Hydrochemical types and origins analysis of groundwater at the seismic monitoring stations in Liaoning Province
-
摘要:
通过测试辽宁省15个地震监测站泉水或井水的氢、氧同位素组成及主要离子组分含量,讨论了泉水或井水的化学类型及其成因。测得泉水或井水的δD和δ18O值范围分别为−82.5‰—−54.4‰和−11.4‰—−7.3‰,表明所测泉水和井水的主要来源为大气降水。研究区低温泉水为低矿化度的Ca-SO4·HCO3型或Ca-HCO3·SO4型;而较高温度的花岗岩裂隙水中溶解了较多的钠硅酸盐矿物,水化学类型主要为Na-HCO3·SO4型;碳酸盐岩及含砾砂岩含水层分别分布于辽宁省西部及中部地区,水温略低于高温花岗岩裂隙水,水化学类型为Na·Ca-HCO3型。水中F −含量较高,且F −含量与温度、pH值、Na+和
${{\rm HCO}_3^{-} }$ 的浓度呈正相关,表明泉水或井水的化学类型是深部富CO2流体及大气降水与花岗岩反应的结果。Abstract:The hydrochemical types and origins of underground waters collected from 15 seismic monitoring stations in Liaoning Province are discussed based on the isotope ratios of hydrogen and oxygen as well as ion concentrations. δD and δ18O values of underground water ranged from −82.5‰ to −54.4‰ and from −11.4 ‰ to −7.3‰, respectively, which indicates that the waters had a meteoric origin. Granite is widely distributed in the studied area. The cold spring waters were the type of Ca-SO4·HCO3 and Ca-HCO3·SO4, while the hot spring waters from fractured granite were mainly type of Na-HCO3·SO4 due to the dissolution of silicate minerals. The water samples with moderate temperature in the western and middle parts of Liaoning Province were the type of Na·Ca-HCO3, resulting from dissolution of silicate minerals and carbonate. The concentration of F − is positively correlated with temperature, pH, concentrations of Na+ and HCO3 −, indicating reaction between the granite and the fluids enriched in CO2 .
-
Keywords:
- groundwater /
- hot spring /
- hydrochemical types /
- isotope /
- factor analysis
-
根据美国地质调查局(United States Geological Survey,缩写为USGS)国家地震信息中心(National Earthquake Information Centre,缩写为NEIC)的测定,2021年2月13日14时7分50秒(UTC),日本本州以东发生了一次矩震级高达MW7.2的地震,震中位于(37.745°N,141.749°E),震源深度为49.94 km,这是截至本文发稿时最终更新的定位结果,更新前为(37.686°N,141.992°E),震源深度为54.0 km。美国地质调查局(USGS,2021)和全球矩心矩张量组(GCMT,2021)随后发布了这次地震的矩心矩张量解(表1)。震后48小时内累计发生M>2.5余震13次,其中最大的余震震级达到MW5.3,主震和余震的深度分布在35—65 km之间。该事件所在区域曾于2011年3月11日发生过MW9.1特大地震(Duputel et al,2012a)并引起破坏性海啸,相较于2011年MW9.1事件,本次事件的位置更靠近西侧,发生在俯冲带较深的区域。
表 1 GCMT,USGS 和本研究所得日本本州东海岸MW7.2地震矩心矩张量解Table 1. The centroid moment tensor solutions for the MW7.2 earthquake in the east coast of Honshu,Janpan,from GCMT,USGS and this study机构 矩张量/(1019 N·m) 矩心参数 Mrr Mtt Mpp Mrt Mrp Mtp τc/s 北纬/° 东经/° 矩心深度/km GCMT (2021) 5.540 −0.647 −4.890 0.269 −1.760 −1.740 9.6 37.60 141.63 50.7 USGS (2021)(W震相) 4.557 −0.220 −4.337 0.724 −0.773 −1.550 13.2 37.63 141.88 60.5 USGS (2021)(体波) 5.964 −1.531 −4.434 0.313 −2.151 −1.156 − 37.75 141.72 50.6 本文 8.588 −0.147 −8.440 −0.217 −2.755 −1.000 12.0 37.65 141.45 50.0 基于对该事件震级、噪声水平及空间分辨率的综合考虑,我们收集了震中距处于34.53°—89.92°范围内全球地震台网(Global Seismograph Network,缩写为GSN)和宽频带数字地震台网联盟(International Federation of Digital Seismograph Network,缩写为FDSN) 61个台站的宽频带垂直分量数据作为观测资料,采用AK135模型计算格林函数(Wang,1999)并截取P波数据,根据震级将滤波频带设定为0.01—0.05 Hz。与Kanamori和Rivera (2008)、Duputel等(2012b)以及先前的研究(张喆等,2020)相同,本文采用网格搜索的方法对矩心时空信息进行非线性反演,结果如图1所示。反演结果显示,矩心时间为12 s,矩心水平坐标为(37.65°N,141.45°E),矩心深度为50 km,其中双力偶成分占比接近100%。根据矩心矩张量解(表1,图2),我们也得到了相应的最佳双力偶解(表2)。图3展示了利用反演结果计算的合成波形与观测波形的比较,二者的整体相关系数达到0.93,二次误差为5.785×10−8,大多数台站的相关系数在0.90以上。
图 1 日本本州东海岸MW7.2地震矩心矩张量解反演过程(a) 矩心时间τc搜索;(b) 矩心水平空间搜索,黄色圆圈表示矩心水平坐标;(c) 矩心深度hc搜索;(d) 矩心相对震中的位置,红色沙滩球表示矩心矩张量解,红色星形表示震中Figure 1. Inversion process of the centroid moment tensor solution for the MW7.2 earthquake in the east coast of Honshu,Japan(a) Search for centroid time τc;(b) Search for the horizontal location of the centroid (yellow circle);(c) Search for centroid depth hc; (d) The centroid location (beach-ball) with respect to the instrumental epicenter (red hexagon)表 2 GCMT,USGS以及本研究得到的日本本州东海岸MW7.2地震的最佳双力偶解Table 2. The best double-couple solutions for the MW7.2 earthquake in the east coast of Honshu,Japan,from USGS,GCMT and this study机构 标量地震矩
/(1019 N·m)双力偶
成分占比节面Ⅰ 节面Ⅱ 走向/° 倾角/° 滑动角/° 走向/° 倾角/° 滑动角/° GCMT (2021) 5.800 99% 192 53 80 28 38 103 USGS (2021)(W震相) 4.831 96% 187 49 74 30 43 107 USGS (2021)(体波) 5.903 61% 191 55 82 25 35 102 本文 9.008 100% 186 54 89 7 36 91 与USGS和GCMT的结果(图4)相比,本文反演所得矩心时间12 s介于二者之间,而矩心位置(37.65°N,141.45°E,深度50 km)要更偏向西侧。本文反演得到的标量地震矩达到9.008×1019 N·m,换算为矩震级约MW7.24,高于其它机构(约MW7.1)的结果。此外,本文反演得到矩张量解中双力偶成分占比接近100%,这个数值要略高于GCMT和USGS (W震相)的结果,明显高于USGS (体波)发布的结果。从最佳双力偶解所确定的断层面来看,本研究的走向和倾角与其它研究结果近似,滑动角上存在接近10°的差异。经反复测试我们认为滑动角、矩心位置与其它研究结果的差异与观测资料、滤波频带的不同以及参考震中(Preliminary Determination Epicenter,缩写为PDE)的变更相关。从本文反演得到的震源机制解来看这是一次纯逆冲事件。
图 4 2011年MW9.1地震(灰色沙滩球)后M>2.5事件以及本州东海岸MW7.2地震的余震分布和各机构发布的该主震的矩心矩张量反演结果Figure 4. The centroid moment tensor solutions (colored beach-balls) from various institutions and aftershocks of the MW7.2 earthquake in east coast of Honshu as well as the M>2.5 earthquakes since the 2011 MW9.1 earthquake (gray beach-ball)本研究使用的数字波形数据均通过地震学联合研究会(Incorporated Research Institutions for Seismology,缩写为IRIS)数据中心获取,震源机制数据分别来自于全球矩心矩张量(GCMT)和美国地质调查局(USGS),余震数据来自于美国地质调查局(USGS),作者在此表示感谢!
-
表 1 辽宁省地震监测台站地下水样品物理化学参数
Table 1 Physical and chemical parameters of the groundwater samples from the seismic observatories in Liaoning Province
编
号采样
位置采样
水类型东经
/°北纬
/°水温
/℃pH值 离子浓度/(mg·L−1) δD δ18O 水化学类型 Li+ Na+ K+ Mg2+ Ca2+ F− Cl− Br− SO42− NO3− CO32− TDS HCO3− 1 五佰町 井 119.38 41.37 / 8.69 0.96 579.75 3.20 1.18 5.96 27.71 333.27 3.68 303.76 1.02 33.90 668.62 1 628.68 −85.37‰ −11.4‰ Na-HCO3·Cl 2 喀什 泉 119.39 41.39 48.0 8.83 0.50 403.41 5.48 2.41 11.52 15.99 150.80 0.29 301.92 1.58 − 448.05 1 117.93 −85.97‰ −11.3‰ Na-HCO3·SO4 3 药王庙 泉 120.15 40.80 34.9 8.04 0.34 92.36 14.06 16.66 44.30 5.88 43.33 0.12 37.10 − − 334.31 421.31 −82.49‰ −11.3‰ Na·Ca-HCO3 4 沈家台 井 120.87 41.41 28.1 8.19 0.34 72.09 10.43 20.06 48.55 4.63 18.33 − 42.08 − − 372.77 402.89 −70.56‰ −9.84‰ Na·Ca-HCO3 5 阜新 井 121.60 42.05 17.2 7.86 0.03 62.63 1.16 25.28 102.38 2.62 61.80 0.11 267.02 1.53 − 179.22 614.17 −67.65‰ −8.88‰ Ca·Na -SO4·HCO3 6 哈达呼哨 泉 121.69 42.27 16.4 7.86 − 12.25 1.01 5.93 62.96 0.27 15.15 − 80.81 79.14 − 62.04 288.52 −65.66‰ −8.38‰ Ca-SO4·HCO3 7 盘锦 井 122.02 41.18 23.0 7.47 − 78.64 2.51 15.86 50.21 0.21 28.15 0.39 0.18 − − 372.22 362.26 −69.73‰ −9.26‰ Na·Ca-HCO3 8 金州 泉 122.03 39.25 16.7 6.88 − 35.78 2.76 50.86 198.27 − 516.64 − 58.69 112.69 − 82.72 1 017.04 −54.39‰ −7.33‰ Ca·Mg-Cl 9 安波 泉 122.31 39.84 68.5 8.61 0.05 122.03 4.11 0.21 5.93 13.47 35.71 − 80.06 − 13.56 137.86 344.05 −61.98‰ −8.77‰ Na-HCO3·SO4 10 狄家堡 泉 123.11 40.24 40.1 8.6 0.03 63.84 2.79 0.08 5.26 10.12 10.01 − 38.89 1.43 23.73 31.02 171.69 −63.90‰ −9.02‰ Na-HCO3·SO4 11 徐家堡 泉 123.19 40.33 14.5 6.64 − 9.24 2.92 4.69 13.30 0.19 4.93 − 10.09 15.69 − 57.65 89.87 −58.12‰ −8.19‰ Ca·Na-HCO3 12 凤城 井 124.11 40.51 36.8 8.12 0.14 145.92 5.63 0.54 28.36 7.17 31.71 − 312.71 2.56 − 75.82 572.64 −66.43‰ −9.13‰ Na-SO4 13 汤池 泉 124.26 40.07 35.2 8.89 − 63.92 1.44 − 4.87 6.66 7.95 − 46.77 0.14 20.34 55.14 179.67 −61.24‰ −9.05‰ Na-HCO3·SO4 14 变电 泉 124.33 40.11 16.9 7.68 − 8.37 0.92 3.60 72.88 2.44 8.14 − 142.98 0.74 − 89.61 284.88 −56.81‰ −8.27‰ Ca-SO4·HCO3 15 宽甸 井 125.23 40.80 15.4 7.87 − 3.69 0.83 4.56 41.30 0.72 1.11 0.06 58.74 0.41 − 82.72 152.78 −68.16‰ −9.87‰ Ca-HCO3·SO4 注:“/”为未测数据,“−”为低出检测线数据。 表 2 地下水各组分之间的相关系数
Table 2 Correlation coefficient of chemical composition of groundwater
${{\rm CO}^{2-}_3} $ ${{\rm HCO}^{-}_3} $ F− Cl− ${{\rm NO}^{-}_3} $ ${{\rm SO}^{-2-}_2} $ Li+ Na+ K+ Ca2+ Mg2+ 水温 pH TDS ${{\rm CO}^{2-}_3} $ 1.00 −0.38 0.47 −0.20 −0.22 −0.26 −0.24 −0.03 −0.19 −0.45 −0.40 0.52 0.58 −0.37 ${{\rm HCO}^{-}_3} $ 1.00 0.29 0.02 −0.31 0.13 0.78 0.62 0.60 −0.08 0.17 0.23 0.20 0.45 F− 1.00 −0.10 −0.42 0.41 0.58 0.79 0.30 −0.55 −0.45 0.91 0.80 0.30 Cl− 1.00 0.74 0.06 0.03 0.13 −0.02 0.79 0.80 −0.11 −0.35 0.75 ${{\rm NO}^{-}_3} $ 1.00 −0.16 −0.28 −0.26 −0.23 0.73 0.62 −0.37 −0.49 0.36 ${{\rm SO}^{-2-}_2} $ 1.00 0.36 0.61 −0.05 0.02 −0.13 0.19 0.30 0.58 Li+ 1.00 0.77 0.77 −0.23 −0.03 0.40 0.42 0.52 Na+ 1.00 0.31 −0.31 −0.20 0.61 0.53 0.67 K+ 1.00 −0.14 0.13 0.33 0.18 0.19 Ca2+ 1.00 0.91 −0.54 −0.58 0.50 Mg2+ 1.00 −0.41 −0.54 0.53 水温 1.00 0.73 0.15 pH 1.00 0.03 TDS 1.00 表 3 旋转因子载荷矩阵
Table 3 Matrix of rotated factor loadings
F1 F2 F3 F4 Cl− 0.97 0.01 0.02 0.13 Mg2+ 0.86 −0.35 0.19 -0.12 Ca2+ 0.84 −0.45 −0.10 0.03 NO3- 0.81 −0.20 −0.27 −0.09 TDS 0.67 0.11 0.35 0.64 水温 −0.14 0.88 0.25 0.11 F− −0.17 0.86 0.27 0.36 CO32− −0.16 0.80 −0.37 −0.36 pH −0.36 0.78 0.14 0.21 HCO3− −0.02 −0.01 0.89 0.21 K+ −0.01 0.12 0.89 −0.18 Li+ −0.04 0.24 0.86 0.35 SO42− −0.03 0.07 0.01 0.95 Na+ 0.00 0.48 0.48 0.68 贡献率 26.44 24.66 22.06 16.57 累计贡献率 26.44 51.09 73.15 89.72 *注:加粗数字表示各公因子所包含的主成分载荷值。 -
车用太, 鱼金子. 2006. 地震地下流体学[M]. 北京: 气象出版社: 1−498. Che Y T, Yu J Z. 2006. Underground Fluids and Earthquake[M]. Beijing: China Meteorological Press: 1−498 (in Chinese).
陈志,杜建国,周晓成,崔月菊,刘雷,李营,张文来,高小其,许秋龙,王海涛. 2014. 2012年6月30日新源MS6.6地震前后北天山泥火山及温泉的水化学变化[J]. 地震,34(3):97–107. doi: 10.3969/j.issn.1000-3274.2014.03.009 Chen Z,Du J G,Zhou X C,Cui Y J,Liu L,Li Y,Zhang W L,Gao X Q,Xu Q L,Wang H T. 2014. Hydrogeochemical changes of mud volcanoes and springs in north Tianshan related to the June 30,2012 Xinyuan MS6.6 earthquake[J]. Earthquake,34(3):97–107 (in Chinese).
崔娜,刘晓黎. 2004. 对金州沿海地区地下水中氯离子与硬度相关关系的研究[J]. 环境科学与技术,27(1):42–43. doi: 10.3969/j.issn.1003-6504.2004.01.020 Cui N,Liu X L. 2004. Groundwater surveys in shore-land of Jinzhou district:A study of correlation between chloride content and hardness[J]. Environmental Science and Technology,27(1):42–43 (in Chinese).
崔娜. 2011. 金州湾近岸海域水质变化趋势分析与污染防治对策[J]. 绿色科技,(10):146–148. doi: 10.3969/j.issn.1674-9944.2011.10.071 Cui N. 2011. Trend analysis of water quality change and pollution control measures in Jinzhou Bay[J]. Journal of Green Science and Technology,(10):146–148 (in Chinese).
杜建国, 李营, 崔月菊, 孙凤霞. 2018. 地震流体地球化学[M]. 北京: 地震出版社: 1−272. Du J G, Li Y, Cui Y J, Sun F X. 2018. Seismic Fluid Geochemistry[M]. Beijing: Seismological Press: 1−272 (in Chinese).
范基姣,佟元清,李金英,王立新,李戎,刘志勇. 2008. 我国高氟水形成特点的主要影响因子及降氟方法[J]. 安全与环境工程,15(1):14–16. doi: 10.3969/j.issn.1671-1556.2008.01.005 Fan J J,Tong Y Q,Li J Y,Wang L X,Li R,Liu Z Y. 2008. Affecting factors of high-fluorine water in our country and scheme to avoid fluorine[J]. Safety and Environmental Engineering,15(1):14–16 (in Chinese).
何晓群. 2007. 现代统计分析方法与应用[M]. 北京: 中国人民大学出版社: 1−432. He X Q. 2007. The Methods of Modern Statistics Analysis[M]. Beijing: Press of Renmin University of China: 1−432 (in Chinese).
简春林. 2004. 中国大陆地震地下流体异常特征研究[J]. 地震,24(1):42–49. doi: 10.3969/j.issn.1000-3274.2004.01.006 Jian C L. 2004. Research on underground fluid anomaly characteristics of seismicity in China’s continent[J]. Earthquake,24(1):42–49 (in Chinese).
姜海宁,谷洪彪,于一雷,迟宝明,王贺,周经纬. 2015. 瓶装饮用水的水化学、同位素特征及其指示意义[J]. 地球与环境,43(4):403–414. Jiang H N,Gu H B,Yu Y L,Chi B M,Wang H,Zhou J W. 2015. Hydrochemical and isotopic characteristics of bottled drinking water and its instruction significance[J]. Earth and Environment,43(4):403–414 (in Chinese).
雷清清,廖旭,董晓燕,杨舒程. 2008. 辽宁省主要活动断层与地震活动特征分析[J]. 震灾防御技术,3(2):111–125. doi: 10.3969/j.issn.1673-5722.2008.02.002 Lei Q Q,Liao X,Dong X Y,Yang S C. 2008. Main active faults and their seismic activities in Liaoning Province[J]. Technology for Earthquake Disaster Prevention,3(2):111–125 (in Chinese).
李学礼, 孙占学, 刘金辉. 2010. 水文地球化学[M]. 第三版. 北京: 原子能出版社: 228. Li X L, Sun Z X, Liu J H. 2010. Hydrogeochemistry[M]. 3rd ed. Beijing: Atomic Energy Press: 228 (in Chinese).
梁礼革,朱明占,朱思萌,张丽萍,谢先军. 2015. 桂东地区地热水中氟的分布及其富集过程研究[J]. 安全与环境工程,22(1):1–6. Liang L G,Zhu M Z,Zhu S M,Zhang L P,Xie X J. 2015. Spatial distribution and enrichment of fluoride in geothermal water from eastern Guangxi,China[J]. Safety and Environmental Engineering,22(1):1–6 (in Chinese).
马致远,余娟,李清,王心刚,李峰,穆跟胥,胡扬,贾旭兵,黎卫亮. 2008. 关中盆地地下热水环境同位素分布及其水文地质意义[J]. 地球科学与环境学报,30(4):396–401. doi: 10.3969/j.issn.1672-6561.2008.04.011 Ma Z Y,Yu J,Li Q,Wang X G,Li F,Mu G X,Hu Y,Jia X B,Li W L. 2008. Environmental isotope distribution and hydro-logic geologic sense of Guanzhong basin geothermal water[J]. Journal of Earth Sciences and Environment,30(4):396–401 (in Chinese).
马虹. 2006. 主成分分析法在水质综合评价中的应用[J]. 南昌工程学院学报,25(1):65–67. doi: 10.3969/j.issn.1006-4869.2006.01.017 Ma H. 2006. The application of principal ingredient analysis method to the water quality appraisement[J]. Journal of Nanchang Institute of Technology,25(1):65–67 (in Chinese).
乔晓霞,孙熠,刘玉洁. 2014. 辽宁省典型地区高氟地下水的分布特征及成因分析[J]. 地下水,36(4):33–34. doi: 10.3969/j.issn.1004-1184.2014.04.012 Qiao X X,Sun Y,Liu Y J. 2014. Research on the formation and distribution of groundwater with high fluorine content in Liao-ning Province[J]. Underground Water,36(4):33–34 (in Chinese).
秦兵,李俊霞. 2012. 大同盆地高氟地下水水化学特征及其成因[J]. 地质科技情报,31(2):106–111. doi: 10.3969/j.issn.1000-7849.2012.02.017 Qin B,Li J X. 2012. Hydrochemistry and occurrence of high fluoride groundwater in Datong basin[J]. Geological Science and Technology Information,31(2):106–111 (in Chinese).
邱立军. 2012. 辽宁盘锦新近系馆陶组地下热水分布特征及成因分析[J]. 中国煤炭地质,24(4):42–46. Qiu L J. 2012. Neogene Guantao formation underground hot water distribution features and genetic analysis in Panjin,Liaoning[J]. Coal Geology of China,24(4):42–46 (in Chinese).
孙凤霞,崔月菊,郑红巍,王玥,李继成,司学芸,李新艳,杜建国. 2016. 河套盆地周缘泉水化学组分对2015年4月15日阿左旗MS5.8地震的响应[J]. 地震,36(2):105–118. doi: 10.3969/j.issn.1000-3274.2016.02.011 Sun F X,Cui Y J,Zheng H W,Wang Y,Li J C,Si X Y,Li X Y,Du J G. 2016. Hydrochemical response of hot springs around Hetao basin to the 15 April 2015 MS5.8 Alxazuoqi earthquake[J]. Earthquake,36(2):105–118 (in Chinese).
孙红丽,马峰,刘昭,刘志明,王贵玲,男达瓦. 2015. 西藏高温地热显示区氟分布及富集特征[J]. 中国环境科学,35(1):251–259. Sun H L,Ma F,Liu Z,Liu Z M,Wang G L,Nan D W. 2015. The distribution and enrichment characteristics of fluoride in geothermal active area in Tibet[J]. China Environmental Science,35(1):251–259 (in Chinese).
王瑞久. 1985. 氧-18的高程效应及其水文地质解释:以太原西山为例[J]. 工程勘察,(1):51–54. Wang R J. 1985. O-18 elevation effect and interpretation of hydrogeology:A case study of Xishan,Taiyuan[J]. Engineering Exploration,(1):51–54 (in Chinese).
徐玉华. 1995. 水化学地震前兆短临预报指标和方法研究[J]. 地震,(1):65–72. Xu Y H. 1995. Research of the imminent and short-term earthquake prediction index of hydrogeochemical precursors and its method[J]. Earthquake,(1):65–72 (in Chinese).
易春瑶,汪丙国,靳孟贵. 2013. 水-土-植物系统中氟迁移转化规律的研究进展[J]. 安全与环境工程,20(6):59–64. doi: 10.3969/j.issn.1671-1556.2013.06.012 Yi C Y,Wang B G,Jin M G. 2013. Research progress of migration and transformation laws of fluoride in groundwater-soil-plant system[J]. Safety and Environmental Engineering,20(6):59–64 (in Chinese).
尹观,倪师军. 2001. 地下水氘过量参数的演化[J]. 矿物岩石地球化学通报,20(4):409–411. doi: 10.3969/j.issn.1007-2802.2001.04.057 Yin G,Ni S J. 2001. Deuterium excess parameter evolution in ground water[J]. Bulletin of Mineralogy Petrology and Geoche-mistry,20(4):409–411 (in Chinese).
张戈,崔亚力,杨绍南,关卓. 2004a. 辽宁省地下热水分布特征[J]. 勘察科学技术,(2):40–43. Zhang G,Cui Y L,Yang S N,Guan Z. 2004a. Geothermal distribution characteristics of Liaoning Province[J]. Site Investigation Science and Technology,(2):40–43 (in Chinese).
张戈,姜玉成,邵景力,崔亚力,关卓. 2004b. 辽宁地热资源与开采潜力研究[J]. 地质与资源,13(1):22–25. Zhang G,Jiang Y C,Shao J L,Cui Y L,Guan Z. 2004b. Study on the situation and exploitation potential of geothermal resources in Liaoning Province[J]. Geology and Resources,13(1):22–25 (in Chinese).
张桂铭,刘文锋. 2013. 基于震例研究的地震预测预报分析[J]. 中国地震,29(4):528–536. doi: 10.3969/j.issn.1001-4683.2013.04.013 Zhang G M,Liu W F. 2013. Analysis of earthquake forecast/prediction based on cases research[J]. Earthquake Research in China,29(4):528–536 (in Chinese).
张威,傅新锋,张甫仁. 2004. 地下水中氟含量与温度、pH值、(Na+ +K+ )/Ca2+的关系:以河南省永城矿区为例[J]. 地质与资源,13(2):109–111. doi: 10.3969/j.issn.1671-1947.2004.02.007 Zhang W,Fu X F,Zhang F R. 2004. The relationship between the high fluorine content of groundwater and the pH value,water temperature and ratio of (Na+ +K+ )/Ca2+:A case study of Yongcheng mine area[J]. Geology and Resources,13(2):109–111 (in Chinese).
张炜, 王吉易, 鄂秀满, 李宣瑚, 王长岭, 李正蒙. 1988. 水文地球化学预报地震的原理与方法[M]. 北京: 教育科学出版社: 1−293. Zhang W, Wang J Y, E X M, Li X H, Wang C L, Li Z M. 1988. Hydrogeochemical Principles and Methods in Earthquake Prediction[M]. Beijing: Educational Science Publishing House: 1−293 (in Chinese).
中华人民共和国卫生部, 中国国家标准化管理委员会, 2007. GB 5749—2006 生活饮用水卫生标准[S]. 北京: 中国标准出版社: 1−9. Ministry of Health of the People’s Republic of China, Standardization administration. 2007. GB 5749−2006 Standards for Drinking Water Quality[S]. Beijing: Standards Press of China: 1−9 (in Chinese).
钟骏,王博,周志华. 2018. 精河MS6.6地震前地下流体异常特征分析[J]. 中国地震,34(4):754–764. doi: 10.3969/j.issn.1001-4683.2018.04.015 Zhong J,Wang B,Zhou Z H. 2018. Analysis on anomaly characteristics of underground fluid before the Jinghe,Xinjiang MS6.6 earthquake in 2017[J]. Earthquake Research in China,34(4):754–764 (in Chinese).
Bagheri R,Nadri A,Raeisi E,Eggenkamp H G M,Kazemi G A,Montaseri A. 2014. Hydrochemical and isotopic (δ18O,δ2H,87Sr/86Sr,δ37Cl and δ81Br) evidence for the origin of saline formation water in a gas reservoir[J]. Chem Geol,384:62–75. doi: 10.1016/j.chemgeo.2014.06.017
Capecchiacci F,Tassi F,Vaselli O,Bicocchi G,Gabassi J,Giannini I,Nisi B. 2015. A combined geochemical and isotopic study of the fluids discharged from the Montecatini thermal system (NW Tuscany,Italy)[J]. Geochemistry,59:33–46. doi: 10.1016/j.apgeochem.2015.03.010
Chen Z, Du J G, Zhou X C, Yi L, Liu L, Xie C, Cui Y J, Li Y. 2014. Hydrochemistry of the hot springs in western Sichuan Province related to the Wenchuan MS8.0 earthquake[J/OL]. Sci World J: 901432.
Craig H. 1961. Isotopic variations in meteoric waters[J]. Science,133(3465):1702–1703. doi: 10.1126/science.133.3465.1702
Du J G, Si X Y, Chen Y X, Fu H, Jian C L, Guo W S. 2008. Geochemical anomalies connected with great earthquakes in China[G]//Geochemistry Research Advances. New York: Nova Science Publishers Inc.: 57−92.
Gaagai A,Boudoukha A,Boumezbeur A,Benaabidate L. 2017. Hydrochemical characterization of surface water in the Babar watershed (Algeria) using environmetric techniques and time series analysis[J]. Intl J River Basin Manag,15(3):361–372. doi: 10.1080/15715124.2017.1299157
Jeevanandam M,Nagarajan R,Manikandan M,Senthilkumar M,Srinivasalu S,Prasanna M V. 2012. Hydrogeochemistry and microbial contamination of groundwater from lower Ponnaiyar basin,Cuddalore District,Tamil Nadu,India[J]. Environ Earth Sci,67(3):867–887. doi: 10.1007/s12665-012-1534-1
Qi J H,Xu M,An C J,Wu M L,Zhang Y H,Li X,Zhang Q,Lu G P. 2017. Characterizations of geothermal springs along the Moxi deep fault in the western Sichuan plateau,China[J]. Phys Earth Planet Inter,263:12–22. doi: 10.1016/j.pepi.2017.01.001
Rao S M,Asha K,Shivachidambaram S. 2013. Influence of anthropogenic contamination on groundwater chemistry in Mulbagal town,Kolar District,India[J]. Geosci J,17(1):97–106. doi: 10.1007/s12303-013-0007-1
Skelton A,Andrén M,Kristmannsdóttir H,Stockmann G,Mörth C M,Sveinbjörnsdóttir Á,Jónsson S,Sturkell E,Guðrúnardóttir H R,Hjartarson H,Siegmund H,Kockum I. 2014. Changes in groundwater chemistry before two consecu-tive earthquakes in Iceland[J]. Nat Geosci,7(10):752–756. doi: 10.1038/ngeo2250
Woith H,Wang R J,Maiwald U,Pekdeger A,Zschau J. 2013. On the origin of geochemical anomalies in groundwaters induced by the Adana 1998 earthquake[J]. Chem Geol,339:177–186. doi: 10.1016/j.chemgeo.2012.10.012
-
期刊类型引用(3)
1. 刘永梅,崔月菊,孙凤霞,仵柯田,姜莉,刘改梅,陈立峰,杜建国. 内蒙古—辽宁交界地区地下水化学类型及其成因分析. 地震研究. 2023(01): 58-67 . 百度学术
2. 王喜龙,罗银花,金秀英,杨梦尧,孔祥瑞. 辽南地区断裂带的断层土壤气地球化学特征及其对区域应力调整的指示. 地震地质. 2023(03): 710-734 . 百度学术
3. 姜莉,崔月菊,王海燕,孙凤霞,王喜龙,杜建国. 辽东南地区地下水化学时空变化. 地震. 2021(03): 114-130 . 百度学术
其他类型引用(1)