Extraction and analysis of seismic thermal anomalies in Xinjiang based on robust satellite techniques
-
摘要:
为探究地震活跃区域内地震与热异常的关联性,本文选取2014—2018年新疆地区发生的MS≥4.0地震作为研究对象,利用卫星数据稳健分析技术从MODIS地表温度数据中提取出热异常,并结合热异常特点及筛选方法分析得出:研究区内提取出热异常84次,发生在热异常窗口期内的地震39次,占比46.43%。地震与热异常的对应关系表现为,随着地震震级增大,通过热异常检测到的地震所占比例逐渐增大。当MS≥5.8时,研究区的地震发生均与热异常相关,当地震震级相同时,塔里木盆地中线以北区域的相关性高于以南地区,通过Molchan误差图表分析得出,MS5.0对应预警距离作为阈值的检测效果较好。
-
关键词:
- 地震 /
- 热异常 /
- 卫星数据稳健分析技术(RST) /
- 统计分析 /
- 地表温度(LST)
Abstract:In order to investigate the correlation between earthquake field and thermal anomalies in seismically active areas, this paper selects the main earthquakes that occurred in Xinjiang from 2014 to 2018 as the research object, and uses the MODIS land surface temperature data to extract thermal anomalies by the robust satellite techniques. The screening method analysis shows that 84 thermal anomalies were extracted in the studied area, 39 earthquakes occurred during the thermal anomaly window period, accounting for 46.43%. The corresponding relationship between the earthquakes and thermal anomalies in the studied area is shown as that the proportion of earthquakes detected by thermal anomalies gradually increases with the magni-tude of the earthquake increasing. When the MS≥5.8, the earthquakes in the studied area are related to thermal anomalies. When the magnitude of the earthquakes is the same, the earthquakes to the north of the central line of the Tarim basin and the correlation of thermal anomalies is higher than those to the south. Through the analysis of Molchan’s error chart, it is found that the detection effect with the magnitude of MS5.0 corresponding to the early warning distance as a threshold is better.
-
-
图 5 热异常与地震震级相关统计分析
(a) TP1与FP对比;(b) TP2与FN对比;(c) TPR与PPV对比;(d) 塔里木盆地北侧 (TPR_N)与南侧(TPR_S)TPR对比
Figure 5. Statistical analysis of thermal anomalies and earthquake magnitudes
(a) Comparison of TP1 and FP;(b) Comparison of TP2 and FN;(c) Comparison of TPR and PPV;(d) Comparison of TPR on the north (TPR_N) and south (TPR_S) parts of Tarim basin
表 1 2014—2018年新疆及周边地区MS≥4.0地震分布
Table 1 Distribution of MS≥4.0 earthquakes in Xinjiang and its surrounding regions from 2014 to 2018
年份 4.0≤MS<5.0 MS≥5.0 总计 2014 36 7 43 2015 50 8 58 2016 39 8 47 2017 32 3 35 2018 68 63 5 表 2 塔里木盆地北侧与南侧不同震级与热异常的相关性统计
Table 2 Statistics on the earthquakes with different magnitudes and thermal anomalies for the north and south parts of the Tarim basin
塔里木盆地北侧区域 塔里木盆地南侧区域 FN TP2 TPR FN TP2 TPR MS≥4.0 99 28 22.05% 106 18 14.52% MS≥5.0 7 13 65.00% 7 5 42.67% MS≥6.0 0 5 100% 0 2 100% -
陈建波. 2008. 新疆地震构造特征研究[D]. 北京: 中国地震局兰州地震研究所: 10−29. Chen J B. 2008. Research on Seismotectonic Feature in Xinjiang[D]. Beijing: Lanzhou Institute of Seismology, China Earthquake Administration: 1−29 (in Chinese).
陈顺云,刘培洵,刘力强,马瑾,陈国强. 2006. 地表热红外辐射的小波分析及其在现今构造活动研究中的意义[J]. 地球物理学报,49(3):824–830. doi: 10.3321/j.issn:0001-5733.2006.03.026 Chen S Y,Liu P X,Liu L Q,Ma J,Chen G Q. 2006. Wavelet analysis of thermal infrared radiation of land surface and its implication in the study of current tectonic activities[J]. Chinese Journal of Geophysics,49(3):824–830 (in Chinese).
冯先岳. 1985. 论新疆地震地质特征[J]. 地震地质,7(2):37–46. Feng X Y. 1985. Seismogeological characteristics of the Xinjiang area[J]. Seismology and Geology,7(2):37–46 (in Chinese).
郭晓,张元生,钟美娇,沈文荣,魏从信. 2010. 提取地震热异常信息的功率谱相对变化法及震例分析[J]. 地球物理学报,53(11):2688–2695. Guo X,Zhang Y S,Zhong M J,Shen W R,Wei C X. 2010. Variation characteristics of OLR for the Wenchuan earthquake[J]. Chinese Journal of Geophysics,53(11):2688–2695 (in Chinese).
康春丽,刘德富,荆凤,熊攀,曹忠权. 2011. 大地震红外辐射异常信息时空特征分析[J]. 地球物理学进展,26(6):1897–1905. doi: 10.3969/j.issn.1004-2903.2011.06.002 Kang C L,Liu D F,Jing F,Xiong P,Cao Z Q. 2011. Study on the indication of infrared radiation prior to impending strong earthquakes[J]. Progress in Geophysics,26(6):1897–1905 (in Chinese).
刘军,刘小阳,薄海光,宗超,马未宇. 2014. 基于引潮力附加构造应力调制的九江地震热异常时空动态过程研究[J]. 地震学报,36(3):514–521. doi: 10.3969/j.issn.0253-3782.2014.03.016 Liu J,Liu X Y,Bo H G,Zong C,Ma W Y. 2014. Spatio-temporal dynamic variation of thermal anomalies before and after the 2005 Jiujiang MS5.7 earthquake based on the modulation of additive tectonics stress induced by ride-generating force[J]. Acta Seismologica Sinica,36(3):514–521 (in Chinese).
强祖基,徐秀登,赁常恭. 1990. 卫星热红外异常:临震前兆[J]. 科学通报,35(17):1324–1327. doi: 10.3321/j.issn:0023-074X.1990.17.015 Qiang Z J,Xu X D,Dian C G. 1990. Satellite thermal infrared anomaly:Precursor of imminent earthquake[J]. Chinese Science Bulletin,35(17):1324–1327 (in Chinese). doi: 10.1360/csb1990-35-17-1324
强祖基,孔令昌,郭满红,王戈平,郑兰哲,赁常恭,赵勇. 1997. 卫星热红外增温机制的实验研究[J]. 地震学报,19(2):197–201. Qiang Z J,Kong L C,Guo M H,Wang G P,Zheng L Z,Dian C G,Zhao Y. 1997. An experimental study on temperature increasing mechanism of satellitic thermo-infrared[J]. Acta Seismologica Sinica,19(2):197–201 (in Chinese).
沈军,汪一鹏,赵瑞斌,陈杰,曲国胜. 2001. 帕米尔东北缘及塔里木盆地西北部弧形构造的扩展特征[J]. 地震地质,23(3):381–389. doi: 10.3969/j.issn.0253-4967.2001.03.005 Shen J,Wang Y P,Zhao R B,Chen J,Qu G S. 2001. Propagation of Cenozoic arcuate structures in northeast Pamir and north- west Tarim basin[J]. Seismology and Geology,23(3):381–389 (in Chinese).
宋冬梅,臧琳,单新建,袁媛,崔建勇,邵红梅,沈晨,时洪涛. 2016. 基于LST年趋势背景场的地震热异常提取算法[J]. 地震地质,38(3):680–695. doi: 10.3969/j.issn.0253-4967.2016.03.014 Song D M,Zang L,Shan X J,Yuan Y,Cui J Y,Shao H M,Shen C,Shi H T. 2016. A study on the algorithm for extracting earthquake thermal infrared anomalies based on the yearly trend of LST[J]. Seismology and Geology,38(3):680–695 (in Chinese).
魏从信,张元生,王莹. 2018. 日本MW9.1地震对区域热辐射背景场影响的时频分析[J]. 地震学报,40(2):205–214. Wei C X,Zhang Y S,Wang Y. 2018. Time-frequency analysis of the influence of Japan MW9.1 earthquake on regional thermal radiation background field[J]. Acta Seismologica Sinica,40(2):205–214 (in Chinese).
吴立新,秦凯,刘善军. 2017. 断裂活动及孕震过程遥感热异常分析的研究进展[J]. 测绘学报,46(10):1470–1481. doi: 10.11947/j.AGCS.2017.20170347 Wu L X,Qin K,Liu S J. 2017. Progress in analysis to remote sensed thermal abnormity with fault activity and seismogenic process[J]. Acta Geodaetica et Cartographica Sinica,46(10):1470–1481 (in Chinese).
向阳,孙小龙,王博. 2018. 基于Molchan图表法的新疆流体资料预报效能检验[J]. 地震,38(3):103–114. doi: 10.3969/j.issn.1000-3274.2018.03.010 Xiang Y,Sun X L,Wang B. 2018. Earthquake prediction efficiency testing of observed fluid data in Xinjiang using Molchan diagram method[J]. Earthquake,38(3):103–114 (in Chinese).
谢泽明. 2018. 新疆降水的水汽来源特征分析研究[D]. 成都: 成都信息工程大学: 8−13. Xie Z M. 2018. Analysis of Characteristics of Water Vapor Sources in Xinjiang Precipitation[D]. Chengdu: Chengdu University of Information Technology : 8−13 (in Chinese).
Carolina A, Rosita C, Carolina F, Nicola G, Nicola P, Valerio T. 2008. Robust TIR satellite techniques for monitoring earthquake active regions: Limits, main achievements and perspectives[J]. Ann Geophys, 51(1): 303–317.
Eleftheriou A,Filizzola C,Genzano N,Lacava T,Lisi M,Paciello R,Pergola N,Vallianatos F,Tramutoli V. 2015. Long-term RST analysis of anomalous TIR sequences in relation with earthquakes occurred in Greece in the period 2004−2013[J]. Pure Appl Geophy,173(1):285–303.
Filizzola C,Pergola N,Pietrapertosa C,Tramutoli V. 2004. Robust satellite techniques for seismically active areas monitoring:A sensitivity analysis on September 7,1999 Athens's earthquake[J]. Phys Chem Earth,29(4/5/6/7/8/9):517–527.
Genzano N,Aliano C,Filizzola C,Pergola N,Tramutoli V. 2007. A robust satellite technique for monitoring seismically active areas:The case of Bhuj-Gujarat earthquake[J]. Tectonophysics,431(1/2/3/4):197–210.
Genzano N,Aliano C,Corrado R,Filizzola C,Lisi M,Mazzeo G,Paciello R,Pergola N,Tramutoli V. 2009. RST analysis of MSG-SEVIRI TIR radiances at the time of the Abruzzo 6 April 2009 earthquake[J]. Nat Hazards Earth Syst Sci,9(6):2073–2084. doi: 10.5194/nhess-9-2073-2009
Genzano N,Filizzola C,Paciello R,Pergola N,Tramutoli V. 2015. Robust satellite techniques (RST) for monitoring earthquake prone areas by satellite TIR observations:The case of 1999 Chi-Chi earthquake (Taiwan)[J]. J Asian Earth Sci,114(2):289–298.
Ma W Y,Wang H,Li F S,Ma W M. 2012. Relation between the celestial tide-generating stress and the temperature variations of the Abruzzo M=6.3 earthquake in April 2009[J]. Nat Hazards Earth Syst Sci,12(3):819–827. doi: 10.5194/nhess-12-819-2012
Molchan G M. 1990. Strategies in strong earthquake prediction[J]. Phys Earth Planet Int,61(1/2):84–98.
Saraf A K,Choudhury S. 2005. Cover:NOAA-AVHRR detects thermal anomaly associated with the 26 January 2001 Bhuj earthquake,Gujarat,India[J]. Int J Remote Sens,26(6):1065–1073. doi: 10.1080/01431160310001642368
Tramutoli V. 1998. Robust AVHRR techniques (RAT) for environmental monitoring: Theory and applications[C]// Proceedings of SPIE 3496, Earth Surface Remote Sensing II. Barcelona, Spain: SPIE: 101−113.
Tramutoli V,Cuomo V,Filizzola C,Pergola N,Pietrapertosa C. 2005. Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas:The case of Kocaeli (İzmit) earthquake,August 17,1999[J]. Remote Sens Environ,96(3):409–426.
USGS. 2011. Application for extracting and exploring analysis[EB/OL]. [2018-12-23]. https://lpdaacsvc.cr.usgs.gov/appeears/.
Valerio T,Di Bello G,Pergola N,Piscitelli S. 2001. Robust satellite technique for remote sensing of seismically active areas[J]. Ann Geophys,44(2):295–312.
Yao Q L,Qiang Z J. 2012. Thermal infrared anomalies as a precursor of strong earthquakes in the distant future[J]. Nat Hazards,62(3):991–1003. doi: 10.1007/s11069-012-0130-8
Zhang Y,Meng Q Y. 2019. A statistical analysis of TIR anomalies extracted by RSTs in relation to an earthquake in the Sichuan area using MODIS LST data[J]. Nat Hazards Earth Syst,19(2):535–549.
Zhang Y S,Guo X,Zhong M J,Shen W R,Li W,He B. 2010. Wenchuan earthquake:Brightness temperature changes from satellite infrared information[J]. Chinese Science Bulletin,55(18):1917–1924. doi: 10.1007/s11434-010-3016-8