Simpson R W,Smith R B,Stark M,Stickney M,Vidal A,Walter S,Wong V,Zollweg J. 1993. Seismicity remotely triggered by the magnitude 7.3 Landers,California,earthquake[J]. Science,260(5114):1617–1623. doi: 10.1126/science.260.5114.1617

    Kilb D,Gomberg J,Bodin P. 2002. Aftershock triggering by complete Coulomb stress changes[J]. J Geophys Res,107(B4):ESE 2-1–ESE 2-14. doi: 10.1029/2001JB000202

    King G C P,Stein R S,Lin J. 1994. Static stress changes and the triggering of earthquakes[J]. Bull Seismol Soc Am,84(3):935–953.

    Okada Y. 1992. Internal deformation due to shear and tensile faults in a half-space[J]. Bull Seismol Soc Am,82(2):1018–1040.

    Stein R S. 1999. The role of stress transfer in earthquake occurrence[J]. Nature,402(6762):605–609. doi: 10.1038/45144

    Wells D L,Coppersmith K J. 1994. New empirical relationships among magnitude,rupture length,rupture width,rupture area,and surface displacement[J]. Bull Seismol Soc Am,84(4):974–1002.

图(3)  /  表(1)
计量
  • 文章访问数:  1003
  • HTML全文浏览量:  560
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-17
  • 修回日期:  2019-05-06
  • 网络出版日期:  2019-07-11
  • 发布日期:  2019-06-30

目录

    /

    返回文章
    返回