Performance and data coherence analyses of BBVS-60 and CMG-3ESPC seismometers
-
摘要:
BBVS-60型和CMG-3ESPC型地震计目前在国内测震数字台网中广泛使用,但两种型号地震计在性能和各类指标上均存在差异。本研究分别在山洞和地表两类不同观测环境的台站上安装BBVS-60型和CMG-3ESPC型地震计,对同点记录的数据对比分析,计算相同分量间的相干函数值。结果显示,在比测台址观测环境下,两种地震计在0.02—40 Hz (垂直分量)和0.04—40 Hz (水平分量)频段内具有良好的相关性,其中,记录数据在高频(10—40 Hz)和长周期频段(10—50 s)的相关程度受环境因素影响较大。此外,在工作频段内,两种地震计所记录数据的相关程度与输入振动的强度有很大关系。本文分析结果可为设备选型、震相分析以及地震工程研究提供参考。
Abstract:At present, two kinds of seismometers, BBVS-60 and CMG-3ESPC, are widely used in digital seismic networks of China. There are differences in performance and various indicators for two types of seismometers. This study sets up BBVS-60 and CMG-3ESPC seismometers at the surface station and the cave stations so as to compare observation data at the same point, and further to calculate the coherence function values. The results show that there are good correlation between the vertical components recorded by the two kinds of seismo-meters in the frequency range of 0.02−40 Hz and between the horizontal components in the frequency range of 0.04−40 Hz in the observation environment of the comparative station, and the correlativity of the recorded data in the high-frequency (10−40 Hz) and long-period frequency band (10−50 s) is greatly affected by the environmental factors. In addition, the correlativity of the data recorded by the two seismometers has a lot to do with the strength of the input vibration in operating frequency range. The results can provide reference for equipment selection, seismic phase analysis and seismic engineering research.
-
-
图 8 基于四个地震事件数据计算得到的频谱图
(a) 都江堰MS2.2地震;(b) 新不列颠地区MS6.7地震;(c) 宜宾珙县MS3.4地震;(d) 台湾花莲MS5.0地震
Figure 8. Frequency spectrums of seismic wave from four events
(a) The MS2.2 earthquake in Dujiangyan;(b) The MS6.7 earthquake in New Britain;(c) The MS3.4 earthquake in Gongxian,Yibin city;(d) The MS5.0 earthquake in Hualien county,Taiwan
-
崔庆谷. 2003. 反馈式地震计的性能设计与噪声测量研究[D]. 北京: 中国地震局地球物理研究所: 36−70. Cui Q G. 2003. The Research for Performance and Self-Noise Measure of Force-Balanced Seismometers[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 36−70 (in Chinese).
崔庆谷,安晓文,邓存华,蔡绍平. 2011. 用相关分析法检测两种地震计性能及记录数据差异[J]. 地震研究,34(3):313–316. doi: 10.3969/j.issn.1000-0666.2011.03.011 Cui Q G,An X W,Deng C H,Cai S P. 2011. Checking performance and recording differences of two kinds of wide-band seismometers by correlation analysis method[J]. Journal of Seismological Research,34(3):313–316 (in Chinese).
段天山,袁顺. 2011. BBVS-60、CMG-3ESPC型地震计工作参数对比分析[J]. 地震地磁观测与研究,32(5):109–114. doi: 10.3969/j.issn.1003-3246.2011.05.021 Duan T S,Yuan S. 2011. The comparative analysis of noise level and dynamic range of BBVS-60 and CMG-3ESPC seismometer in practice[J]. Seismological and Geomagnetic Observation and Research,32(5):109–114 (in Chinese).
李霞,张志慧,周彦文,刘希强. 2010. 短周期与宽频带数字地震计记录波形相关分析[J]. 内陆地震,24(1):50–56. doi: 10.3969/j.issn.1001-8956.2010.01.009 Li X,Zhang Z H,Zhou Y W,Liu X Q. 2010. Relative analysis of earthquake waves recorded on digital short period and broad band seismographs[J]. Inland Earthquake,24(1):50–56 (in Chinese).
李兴泉,吴朋,邵玉平,唐淋. 2018. 数字地震仪频响特性与地动噪声功率谱计算[J]. 地震地磁观测与研究,39(1):96–101. doi: 10.3969/j.issn.1003-3246.2018.01.016 Li X Q,Wu P,Shao Y P,Tang L. 2018. Calculation of frequency characteristics of digital seismograph and the power spectra of ground motion noises based on Matlab[J]. Seismological and Geomagnetic Observation and Research,39(1):96–101 (in Chinese).
刘旭宙,沈旭章,张元生,秦满忠,李秋生. 2018. 基于噪声概率密度函数的地震计观测性能对比[J]. 地震学报,40(4):461–470. doi: 10.11939/jass.20170137 Liu X Z,Shen X Z,Zhang Y S,Qin M Z,Li Q S. 2018. Comparison on different seismometers performance based on probability density functions[J]. Acta Seismologica Sinica,40(4):461–470 (in Chinese).
邵玉平,韩进,宋澄. 2007. 向家坝数字遥测地震台网的台基地噪声分析[J]. 地震地磁观测与研究,28(2):61–64. doi: 10.3969/j.issn.1003-3246.2007.02.009 Shao Y P,Han J,Song C. 2007. Analysis on the background noise of Xiangjiaba digital telemetered seismic network[J]. Seismological and Geomagnetic Observation and Research,28(2):61–64 (in Chinese).
王晓蕾,谷国梁,薛兵,朱小毅. 2018. 温度对宽频地震计观测资料影响的研究方法[J]. 地震,38(3):170–180. doi: 10.3969/j.issn.1000-3274.2018.03.016 Wang X L,Gu G L,Xue B,Zhu X Y. 2018. Influence of temperature on the performance of broadband seismometer[J]. Earthquake,38(3):170–180 (in Chinese).
徐果明, 周蕙兰. 1982. 地震学原理[M]. 北京: 科学出版社: 77−133. Xu G M, Zhou H L. 1982. The Principle of Seismology[M]. Beijing: Science Press: 77−133 (in Chinese).
尹昕忠,陈九辉,李顺成,郭飚. 2013. 流动宽频带地震计自噪声测试研究[J]. 地震地质,35(3):576–583. doi: 10.3969/j.issn.0253-4967.2013.03.011 Yin X Z,Chen J H,Li S C,Guo B. 2013. The research on self-noise measurement method of moveable broadband seismometer[J]. Seismology and Geology,35(3):576–583 (in Chinese).
Bonnefoy-Claudet S,Cotton F,Bard P Y. 2006. The nature of noise wavefield and its applications for site effects studies:A litera-ture review[J]. Earth Sci Rev,79(3/4):205–227.
Frontera T,Ugalde A,Olivera C,Jara J A,Goula X. 2010. Seismic ambient noise characterization of a new permanent broadband ocean bottom seismometer site offshore Catalonia (northeastern Iberian Peninsula)[J]. Seismol Res Lett,81(5):740–749. doi: 10.1785/gssrl.81.5.740
Longuet-Higgins M S. 1950. A theory of the origin of microseisms[J]. Philosoph Trans R Soc Lond,Mathemat Phys Sci,243(857):1–35.
Mcnamara D E,Buland R P. 2004. Ambient noise levels in the continental United States[J]. Bull Seismol Soc Am,94(4):1517–1527. doi: 10.1785/012003001
Oppenheim A V, Schafer R W. 1989. Discrete-Time Signal Processing[M]. Upper Saddle River, N. J: Prentice-Hall: 444−447.
Riedesel M A,Moore R D,Orcutt J A. 1990. Limits of sensitivity of inertial seismometers with velocity transducers and electronic amplifiers[J]. Bull Seismol Soc Am,80(6):1725–1752.
Ringler A T,Hutt C R,Evans J R,Sandoval L D. 2011. A comparison of seismic instrument noise coherence analysis techniques[J]. Bull Seismol Soc Am,101(2):558–567. doi: 10.1785/0120100182
Wielandt E,Streckeisen G. 1982. The leaf-spring seismometer:Design and performance[J]. Bull Seismol Soc Am,72(6A):2349–2367.