Fault geometric effects on characteristics of slow slip events in south-central Alaska
-
摘要: 本文采用三种不同的俯冲带几何模型,在速率-状态依赖型摩擦律和准动态算法的框架下,对阿拉斯加库克湾的慢滑移事件进行了数值模拟,以探究断层几何形状对慢滑移特征的影响。结果表明:几何因素对慢滑移的时空演化有较大影响;慢滑移区域的宽度对数值模拟的结果起着至关重要的作用;断层几何形态更平缓的区域将导致更大、更快的事件。这一结果有助于我们进一步了解慢滑移的成因以及断层几何形态对慢滑移时空演化的影响。
-
关键词:
- 慢滑移 /
- 阿拉斯加中南部俯冲带 /
- 断层几何效应 /
- 速率-状态依赖型摩擦律
Abstract: The purpose of this paper is to explore the influence of the geometry of fault model on the characteristic values of slow slip events in numerical simulations. In this paper, three different subduction zone geometric models were used to numerically simulate slow slip events (SSEs) in Cook Inlet, Alaska in the framework of rate- and state-dependent friction law and a quasi-dynamic algorithm so as to explore the influence of fault geometry on SSEs characteris-tics. The results show that the geometric factor does have great influence on the spatio-temporal evolution of SSEs. The width of the SSEs zone plays a key role in the simulation of SSEs. And the areas with gentler terrain lead to larger and faster events. The results are helpful to further understand the genesis of SSEs and the influence of fault geometry on the evolution of SSEs. -
引言
强震发生后的地震破裂过程的研究一直受到国内外地震学家的关注和重视,主要从以下两个方面进行研究:通过波形反演对强震破裂过程进行研究(Chen et al,1996;许力生,陈运泰,1997,1999);或者对强震的余震序列进行重新定位,根据精定位结果研究强震的破裂过程(Ohnaka,Kuwahara,1990;Ohnaka,1992;Hurukawa,1998;陈学忠等,2001a,b,2008;李艳娥等,2015)。
2018年5月28日1时50分,吉林省松原市宁江区发生MS5.7地震,根据中国地震台网正式给出的结果,震中位置为(45.27°N,124.71°E)。松原MS5.7地震附近的主要断裂有NW向的第二松花江断裂和NE向的扶余—肇东断裂,根据区域地震台网测定的地震序列结果,尚难以确定其发震断层面。
历史上,松原MS5.7地震震区鲜有强震发生。自公元624年以来,曾于1119年在松原MS5.7地震以南不远处发生前郭卡拉木MS6.8地震,2006年3月31日在其西南约85 km处的乾安县查干花镇发生MS5.0地震,2013年10月至11月间发生5次MS≥5.0地震,最大震级为MS5.8。该地区强震震后趋势判定的经验不多,所以研究2018年5月28日松原MS5.7地震的发震断层,对于该地震的震后趋势判定以及该地区构造活动情况的分析有着非常重要的意义。
为了讨论松原MS5.7地震的破裂面,本文拟利用主地震相对定位法,对2017年7月18日—2018年7月15日期间发生在松原MS5.7地震序列区域内的地震进行重新定位,利用重新定位后地震的时空分布特征对本次地震可能的破裂面进行分析。
本文使用的相对定位法又称为主地震定位法。以震源位置定位较好的地震作为主地震(参考地震),计算其它地震相对于主地震(参考地震)的位置,最终得到待定地震的重新定位位置。相对定位法对所假设的地壳模型的依赖较小(周仕勇等,1999),该方法利用余震分布对震源破裂过程进行研究,主要分析地震相对位置的变化,因此,相对定位法在地震序列的破裂过程研究中具有独特的优势。
1. 资料和重新定位结果
本文收集了中国地震台网中心2017年7月18日—2018年7月15日正式震相报告中的Pg,Sg和部分Pn震相,对发生在(45.1°N—45.4°N,124.6°E—124.9°E)范围之内的地震开展重定位工作,所用台站的空间分布如图1所示。选择被4个以上台站记录到的地震,共计118次,最小震级为ML1.4。在观测报告中共记录到ML≥1.4地震176次,4个以上台站记录到的地震占67%。观测报告中记录到ML≥2.0地震共100次,4个以上台站记录到的地震有96次,其中能重新定位的有90次,占90%,其余6次地震的定位残差太大,结果不可靠,需要舍去。因此,绝大多数ML≥2.0地震被重新定位,以此来确保其分析结果的可靠性。
图 1 松原MS5.7地震周边区域构造背景及用于重定位台站和MS≥5.0地震的分布震源机制解引自USGS (2018). F1:第二松花江断裂;F2:扶余—肇东断裂;F3:孤店断裂;F4:查干花断裂;F5:大安断裂Figure 1. The tectonic background as well as distribution of the stations used for relocation and the earthquakes with MS≥5.0 around the epicenter of the Songyuan MS5.7 earthquakeThe focal mechanism solution shown in the figure is obtained from the result of USGS (2018). F1:The second Songhuajiang fault;F2:Fuyu-Zhaodong fault;F3:Gudian fault;F4:Chaganhua fault;F5:Da’an fault重定位过程中以MS5.7主震为参考地震,即主地震,观测报告中给出的震中位置为(45.26°N,124.71°E),震源深度为10 km。图2为地震序列重新定位后的M-t图,地震序列中重新定位后的地震空间分布如图3所示.
图 3 2017年7月18日—2018年5月27日(蓝色圆圈)和2018年5月28日—2018年7月14日(红色圆圈)松原MS5.7地震序列重新定位前 (左)、后 (右) ML≥2.0 (a)和ML≥3.3 (b)地震震中分布Figure 3. The distribution of the epicenters of the Songyuan MS5.7 earthquake sequence before (left) and after (right) relocation which occurred from 18 July 2017 to 27 May 2018 (blue circles) and those occurred from 28 May 2018 to 14 July 2018 (red circles) with ML≥2.0 (a) and ML≥3.3 (b)对于ML≥2.0地震,经度定位误差范围为0.042—0.61 km,平均约为0.06 km;纬度定位误差范围为0.049—0.44 km,平均约为0.069 km (表1)。对有3个及以上台站首波资料的34次地震进行震源深度计算,结果显示,震源深度的定位误差平均为2.47 km,最大为4.46 km,最小为0.002 km。
表 1 ML≥2.0地震震相数、定位误差与震源深度Table 1. Number of seismic phases,location error and focal depth for ML≥2.0 earthquakes序号 发震日期 ML 台站数 震相数 定位误差 震源深度
/km残差均方根
/sPn Pg Sg 纬度/km 经度/km 深度/km 1 2018−07−14 2.3 6 1 6 6 0.323 0.218 0.417 2 2018−07−11 2.5 5 1 5 5 0.440 0.614 0.225 3 2018−07−10 2.7 13 1 13 13 0.161 0.128 0.173 4 2018−07−10 2.7 12 2 12 12 0.148 0.112 0.231 5 2018−07−08 2.0 4 0 4 4 0.152 0.113 0.265 6 2018−07−06 2.6 10 0 10 10 0.153 0.115 0.265 7 2018−06−28 2.2 10 1 10 10 0.123 0.108 0.238 8 2018−06−21 2.5 8 0 8 8 0.129 0.099 0.273 9 2018−06−21 2.6 12 2 12 12 0.118 0.099 0.255 10 2018−06−17 3.0 13 5 13 13 0.081 0.064 1.191 2.9 0.146 11 2018−06−15 2.2 9 2 9 9 0.083 0.064 0.147 12 2018−06−12 2.5 10 2 10 10 0.078 0.065 0.117 13 2018−06−12 2.6 12 5 12 12 0.083 0.060 0.453 6.4 0.125 14 2018−06−05 3.4 23 14 23 23 0.054 0.049 2.276 4.6 0.115 15 2018−06−04 3.2 19 9 19 19 0.053 0.045 1.557 4.2 0.111 16 2018−0−603 2.7 15 2 15 15 0.054 0.046 0.127 17 2018−06−01 2.5 8 1 8 8 0.054 0.045 0.181 18 2018−05−31 3.7 18 11 18 18 0.053 0.047 2.779 6.3 0.195 19 2018−05−31 4.1 22 16 22 22 0.051 0.050 3.161 7.6 0.173 20 2018−05−31 2.1 4 0 4 4 0.052 0.050 0.209 21 2018−05−30 2.2 8 0 8 8 0.052 0.050 0.303 22 2018−05−30 2.2 6 0 6 6 0.052 0.049 0.172 23 2018−05−30 2.0 5 0 5 5 0.052 0.049 0.084 24 2018−05−29 2.2 4 0 4 4 0.052 0.050 0.213 25 2018−05−29 2.5 6 0 6 6 0.052 0.049 0.396 26 2018−05−29 2.4 10 3 10 10 0.052 0.049 4.462 6.5 0.169 27 2018−05−29 2.7 13 4 13 13 0.051 0.048 2.021 5.0 0.173 28 2018−05−29 2.6 6 1 6 6 0.052 0.048 0.260 29 2018−05−29 2.2 5 0 5 5 0.052 0.048 0.217 30 2018−05−29 4.2 18 11 18 18 0.051 0.044 2.199 6.0 0.136 31 2018−05−29 2.1 7 0 7 7 0.051 0.044 0.333 32 2018−05−29 2.6 17 5 17 17 0.049 0.045 2.923 5.5 0.157 33 2018−05−29 2.4 10 3 10 10 0.049 0.045 0.002 9.1 0.131 34 2018−05−28 3.3 21 16 21 21 0.051 0.046 2.982 7.3 0.145 35 2018−05−28 2.5 11 0 11 11 0.052 0.047 0.157 36 2018−05−28 2.2 10 1 10 10 0.053 0.046 0.146 37 2018−05−28 2.6 15 0 15 15 0.052 0.044 0.120 38 2018−05−28 2.3 10 0 10 10 0.052 0.044 0.253 39 2018−05−28 2.3 11 2 11 11 0.054 0.047 0.215 40 2018−05−28 2.1 7 0 7 7 0.054 0.046 0.330 41 2018−05−28 2.0 9 0 9 9 0.054 0.045 0.185 42 2018−05−28 2.4 12 0 12 12 0.052 0.045 0.229 43 2018−05−09 2.5 8 1 8 8 0.054 0.048 0.164 44 2018−04−23 4.0 21 14 21 21 0.056 0.048 3.812 8.1 0.133 45 2018−04−20 2.0 6 0 6 6 0.058 0.047 0.384 从研究范围内ML≥2.0地震重新定位前后的地震空间分布(图3a)可见,重新定位后的地震更集中分布在第二松花江断裂附近。而从ML≥3.3地震的空间分布对比图(图3b)可知:原始定位中,ML≥3.3地震沿NE (AA1)和NW (BB1)两个方向分布;重新定位结果显示,ML≥3.3地震似乎更集中于NE (AA1)方向,走向大约为NE62°,与松原MS5.7地震震源机制解结果中节面I的走向具有一致性(表2)。以0.02°×0.02°的矩形区域为空间窗统计地震频次,将空间窗口以0.001°的步长分别沿经度和纬度方向滑动,统计每个空间窗内的地震数目,由此得到地震频次的空间分布(图4)。图4给出的是0.02°×0.02°的矩形区域内地震频次大于或等于10的空间分布图像,该图清楚地显示出了地震沿NE−SW方向展布的特征。①
图5为地震序列原始定位在深度方向的剖面图,图5a和图5b分别为沿图3中截面AA1和垂直于该截面的剖面图。图6为重新定位结果中震源深度较为可靠的34次地震在深度方向的剖面图,图6a和图6b分别为沿图3中截面AA1和垂直于该截面的剖面图。根据原始定位结果,地震主要发生在深度为4—14 km的范围内,主震上方和下方均有地震发生,无明显差异特征。重新定位之后,地震分布在4—9 km的深度范围内,主要位于主震上方,主震位于分布区下方边缘。这说明松原MS5.7地震发生之后,破裂可能朝地表扩展。图6b显示,破裂面倾角较陡,倾向NW,与表1中前3个结果的节面I基本一致。
将图6中的地震按时间先后进行排序,然后按序号将地震的震源深度绘制在图上,得到图7。图中在序号坐标刻度值下方同时标明了发震时间.从图中可以看到,前7个地震清楚地显示出震源深度逐渐加深的过程,表明破裂从浅部向深部传播,具有前震特征(陈学忠等,2001a,b)。松原MS5.7地震发生后,震源深度逐渐减小,破裂从深部向浅部传播。
2. 讨论与结论
根据上述对松原MS5.7地震前后发生的地震进行重新定位,得到以下结论:
1) 2018年松原MS5.7地震的主破裂面为NE向。无论是ML≥3.3地震的震中分布,或者地震频次的空间分布结果,均显示地震序列沿NE向分布的特征。
2) 破裂面倾角较陡,近乎直立,倾向NW,与震源机制解结果基本一致.
3) 松原MS5.7地震前后发生的地震活动主要发生在主震上方区域,震源深度大部分小于主震深度。
4) 松原MS5.7地震前发生的地震显示出了震源深度逐渐加深的过程,震后,震源深度则逐渐减小。
根据上述结果,松原MS5.7地震的破裂面应为走向NE,近乎直立,倾向NW的断层面. 在松原MS5.7地震震中附近有第二松花江断裂、扶余—肇东断裂西段(又称扶余北断裂)和孤店断裂3条断裂。第二松花江断裂是一条规模较大的NW走向断裂,倾向NE或SW,倾角较陡(杨清福等,2010)。扶余北断裂走向近EW,倾向S,视倾角约为60°—80°,部分位置倾角近似垂直,孤店断裂北段走向NE,南段走向NW,总体走向近SN,倾向E,展布呈东倾的弓形(刘权锋等,2017). 显然,松原MS5.7地震的发震断层面与这3条断裂的走向均不一致。 古成志(1993)的结果显示,在松辽平原中部的大安、肇源间有一宽达80—90 km的NE−SW向线性构造密集带,相互平行,对湖泊起着一定的控制作用,方向稳定,是隐伏断层的明显标志。因此本文推测,松原MS5.7地震的破裂面很可能与大安、肇源间存在的一条NE−SW向的隐伏断层有关。
本文所使用程序来源于北京大学地球物理系周仕勇教授课题组,文章撰写过程中审稿专家提出了宝贵的修改意见,作者在此一并表示衷心的感谢。
-
图 1 包括两个典型GPS台站(ATW2和AC06)的阿拉斯加中南部地区示意图
红色虚线为Li等(2013)所给出的俯冲带等深线,蓝色虚线为Slab1.0模型的俯冲带等深线(Hayes et al,2012);红色矩形为研究区域;椭圆形为慢滑移区
Figure 1. The map of south-central Alaska including two typical GPS stations (ATW2 and AC06)
The red dashed lines indicate the contours of the plate interface depth from Li et al (2013),and the blue dashed lines indicate the contours of the Slab1.0 model (Hayes et al,2012). The red rectangle is the studied area,and the two black ellipses are two SSEs areas
图 2 三个俯冲带几何模型的研究区域(彩色). 粉色线条为等深线
(a) Slab1.0模型;(b) Li等(2013)模型;(c)二维平板模型
Figure 2. The areas (colored rectangle) of three slab models where solid pink lines denote the depth contours
(a) Slab1.0 model;(b) Li et al (2013) model;(c) Planar model
图 3 基于Slab1.0模型(a),Li等(2013)模型(b)和二维平板模型(c)的慢滑移区域(高孔隙压、速度弱化)内20—80年平均滑动速率的模拟结果
Figure 3. The average velocity over the SSE zone (velocity weakening and high pore pressure) during 20 to 80 years in the simulations based on the Slab1.0 model (a),Li et al (2013) model (b) and planar model (c)
图 4 基于三个模型两台站y方向的地表合成位移(线性趋势已经去除)和速度
(a) AC06台站;(b) ATW2台站;(c) ATW2台站移除了Slab1.0模型的曲线
Figure 4. The synthetic surface deformation and its velocity in y direction with a linear line removed at the two stations based on the three topography models
(a) Station AC06;(b) Station ATW2;(c) Synthetic surface deformation and its velocity at the station ATW2 with the Slab1.0 model removed
表 1 阿拉斯加慢滑移数值模拟的关键参数
网格尺度H/km 成核尺寸h*/km 俯冲速率Vpl/(mm·a−1) 剪切模量G/GPa 剪切波波速cS/(km·s−1) 2 7 55 30 3 泊松比ν 稳定速率V0/(μm·s−1) 稳定摩擦率f0 慢滑移区有效正应力σn/MPa 特征滑移量Dc/mm 0.25 1 0.6 20 19.25 表 2 AC06和ATW2台站的慢滑移地表特征
Table 2 The SSEs surface characteristics for the stations AC06 and ATW2
模型 平均间隔/a 平均持续时间/a 平均合成位移/mm 最大速度/(mm·a−1) AC06 ATW2 AC06 ATW2 AC06 ATW2 AC06 ATW2 Slab1.0模型 6.74 25.51 4.72 0.95 38.69 185.66 17.40 3 506.10 Li模型 10.71 5.98 2.71 0.45 59.30 19.61 42.99 11.88 平板模型 9.59 10.89 8.35 7.29 48.39 50.72 20.78 22.97 -
Abers G A,van Keken P E,Kneller E A,Ferris A,Stachnik J C. 2006. The thermal structure of subduction zones constrained by seismic imaging:Implications for slab dehydration and wedge flow[J]. Earth Planet Sci Lett,241(3/4):387–397. doi: 10.1016/j.jpgl.2005.11.055
Alchalbi A,Daoud M,Gomez F,McClusky S,Reilinger R,Romeyeh M A,Alsouod A,Yassminh R,Ballani B,Darawcheh R,Sbeinati R,Radwan Y,Al Masri R,Bayerly M,Al Ghazzi R,Barazangi M. 2010. Crustal deformation in northwestern Arabia from GPS measurements in Syria:Slow slip rate along the northern Dead Sea fault[J]. Geophys J Int,180(1):125–135. doi: 10.1111/j.1365-246X.2009.04431.x
Andrews D J. 1999. Test of two methods for faulting in finite-difference calculations[J]. Bull Seismol Soc Am,89(4):931–937.
Audet P,Bostock M G,Christensen N I,Peacock S M. 2009. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing[J]. Nature,457(7225):76–78. doi: 10.1038/nature07650
Audet P,Bostock M G,Boyarko D C,Brudzinski M R,Allen R M. 2010. Slab morphology in the Cascadia forearc and its relation to episodic tremor and slip[J]. J Geophys Res,115(B4):B00A16. doi: 10.1029/2008JB006053
Audet P,Kim Y. 2016. Teleseismic constraints on the geological environment of deep episodic slow earthquakes in subduction zone forearcs:A review[J]. Tectonophysics,670:1–15. doi: 10.1016/j.tecto.2016.01.005
Beeler N M. 2004. Review of the physical basis of laboratory-derived relations for brittle failure and their implications for earthquake occurrence and earthquake nucleation[J]. Pure Appl Geophys,161:1853–1876.
Blanpied M L,Marone C J,Lockner D A,Byerlee J D,King D P. 1998. Quantitative measure of the variation in fault rheology due to fluid-rock interactions[J]. J Geophys Res,103(B5):9691–9712. doi: 10.1029/98JB00162
Brocher T M,Fuis G S,Fisher M A,Plafker G,Moses M J,Taber J J,Christensen N I. 1994. Mapping the megathrust beneath the northern gulf of Alaska using wide-angle seismic data[J]. J Geophys Res,99(B6):11663–11685. doi: 10.1029/94JB00111
Brown K M,Tryon M D,DeShon H R,Dorman L R M,Schwartz S Y. 2005. Correlated transient fluid pulsing and seismic tremor in the Costa Rica subduction zone[J]. Earth Planet Sci Lett,238(1/2):189–203. doi: 10.1016/j.jpgl.2005.06.055
Brudzinski M,Cabral-Cano E,Correa-Mora F,DeMets C,Márquez-Azúa B. 2007. Slow slip transients along the Oaxaca subduction segment from 1993 to 2007[J]. Geophys J Int,171(2):523–538. doi: 10.1111/j.1365-246X.2007.03542.x
Cohen S C,Freymueller J T. 2004. Crustal deformation in the southcentral Alaska subduction zone[J]. Adv Geophys,47:1–63. doi: 10.1016/S0065-2687(04)47001-0
Colella H V,Dieterich J H,Richards-Dinger K,Rubin A M. 2012. Complex characteristics of slow slip events in subduction zones reproduced in multi-cycle simulations[J]. Geophys Res Lett,39(20):L20312. doi: 10.1029/2012GL053276
Dalguer L A,Day S M. 2006. Comparison of fault representation methods in finite difference simulations of dynamic rupture[J]. Bull Seismol Soc Am,96(5):1764–1778. doi: 10.1785/0120060024
Dieterich J H. 1979. Modeling of rock friction: 1. Experimental results and constitutive equations[J]. J Geophys Res,84(B5):2161–2168. doi: 10.1029/JB084iB05p02161
Doser D I,Veilleux A M. 2009. A comprehensive study of the seismicity of the Kenai Peninsula-Cook Inlet region,south-central Alaska[J]. Bull Seismol Soc Am,99(4):2208–2222. doi: 10.1785/0120080251
Douglas A,Beavan J,Wallace L,Townend J. 2005. Slow slip on the northern Hikurangi subduction interface,New Zealand[J]. Geophys Res Lett,32(16):L16305. doi: 10.1029/2005GL023607
Dragert G,Wang K L,James T S. 2001. A silent slip event on the deeper Cascadia subduction interface[J]. Science,292(5521):1525–1528. doi: 10.1126/science.1060152
Eberhart-Phillips D,Haeussler P J,Freymueller J T,Frankel A D,Rubin C M,Craw P,Ratchkovski N A,Anderson G,Carver G A,Crone A J,Dawson T E,Fletcher H,Hansen R,Harp E L,Harris R A,Hill D P,Hreinsdóttir S,Jibson R W,Jones L M,Kayen R,Keefer D K,Larsen C F,Moran S C,Personius S F,Plafker G,Sherrod B,Sieh K,Sitar N,Wallace W K. 2003. The 2002 Denali fault earthquake,Alaska:A large magnitude,slip-partitioned event[J]. Science,300(5622):1113–1118. doi: 10.1126/science.1082703
Finzel E, Flesch L M, Ridgway K D. 2011. Kinematics and dynamics of the northern North American cordillera: Deformation related to plate convergence, gravitational potential energy, and basal tractions[C/OL]//Proceedings of American Geophysical Union, Fall Meeting 2011. [2019-04-20]. https://ui.adsabs.harvard.edu/abs/2011AGUFM.T11B2310F/abstract.
Freymueller J T, Li S, Fu Y, McCaffrey R. 2016. Slow slip in the Alaska subduction zone and the long-term slip budget on the megathrust[C]//Proceedings of AGU Fall Meeting Abstracts. [2019-04-20]. https://ui.adsabs.harvard.edu/abs/2016AGUFM.S41C..01F/abstract.
Fu Y N,Freymueller J T. 2013. Repeated large slow slip events at the southcentral Alaska subduction zone[J]. Earth Planet Sci Lett,375:303–311. doi: 10.1016/j.jpgl.2013.05.049
Fu Y N,Liu Z,Freymueller J T. 2015. Spatiotemporal variations of the slow slip event between 2008 and 2013 in the southcentral Alaska subduction zone[J]. Geochem Geophys Geosyst,16(7):2450–2461. doi: 10.1002/2015GC005904
Fuis G S,Ambos E L,Mooney W D,Christensen N I,Geist E. 1991. Crustal structure of accreted terranes in southern Alaska,Chugach mountains and Copper River basin,from seismic refraction results[J]. J Geophys Res,96(B3):4187–4227. doi: 10.1029/90JB02316
Fukuda M,Sagiya T,Asai Y. 2008. A causal relationship between the slow slip event and deep low frequency tremor indicated by strain data recorded at Shingu borehole station[J]. Eos,89(S):U33A-0033.
Gao X,Wang K L. 2017. Rheological separation of the megathrust seismogenic zone and episodic tremor and slip[J]. Nature,543(7645):416–419. doi: 10.1038/nature21389
Graham S E,DeMets C,Cabral-Cano E,Kostoglodov V,Walpersdorf A,Cotte N,Brudzinski M,McCaffrey R,Salazar-Tlaczani L. 2014. GPS constraints on the 2011−2012 Oaxaca slow slip event that preceded the 2012 March 20 Ometepec earthquake,southern Mexico[J]. Geophys J Int,197(3):1593–1607. doi: 10.1093/gji/ggu019
Hastie L M,Savage J C. 1970. A dislocation model for the 1964 Alaska earthquake[J]. Bull Seismol Soc Am,60(4):1389–1392.
Hayes G P,Wald D J,Johnson R L. 2012. Slab1.0:A three-dimensional model of global subduction zone geometries[J]. J Geophys Res,117(B1):B01302. doi: 10.1029/2011JB008524
He C R,Yao W M,Wang Z L,Zhou Y S. 2006. Strength and stability of frictional sliding of gabbro gouge at elevated tempera-tures[J]. Tectonophysics,427(1/4):217–229. doi: 10.1016/j.tecto.2006.05.023
Herrendörfer R,Gerya T,van Dinther Y. 2018. An invariant rate- and state-dependent friction formulation for viscoeastoplastic earthquake cycle simulations[J]. J Geophys Res,123(6):5018–5051. doi: 10.1029/2017JB015225
Hyndman R D. 2013. Downdip landward limit of Cascadia great earthquake rupture[J]. J Geophys Res,118(10):5530–5549. doi: 10.1002/jgrb.50390
Ichinose G,Somerville P,Thio H K,Graves R,O′Connell D. 2007. Rupture process of the 1964 Prince William Sound, Alaska, earthquake from the combined inversion of seismic, tsunami, and geodetic data[J]. J Geophys Res,112:B07306. doi: 10.1029/2006JB004728
Ito Y,Hino R,Kido M,Fujimoto H,Osada Y,Inazu D,Ohta Y,Iinuma T,Ohzono M,Miura S,Mishina M,Suzuki K,Tsuji T,Ashi J. 2013. Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake[J]. Tectonophysics,600:14–26. doi: 10.1016/j.tecto.2012.08.022
Kanamori H. 1970. The Alaska earthquake of 1964:Radiation of long-period surface waves and source mechanism[J]. J Geophys Res,75(26):5029–5040. doi: 10.1029/JB075i026p05029
Kao H,Shan S J,Dragert H,Rogers G. 2009. Northern Cascadia episodic tremor and slip:A decade of tremor observations from 1997 to 2007[J]. J Geophys Res,114(B11):B00A12. doi: 10.1029/2008JB006046
Kim Y H,Abers G A,Li J Y,Christensen D,Calkins J,Rondenay S. 2014. Alaska megathrust 2:Imaging the megathrust zone and Yakutat/Pacific Plate interface in the Alaska subduction zone[J]. J Geophys Res,119(3):1924–1941. doi: 10.1002/2013JB010581
Kimura H,Kasahara K,Takeda T. 2009. Subduction process of the Philippine Sea Plate off the Kanto district,central Japan,as revealed by plate structure and repeating earthquakes[J]. Tectonophysics,472(1/4):18–27. doi: 10.1016/j.tecto.2008.05.012
Kodaira S,Iidaka T,Kato A,Park J O,Iwasaki T,Kaneda Y. 2004. High pore fluid pressure may cause silent slip in the Nankai Trough[J]. Science,304(5675):1295–1298. doi: 10.1126/science.1096535
Lapusta N,Rice J R. 2003. Nucleation and early seismic propagation of small and large events in a crustal earthquake model[J]. J Geophys Res,108(B4):2205. doi: 10.1029/2001JB000793
Lavier L L,Bennett R A,Duddu R. 2013. Creep events at the brittle ductile transition[J]. Geochem Geophys Geosyst,14(9):3334–3351. doi: 10.1002/ggge.20178
Li D,Liu Y J. 2016. Spatiotemporal evolution of slow slip events in a nonplanar fault model for northern Cascadia subduction zone[J]. J Geophys Res,121(9):6828–6845. doi: 10.1002/2016JB012857
Li D,Liu Y J. 2017. Modeling slow-slip segmentation in Cascadia subduction zone constrained by tremor locations and gravity anomalies[J]. J Geophys Res,122(4):3138–3157. doi: 10.1002/2016JB013778
Li H T,Wei M,Li D,Liu Y J,Kim Y,Zhou S Y. 2018. Segmentation of slow slip events in south central Alaska possibly controlled by a subducted oceanic plateau[J]. J Geophys Res,123(1):418–436. doi: 10.1002/2017JB014911
Li J Y,Geoffrey A,Kim Y,Douglas C. 2013. Alaska megathrust 1:Seismicity 43 years after the great 1964 Alaska megathrust earthquake[J]. J Geophys Res,118(9):4861–4871. doi: 10.1002/jgrb.50358
Li S S,Freymueller J T. 2018. Spatial variation of slip behavior beneath the Alaska Peninsula along Alaska-Aleutian subduction zone[J]. Geophys Res Lett,45(8):3453–3460. doi: 10.1002/2017GL076761
Liu Y J. 2013. Numerical simulations on megathrust rupture stabilized under strong dilatancy strengthening in slow slip region[J]. Geophys Res Lett,40(7):1311–1316. doi: 10.1002/grl.50298
Liu Y J. 2014. Source scaling relations and along-strike segmentation of slow slip events in a 3-D subduction fault model[J]. J Geophys Res,119(8):6512–6533. doi: 10.1002/2014JB011144
Liu Y J,Rice J R. 2005. Aseismic slip transients emerge spontaneously in three-dimensional rate and state modeling of subduction earthquake sequences[J]. J Geophys Res,110:B08307. doi: 10.1029/2004JB003424
Liu Y J,Rice J R. 2007. Spontaneous and triggered aseismic deformation transients in a subduction fault model[J]. J Geophys Res,112:B09404. doi: 10.1029/2007JB004930
Liu Y J,Rice J R. 2009. Slow slip predictions based on granite and gabbro friction data compared to GPS measurements in northern Cascadia[J]. J Geophys Res,114:B09407. doi: 10.1029/2008JB006142
Liu Y J,McGuire J J,Behn M D. 2012. Frictional behavior of oceanic transform faults and its influence on earthquake characteristics[J]. J Geophys Res,117:B04315. doi: 10.1029/2011JB009025
Matsubara M,Obara K,Kasahara K. 2009. High-vP/vS zone accompanying non-volcanic tremors and slow-slip events beneath southwestern Japan[J]. Tectonophysics,472(1/4):6–17. doi: 10.1016/j.tecto.2008.06.013
Matsuzawa T,Hirose H,Shibazaki B,Obara K. 2010. Modeling short- and long-term slow slip events in the seismic cycles of large subduction earthquakes[J]. J Geophys Res,115(B12):B12301. doi: 10.1029/2010JB007566
Matsuzawa T,Shibazaki B,Obara K,Hirose H. 2013. Comprehensive model of short- and long-term slow slip events in the Shikoku region of Japan,incorporating a realistic plate configuration[J]. Geophys Res Lett,40(19):5125–5130. doi: 10.1002/grl.51006
Meade B J. 2007. Algorithms for the calculation of exact displacements,strains,and stresses for triangular dislocation elements in a uniform elastic half space[J]. Comput Geosci,33(8):1064–1075. doi: 10.1016/j.cageo.2006.12.003
Nadeau R M,Dolenc D. 2005. Nonvolcanic tremors deep beneath the San Andreas fault[J]. Science,307(5708):389–392. doi: 10.1126/science.1107142
Nakata R,Ando R,Hori T,Ide S. 2011. Generation mechanism of slow earthquakes:Numerical analysis based on a dynamic model with brittle-ductile mixed fault heterogeneity[J]. J Geophys Res,116(B8):B08308. doi: 10.1029/2010JB008188
Nishikawa T,Ide S. 2018. Recurring slow slip events and earthquake nucleation in the source region of the M7 Ibaraki-Oki earthquakes revealed by earthquake swarm and foreshock activity[J]. J Geophys Res,123(9):7950–7968. doi: 10.1029/2018JB015642
Obara K. 2010. Phenomenology of deep slow earthquake family in southwest Japan:Spatiotemporal characteristics and segmentation[J]. J Geophys Res,115(B8):B00A25. doi: 10.1029/2008JB006048
Ohta Y,Freymueller J T,Hreinsdóttir S,Suito H. 2006. A large slow slip event and the depth of the seismogenic zone in the south central Alaska subduction zone[J]. Earth Planet Sci Lett,247(1/2):108–116. doi: 10.1016/j.jpgl.2006.05.013
Okada Y. 1992. Internal deformation due to shear and tensile faults in a half-space[J]. Bull Seismol Soc Am,82(2):1018–1040.
Ozacar A A,Zandt G. 2009. Crustal structure and seismic anisotropy near the San Andreas fault at Parkfield,California[J]. Geophys J Int,178(2):1098–1104. doi: 10.1111/j.1365-246X.2009.04198.x
Page R A,Stephens C D,Lahr J C. 1989. Seismicity of the Wrangell and Aleutian Wadati-Benioff zones and the North American Plate along the trans-Alaska crustal transect,Chugach mountains and Copper River basin,southern Alaska[J]. J Geophys Res,94(B11):16059–16082. doi: 10.1029/JB094iB11p16059
Peng Z G,Gomberg J. 2010. An integrated perspective of the continuum between earthquakes and slow-slip phenomena[J]. Nat Geosci,3(9):599–607. doi: 10.1038/ngeo940
Pulpan H,Frohlich C. 1985. Geometry of the subducted plate near Kodiak Island and lower Cook Inlet,Alaska,determined from relocated earthquake hypocenters[J]. Bull Seismol Soc Am,75(3):791–810.
Ratchkovski N A,Hansen R A. 2002. New evidence for segmentation of the Alaska subduction zone[J]. Bull Seismol Soc Am,92(5):1754–1765. doi: 10.1785/0120000269
Rice J R. 1993. Spatio-temporal complexity of slip on a fault[J]. J Geophys Res,98(B6):9885–9907. doi: 10.1029/93JB00191
Rogers G,Dragert H. 2003. Episodic tremor and slip on the Cascadia subduction zone:The chatter of silent slip[J]. Science,300(5627):1942–1943. doi: 10.1126/science.1084783
Rubin A M,Ampuero J P. 2005. Earthquake nucleation on (aging) rate and state faults[J]. J Geophys Res,110(B11):B11312. doi: 10.1029/2005JB003686
Ruina A. 1983. Slip instability and state variable friction laws[J]. J Geophys Res,88(B12):10359–10370. doi: 10.1029/JB088iB12p10359
Schwartz S Y,Rokosky J M. 2007. Slow slip events and seismic tremor at circum-Pacific subduction zones[J]. Rev Geophys,45(3):RG3004. doi: 10.1029/2006RG000208
Shelly D R,Beroza G C,Ide S,Nakamula S. 2006. Low-frequency earthquakes in Shikoku,Japan,and their relationship to episodic tremor and slip[J]. Nature,442(7099):188–191. doi: 10.1038/nature04931
Sherburne R W, Algermissen S T, Harding S T. 1969. The hypocenter, origin time, and magnitude of the Prince William Sound earthquake of March 28, 1964[G]//The Prince William Sound, Alaska, Earthquake of 1964 and Aftershocks. Washington D C: Dep. of Comm. Environ. Sci. Serv. Admin: 49−69. Song T R A,Helmberger D V,Brudzinski M R,Clayton R W,Davis P,Pérez-Campos X,Singh S K. 2009. Subducting slab ultra-slow velocity layer coincident with silent earthquakes in southern Mexico[J]. Science,324(5926):502–506. doi: 10.1126/science.1167595
Stephens C D,Fogleman K A,Lahr J C,Page R A. 1984. Wrangell Benioff zone,southern Alaska[J]. Geology,12(6):373–376. doi: 10.1130/0091-7613(1984)12<373:WBZSA>2.0.CO;2
Stuart W D,Hildenbrand T G,Simpson R W. 1997. Stressing of the New Madrid seismic zone by a lower crust detachment fault[J]. J Geophys Res,102(B12):27623–27633. doi: 10.1029/97jb02716
Suito H,Freymueller J T. 2009. A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake[J]. J Geophys Res,114(B11):B11404.
Tong X Y,Lavier L L. 2018. Simulation of slip transients and earthquakes in finite thickness shear zones with a plastic formulation[J]. Nat Commun,9(1):3893. doi: 10.1038/s41467-018-06390-z
van Wormer J D,Davies J,Gedney L. 1974. Seismicity and plate tectonics in south central Alaska[J]. Bull Seismol Soc Am,64(5):1467–1475.
Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368. doi: 10.1785/0120000006
Wang K L,He J H,Dragert H,James T S. 2001. Three-dimensional viscoelastic interseismic deformation model for the Cascadia subduction zone[J]. Earth Planets Space,53(4):295–306. doi: 10.1186/BF03352386
Wang K L,He J H. 2008. Effects of frictional behavior and geometry of subduction fault on coseismic seafloor deformation[J]. Bull Seismol Soc Am,98(2):571–579. doi: 10.1785/0120070097
Wei M,McGuire J J,Richardson E. 2012. A slow slip event in the south central Alaska subduction zone and related seismicity anomaly[J]. Geophys Res Lett,39(15):L15309. doi: 10.1029/2012GL052351
Wei M,Kaneko Y,Liu Y J,McGuire J J. 2013. Episodic fault creep events in California controlled by shallow frictional heterogeneity[J]. Nat Geosci,6(7):566–570. doi: 10.1038/ngeo1835
Yan H,Bürgmann R,Freymueller J T,Banerjee P,Wang K L. 2014. Contributions of poroelastic rebound and a weak volcanic arc to the postseismic deformation of the 2011 Tohoku earthquake[J]. Earth Planets Space,66(1):106. doi: 10.1186/1880-5981-66-106
Yang H F,Liu Y J,Lin J. 2013. Geometrical effects of a subducted seamount on stopping megathrust ruptures[J]. Geophys Res Lett,40(10):2011–2016. doi: 10.1002/grl.50509
Yin A,Xie Z M,Meng L S. 2018. A viscoplastic shear-zone model for deep (15−50 km) slow-slip events at plate convergent margins[J]. Earth Planet Sci Lett,491:81–94. doi: 10.1016/j.jpgl.2018.02.042
-
期刊类型引用(5)
1. 刘文玉,程正璞,年秀清,陈闫,胡钰铃,覃祖建,邵明正. 基于三维剩余密度结构的松原地震成因. 地震地质. 2024(02): 462-476 . 百度学术
2. 阮庆丰,刘俊清,田有,刘财,张宇,蔡宏雷. 松原地区地震发震机制与迁移特点研究. 地球物理学报. 2022(09): 3309-3321 . 百度学术
3. Yu TANG,Aihua WENG,Yue YANG,Shiwen LI,Jianjun NIU,Yanhui ZHANG,Yabin LI,Jianping LI. Connection between earthquakes and deep fluids revealed by magnetotelluric imaging in Songyuan, China. Science China(Earth Sciences). 2021(01): 161-176 . 必应学术
4. 唐裕,翁爱华,杨悦,李世文,牛建军,张艳辉,李亚彬,李建平. 松原地震与流体作用联系的大地电磁证据. 中国科学:地球科学. 2021(01): 134-149 . 百度学术
5. 王婷,延军平,李双双,万佳,张玉凤. 帕米尔高原Mw≥6.6级地震时间韵律特征. 高原地震. 2020(04): 6-16 . 百度学术
其他类型引用(4)