Probabilistic earthquake location in three-dimensional velocity models applied in Tengchong
-
摘要:
本文利用中国数字测震台网和流动台站的地震资料,基于参数优化的AICD自动拾取算法和质量评估方案得到了高质量的震相到时,并在此基础上使用一维、三维定位方法对腾冲地区的799次地震事件进行了重新定位。定位结果显示:水平方向上,一维、三维重定位结果相差较小;深度方向上,三维定位的震源成丛分布比一维定位结果更加密集,地震主要位于地壳内低速层之上。分别利用一维、三维定位方法对典型地震、人工震源进行定位,结果表明,三维定位的精度明显优于一维定位,其在水平、深度方向上的平均绝对定位误差分别为0.7 km和1.3 km。
Abstract:The accuracy of earthquake location strongly depends on quality and consistency of available traveltime data. We obtained accurate automatic picks by employing optimized AICD automatic pickers and quality assessment scheme at temporary and permanent seismic networks surrounding Tengchong volcanic area. Based on those high-quality first-arrivals, we relocated 799 earthquakes with 1D (Hypomat) and 3D (probabilistic earthquake location) location algorithms. The comparison of 799 hypocenter relocations obtained by 1D location method (Hypomat) to those relocated in 3D velocity model using a probabilistic approach reveals no systematic shifts in epicenter locations but does exhibit large vertical shifts. 3D relocations are usually at the top of low velocity layers in crust and more clustered than 1D relocations. The events relocated with the 1D model seem often deeper than the events relocated with the 3D model. Relocating artificial sources and typical seismic sequences using 1D and 3D methods confirms that probabilistic earthquake location combined with 3D velocity model yields more precise hypocenter locations for Tengchong and has mean absolute errors of 0.7 km horizontally and 1.3 km vertically.
-
-
图 1 云南地区断裂分布(修改自马丽芳等,2002)
F1:怒江断裂;F2:澜沧江断裂;F3:红河断裂;F4:金沙江断裂;F5:哀牢山断裂;F6:小金河断裂;F7:小江断裂;F8:弥勒断裂;F9:则木河断裂;F10:绿汁江断裂;F11:楚雄—通海断裂
Figure 1. The distribution of faults in Yunnan area (after Ma et al,2002)
F1:Nujiang fault;F2:Lancangjiang fault;F3:Honghe fault;F4:Jinshajiang fault;F5:Ailaoshan fault;F6:Xiaojinhe fault;F7:Xiaojiang fault;F8:Mile fault;F9:Zemuhe fault;F10:Lüzhijiang fault;F11:Chuxiong-Tonghai fault
图 3 一维速度模型和地震定位结果
(a) P波和S波初始速度模型;(b) P波和S波最优一维速度模型,其中HJ1,WCY1 和GJY1基于图(a)中的初始模型得到,HJ1,WCY1 和GJY1的平均值为平均一维模型,基于平均一维模型得到最终最优速度模型;(c) 本文 一维定位使用的最终最优速度模型和基于该模型反演得到的震源深度分布图
Figure 3. The P-wave and S-wave velocity models and relocating results
(a) Initial P-wave and S-wave velocity structures;(b) The best P-wave and S-wave velocity models obtained from the VELEST inversion based on different initial models shown in Fig. (a);(c) The final minimum 1D P-wave and S-wave velocity models used to 1D location and histogram of the events distributionin depth obtained by VELEST inversion based on the final minimum model,where the final minimum 1D P-wave and S-wave velocity models are obtained based on the average of three velocity models resulting from three different initial velocity models
图 4 VELEST定位稳定性试验
黑色圆点为地震事件在纬度(a)、经度(b)、深度(c)上的随机扰动量,红色圆点为定位恢复试验后震源坐标的误差
Figure 4. Test of VELEST location stability
Black dots represent the amount of shift along latitude (a),longitude (b) and depth (c) with respect to the reference locations,the inversion is then repeated,and the retrieved location shifts are shown as red dots
图 7 人工震源的一维、三维重定位结果
图(a)中右上角为人工震源重定位所用到的台站,图(b)为重定位结果在测线MN (图(a))上的投影
Figure 7. The artificial sources (circles) relocated with 1D (squares) and 3D (stars) methods
The inset of Fig. (a) marks the seismic station distribution used to relocations,Fig. (b) shows relo-cations projected onto the cross section MN in Fig. (a)
图 8 云南腾冲MS5.2双震及其余震序列在图5b中剖面AA-BB上的投影
图中S波速度模型引自郑晨等(2016)
Figure 8. The Tengchong MS5.2 double earthquakes and their aftershocks projected onto the cross section AA-BB of Fig. 5b
S-wave velocity model refers from Zheng et al (2016)
图 9 重定位震源在各剖面(图5b)上的投影
图中每次地震到剖面的垂直距离小于11 km,S波速度模型引自郑晨等(2016)
Figure 9. Relocated earthquakes projected onto the cross-sections shown in Fig. 5b
In the fig. ,the distance of each earthquake from the section is smaller than 11 km,and the S-wave velocity model refers from Zheng et al (2016)
表 1 本文所得799次地震事件的一维、三维重定位结果与中国地震台网中心(CENC)定位结果的比较
Table 1 Relative comparison of the 799 epicentre locations calculated by either this study or the CENC
定位差 水平向定位差
平均值/km水平向定位差
最大值/km水平向定位差≤
3.5 km事件占比垂直向定位差
平均值/km垂直向定位差
最大值/km垂直向定位差≤
3.5 km事件占比NLL−CENC 2.31±1.64 12.96 85.11% 3.12±2.45 19.52 65.08% Hypomat−CENC 2.22±1.63 11.16 83.10% 3.21±2.68 21.00 64.83% NLL−Hypomat 1.69±1.44 14.52 92.12% 2.72±2.72 16.41 75.59% -
陈立华,宋仲和,安昌强,陈国英,庄真,傅竹武,胡家富,吕梓龄. 1992. 中国南北带地壳上地幔三维面波速度结构和各向异性[J]. 地球物理学报,35(5):574–583. doi: 10.3321/j.issn:0001-5733.1992.05.005 Chen L H,Song Z H,An C Q,Chen G Y,Zhuang Z,Fu Z W,Hu J F,Lü Z L. 1992. Three dimensional shear wave velocity and anisotropy of crust and upper mantle in the China north-south earthquake belt[J]. Acta Geophysica Sinica,35(5):574–583 (in Chinese).
高家乙,李永华,徐小明,张风雪. 2016. 云南地区地壳速度结构和地震活动性研究[J]. 地球物理学进展,31(2):508–516. doi: 10.6038/pg20160202 Gao J Y,Li Y H,Xu X M,Zhang F X. 2016. P-wave crustal velocity structure and seismicity in Yunnan area[J]. Progress in Geophysics,31(2):508–516 (in Chinese). doi: 10.6038/pg20160202
国家测震台网数据备份中心. 2007. 国家测震台网地震波形数据[DB/OL]. [2018−12−10]. 中国地震局地球物理研究所. doi: 10.11998/SeisDmc/SN. Data Management Centre of China National Seismic Network. 2007. Waveform data of China National Seismic Network[DB/OL]. [2018−12−10]. Institute of Geophysics, China Earthquake Administration. doi:10.11998/SeisDmc/SN (in Chinese).
姜枚,谭捍东,彭淼,钱荣毅,张聿文,李庆庆,张立树,许乐红,郭帅. 2016. 腾冲火山构造区马站岩浆囊地球物理特征的再探讨[J]. 中国地质,43(5):1688–1696. Jiang M,Tan H D,Peng M,Qian R Y,Zhang Y W,Li Q Q,Zhang L S,Xu L H,Guo S. 2016. A further discussion on geophysical characteristics of Mazhan magma pocket in Tengchong volcano-tectonic zone[J]. Geology in China,43(5):1688–1696 (in Chinese).
阚荣举, 赵晋明. 1994. 腾冲火山地区的壳幔构造[G]//中国固体地球物理学进展. 北京: 海洋出版社: 23−30. Kan R J, Zhao J M. 1994. The crust-mantle structure of Tengchong volcanic area[G]//Chinese Solid Geophysics Progress. Beijing: Ocean Press: 23−30 (in Chinese).
刘劲松,王赟,姚振兴. 2013. 微地震信号到时自动拾取方法[J]. 地球物理学报,56(5):1660–1666. doi: 10.6038/cjg20130523 Liu J S,Wang Y,Yao Z X. 2013. On micro-seismic first arrival identification:A case study[J]. Chinese Journal of Geophysics,56(5):1660–1666 (in Chinese). doi: 10.6038/cjg20130523
楼海,王椿镛,皇甫岗,秦嘉政. 2002. 云南腾冲火山区上部地壳三维地震速度层析成像[J]. 地震学报,24(3):243–251. doi: 10.3321/j.issn:0253-3782.2002.03.003 Lou H,Wang C Y,Huangfu G,Qin J Z. 2002. Three-demensional seismic velocity tomography of the upper crust in Tengchong volcanic area,Yunnan Province[J]. Acta Seismologica Sinica,24(3):243–251 (in Chinese).
马丽芳, 乔秀夫, 闵隆瑞, 范本闲, 丁孝忠. 2002. 中国地质图集[M]. 北京: 地质出版社: 293−300. Ma L F, Qiao X F, Min L R, Fan B X, Ding X Z. 2002. Geological Atlas of China[M]. Beijing: Geological Publishing House: 293−300 (in Chinese).
牟磊育,赵仲和,张伟,王占英,马市振,徐晟涛,白永福. 2006. 用INGLADA与GEIGER方法实现近震精定位[J]. 中国地震,22(3):294–302. doi: 10.3969/j.issn.1001-4683.2006.03.010 Mu L Y,Zhao Z H,Zhang W,Wang Z Y,Ma S Z,Xu S T,Bai Y F. 2006. Using the INGLADA and GEIGER method to realize regional earthquake location accurately[J]. Earthquake Research in China,22(3):294–302 (in Chinese).
潘佳铁,李永华,吴庆举,丁志峰. 2015. 青藏高原东南部地区瑞雷波相速度层析成像[J]. 地球物理学报,58(11):3993–4006. doi: 10.6038/cjg20151109 Pan J T,Li Y H,Wu Q J,Ding Z F. 2015. Phase velocity maps of Rayleigh waves in the southeast Tibetan Plateau[J]. Chinese Journal of Geophysics,58(11):3993–4006 (in Chinese). doi: 10.6038/cjg20151109
潘素珍,王夫运,段永红,邓晓果,宋向辉,段玉玲,孙一男,张彩军,杨宇东,臧怡然. 2015. 滇南及临近地区基底结构:镇康—泸西深地震测深剖面结果[J]. 地球物理学报,58(11):3917–3927. doi: 10.6038/cjg20151103 Pan S Z,Wang F Y,Duan Y H,Deng X G,Song X H,Duan Y L,Sun Y N,Zhang C J,Yang Y D,Zang Y R. 2015. Basement structure of southern Yunnan and adjacent areas:The Zhenkang-Luxi deep seismic sounding profile[J]. Chinese Journal of Geophysics,58(11):3917–3927 (in Chinese). doi: 10.6038/cjg20151103
王椿镛,皇甫岗,万登堡,刘祖荫,秦嘉政,楼海,吴建平. 2000. 腾冲火山区地壳结构的人工地震探测[J]. 地震研究,23(2):148–156. doi: 10.3969/j.issn.1000-0666.2000.02.009 Wang C Y,Huangfu G,Wan D B,Liu Z Y,Qin J Z,Lou H,Wu J P. 2000. Deep seismic sounding of crustal structure in Tengchong volcanic area[J]. Journal of Seismological Research,23(2):148–156 (in Chinese).
王夫运,潘素珍,刘兰,刘宝峰,张建狮,邓晓果,马策军,张彩军. 2014. 玉溪—临沧剖面宽角地震探测:红河断裂带及滇南地壳结构研究[J]. 地球物理学报,57(10):3247–3258. doi: 10.6038/cjg20141013 Wang F Y,Pan S Z,Liu L,Liu B F,Zhang J S,Deng X G,Ma C J,Zhang C J. 2014. Wide angle seismic exploration of Yuxi-Lincang profile:The research of crustal structure of the Red River fault zone and southern Yunnan[J]. Chinese Journal of Geophysics,57(10):3247–3258 (in Chinese). doi: 10.6038/cjg20141013
胥颐,钟大赉,刘建华. 2012. 滇西地区壳幔解耦与腾冲火山区岩浆活动的深部构造研究[J]. 地球物理学进展,27(3):846–855. doi: 10.6038/j.issn.1004-2903.2012.03.003 Xu Y,Zhong D L,Liu J H. 2012. Constraints of deep structures on the crust-mantle decoupling in the western Yunnan and the magma activity in the Tengchong volcanic area[J]. Process in Geophysics,27(3):846–855 (in Chinese). doi: 10.6038/j.issn.1004-2903.2012.03.003
杨旭,李永华,苏伟,孙莲. 2019. 基于优化参数的地震P、S波震相到时自动拾取及质量评估[J]. 地球物理学报,62(11):4290–4299. doi: 10.6038/cjg2019M0059 Yang X,Li Y H,Su W,Sun L. 2019. Optimized automatic pickers and quality assessment:Application to identification of local and regional P and S wave phases[J]. Chinese Journal of Geophysics,62(11):4290–4299 (in Chinese). doi: 10.6038/cjg2019M0059
杨晓涛,胥颐,刘建华,李志伟. 2011. 腾冲火山区的地震层析成像及其构造意义[J]. 地球物理学报,54(8):2050–2059. doi: 10.3969/j.issn.0001-5733.2011.08.012 Yang X T,Xu Y,Liu J H,Li Z W. 2011. Seismic tomography in the Tengchong volcanic area and its tectonic implication[J]. Chinese Journal of Geophysics,54(8):2050–2059 (in Chinese). doi: 10.3969/j.issn.0001-5733.2011.08.012
叶建庆,蔡绍平,刘学军,王绍晋,蔡明军. 2003. 腾冲火山地震群的活动特征[J]. 地震地质,25(增刊1):128–137. Ye J Q,Cai S P,Liu X J,Wang S J,Cai M J. 2003. Characteristics of earthquake cluster activity in Tengchong volcanic area[J]. Seismology and Geology,25(S1):128–137 (in Chinese).
于常青,张刚,王绪本,罗威,李德伟,蔡学林,郭紫明. 2017. 滇西三江地区深部电性结构特征及其意义[J]. 地球物理学报,60(6):2385–2396. doi: 10.6038/cjg20170628 Yu C Q,Zhang G,Wang X B,Luo W,Li D W,Cai X L,Guo Z M. 2017. Deep electrical resistivity structure of Sanjiang area of west Yunnan and its significance[J]. Chinese Journal of Geophysics,60(6):2385–2396 (in Chinese). doi: 10.6038/cjg20170628
张广伟,雷建设. 2015. 2011年云南腾冲5.2级双震发震机理[J]. 地球物理学报,58(4):1194–1204. doi: 10.6038/cjg20150409 Zhang G W,Lei J S. 2015. Mechanism of the 2011 Tengchong,Yunnan,MS5.2 double earthquakes[J]. Chinese Journal of Geophysics,58(4):1194–1204 (in Chinese). doi: 10.6038/cjg20150409
郑晨,丁志峰,宋晓东. 2016. 利用面波频散与接收函数联合反演青藏高原东南缘地壳上地幔速度结构[J]. 地球物理学报,59(9):3223–3236. doi: 10.6038/cjg20160908 Zheng C,Ding Z F,Song X D. 2016. Joint inversion of surface wave dispersion and receiver functions for crustal and uppermost mantle structure in southeast Tibetan Plateau[J]. Chinese Journal of Geophysics,59(9):3233–3236 (in Chinese). doi: 10.6038/cjg20160908
郑秀芬,欧阳飚,张东宁,姚志祥,梁建宏,郑洁. 2009. “国家数字测震台网数据备份中心”技术系统建设及其对汶川大地震研究的数据支撑[J]. 地球物理学报,52(5):1412–1417. doi: 10.3969/j.issn.0001-5733.2009.05.031 Zheng X F,Ouyang B,Zhang D N,Yao Z X,Liang J H,Zheng J. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake[J]. Chinese Journal of Geophysics,52(5):1412–1417 (in Chinese). doi: 10.3969/j.issn.0001-5733.2009.05.031
中国地震科学台阵. 2006. 中国地震科学探测台阵波形数据[DB/OL]. [2018-12-11]. 中国地震局. doi: 10.12001/ChinArray.Data. ChinArray. 2006. China Seismic Array waveform data[DB/OL]. [2018-12-10]. China Earthquake Administration. doi: 10.12001/China Array.Data (in Chinese).
中国地震台网中心. 2019. 中国地震台网统一地震编目工作系统[EB/OL]. [2019-01-10]. http://10.5.160.18/console/index.action. China Earthquake Networks Center. 2019. Unified earthquake cataloging work system of the China Seismographic Network[EB/OL]. [2019-01-10]. http://10.5.160.18/console/index.action (in Chinese). Béthoux N,Theunissen T,Beslier M O,Font Y,Thouvenot F,Dessa J X,Simon S,Courrioux G,Guillen A. 2016. Earthquake relocation using a 3D a-priori geological velocity model from the western Alps to Corsica:Implication for seismic hazard[J]. Tectonophysics,670:82–100. doi: 10.1016/j.tecto.2015.12.016
Brocher T M. 2005. Empirical relations between elastic wavespeeds and density in the Earth’s crust[J]. Bull Seismol Soc Am,95(6):2081–2092. doi: 10.1785/0120050077
Chen H P,Zhu L B,Su Y J. 2016. Low velocity crustal flow and crust-mantle coupling mechanism in Yunnan,SE Tibet,revealed by 3D S-wave velocity and azimuthal anisotropy[J]. Tectonophysics,685:8–20. doi: 10.1016/j.tecto.2016.07.007
Hausmann H,Hoyer S,Schurr B,Brückl E,Houseman G,Stuart G. 2010. New seismic data improve earthquake location in the Vienna basin area,Austria[J]. Austr J Earth Sci,103(2):2–14.
He X H,Ni S D,Liu J. 2015. Rupture directivity of the August 3rd,2014 Ludian earthquake (Yunan,China)[J]. Science China Earth Sciences,58(5):795–804. doi: 10.1007/s11430-015-5053-2
Huang J,Liu X J,Su Y J,Wang B S. 2012. Imaging 3-D crustal P-wave velocity structure of western Yunnan with bulletin data[J]. Earthquake Science,25(2):151–160. doi: 10.1007/s11589-012-0842-6
Husen S,Kissling E,Deichmann N,Wiemer S,Giardini D,Baer M. 2003. Probabilistic earthquake location in complex three-dimensional velocity models:Application to Switzerland[J]. J Geophys Res,108(B2):2077–2096. doi: 10.1029/2002JB001778
Kissling E,Ellsworth W L,Eberhart-Phillips D,Kradolfer U. 1994. Initial reference models in local earthquake tomography[J]. J Geophys Res,99(B10):19635–19646. doi: 10.1029/93JB03138
Le Meur H. 1994. Tomographie Tridimensionnelle A Partir Des Temps Des Premières Arrivées des Ondes P et S, Application a la Région de Patras (Grece)[D]. Paris: University Paris VII (in French).
Le Meur H,Virieux J,Podvin P. 1997. Seismic tomography of the gulf of Corinth:A comparison of methods[J]. Ann Geofis,60(1):1–24.
Lei J S,Zhao D P,Su Y J. 2009. Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data[J]. J Geophys Res,114(B5):B05302. doi: 10.1029/2008JB005881
Li Y H,Wu Q J,Zhang R Q,Tian X B,Zeng R S. 2008. The crust and upper mantle structure beneath Yunnan from joint inversion of receiver functions and Rayleigh wave dispersion data[J]. Phys Earth Planet Int,170(1/2):134–146.
Li Y H,Gao M T,Wu Q J. 2014a. Crustal thickness map of the Chinese mainland from teleseismic receiver functions[J]. Tectonophysics,611:51–60. doi: 10.1016/j.tecto.2013.11.019
Li Y H,Pan J T,Wu Q J,Ding Z F. 2014b. Crustal and uppermost mantle structure of SE Tibetan Plateau from Rayleigh-wave group-velocity measurements[J]. Earthquake Science,27(4):411–419. doi: 10.1007/s11589-014-0090-z
Lomax A, Virieux J, Volant P, Berge-Thierry C. 2000. Probabilistic earthquake location in 3D and layered models[G]//Advances in Seismic Event Location. Dordrecht: Springer: 101−134.
Lomax A,Curtis A. 2001. Fast,probabilistic earthquake location in 3D models using Oct-Tree importance sampling[J]. Geophys Res Abstr,3:955.
Lomax A,Zollo A,Capuano P,Virieux J. 2001. Precise,absolute earthquake location under Somma-Vesuvius volcano using a new three-dimensional velocity model[J]. Geophys J Int,146(2):313–331. doi: 10.1046/j.0956-540x.2001.01444.x
Podvin P,Lecomte I. 1991. Finite difference computation of traveltimes in very contrasted velocity models:A massively parallel approach and its associated tools[J]. Geophys J Int,105(1):271–284. doi: 10.1111/j.1365-246X.1991.tb03461.x
Socquet A,Pubellier M. 2005. Cenozoic deformation in western Yunnan (China-Myanmar border)[J]. J Asian Earth Sci,24(4):495–515. doi: 10.1016/j.jseaes.2004.03.006
Tarantola A,Valette B. 1982. Inverse problems = quest for information[J]. J Geophys,50(1):159–170.
Tarantola A. 1987. Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation[M]. Amsterdam: Elsevier Publishing Company.
Wang C Y,Chan W W,Mooney W D. 2003. Three-dimensional velocity structure of crust and upper mantle in southwestern China and its tectonic implications[J]. J Geophys Res,108(B9):2442. doi: 10.1029/2002JB001973
Wang Y,Zhang X M,Jiang C S,Wei H Q,Wan J L. 2007. Tectonic controls on the Late Miocene-Holocence volcanic eruptions of the Tengchong volcanic field along the southeastern margin of the Tibetan Plateau[J]. J Asian Earth Sci,30(2):375–389. doi: 10.1016/j.jseaes.2006.11.005
Wittlinger G,Herquel G,Nakache T. 1993. Earthquake location in strongly heterogeneous media[J]. Geophys J Int,115(3):759–777. doi: 10.1111/j.1365-246X.1993.tb01491.x
Xie Z J,Zheng Y,Liu C L,Xiong X,Li Y D,Zheng X F. 2015. Source parameters of the 2014 MS6.5 Ludian earthquake sequence and their implications on the seismogenic structure[J]. Seismol Res Lett,86(6):1614–1621. doi: 10.1785/0220150085
Xu Y,Yang X T,Li Z W,Liu J H. 2012. Seismic structure of the Tengchong volcanic area southwest China from local earthquake tomography[J]. J Volcanol Geotherm Res,239/240:83–91. doi: 10.1016/j.jvolgeores.2012.06.017
Zhang X,Wang Y H. 2009. Crustal and upper mantle velocity structure in Yunnan,Southwest China[J]. Tectonophysics,471(3/4):171–185.
Zhong D L,Ding L,Liu F T,Liu J H,Zhang J J,Ji J Q,Chen H. 2000. Multi-oriented and layered structures of lithosphere in orogenic belt and their effects on Cenozoic magmatism:A case study of western Yunnan and Sichuan,China[J]. Science in China:Series D,43(S1):122–133. doi: 10.1007/BF02911938
-
期刊类型引用(4)
1. 董森,于湘伟,章文波. 改进的特征量方法及其在震源动力学模拟中的应用. 地球物理学报. 2023(05): 2051-2068 . 百度学术
2. 李明会,景月岭,张宇璇,郑司元,宛明晨,何李浩. 九寨沟M_S7.0地震强地震动模拟及参数敏感性分析. 大地测量与地球动力学. 2022(10): 1025-1033 . 百度学术
3. 王铭锋,李一琼,俞言祥. 实际地形对2010年玉树M_S7.1地震动力学破裂过程及地震动特征的影响. 地震学报. 2021(01): 57-72 . 本站查看
4. 巴振宁,赵靖轩,吴孟桃,梁建文,塔拉. 基于逆断层动力学模型的三维山体地震动谱元法模拟. 地震工程与工程振动. 2021(03): 32-42 . 百度学术
其他类型引用(2)