水域隧道地震响应分析

欧阳志勇, 李培杰, 罗若帆, 崔杰, 王莺歌

欧阳志勇,李培杰,罗若帆,崔杰,王莺歌. 2020. 水域隧道地震响应分析. 地震学报,42(2):231−243. doi:10.11939/jass.20190126. DOI: 10.11939/jass.20190126
引用本文: 欧阳志勇,李培杰,罗若帆,崔杰,王莺歌. 2020. 水域隧道地震响应分析. 地震学报,42(2):231−243. doi:10.11939/jass.20190126. DOI: 10.11939/jass.20190126
Ouyang Z Y,Li P J,Luo R F,Cui J,Wang Y G. 2020. Influencing factors for seismic responds of a subsea tunnel. Acta Seismologica Sinica42(2):231−243. doi:10.11939/jass.20190126. DOI: 10.11939/jass.20190126
Citation: Ouyang Z Y,Li P J,Luo R F,Cui J,Wang Y G. 2020. Influencing factors for seismic responds of a subsea tunnel. Acta Seismologica Sinica42(2):231−243. doi:10.11939/jass.20190126. DOI: 10.11939/jass.20190126

水域隧道地震响应分析

基金项目: 国家自然科学基金(51808259,51438004)、嘉应学院科技项目(2019KJY08)和广东省自然科学基金(2015A030310430)共同资助
详细信息
    通讯作者:

    李培杰: e-mail:ouyangliouyang@163.com

  • 中图分类号: P315.9

Influencing factors for seismic responds of a subsea tunnel

  • 摘要:

    本文基于Biot动力固结理论和弹性动力学理论,考虑海床(土壤)的两相性、黏弹性人工边界及流(水)-固耦合作用,建立了隧道-土-流体相互作用的力学模型,讨论了P波作用下有无水的情况以及水深、水域隧道埋深、海床土性质和地震波入射角等因素对隧道及其周围海床应力的影响。结果表明:隧道周围海床土的孔隙水压力和隧道内应力随着水深的增加而增加;地震波特性和海床土特性对隧道的内应力和海床土的孔隙水压力均有较大的影响;海床土的渗透性和隧道埋深对隧道的内应力影响较小,而对隧道周围海床土的孔隙水压力影响较大;地震动的入射角对隧道的内应力和隧道附近土层的孔隙水压力均有较大影响。

    Abstract:

    Under the action of an earthquake, a sea tunnel is subjected to hydrodynamic pressure, so it is of great significance to study the dynamic response of sea tunnel under the combined action of earthquake and hydrodynamic pressure. Based on Biot’s theory of dynamic consolidation and elastodynamics theory, this paper established a mechanical model of tunnel-soil-fluid interaction by considering the two-phase property of seabed (soil) and the viscoelastic artificial boundary and the action of fluid (water)-structure interaction, and then discussed how the tunnel and its surrounding seabed are affected by the condition with or without water, and the depth of water, the buried depth of the tunnel, the nature of the seabed soil and change of incident angle. The results show that: ① the pore water pressure of the seabed soil and the internal stress of the tunnel increase with water depth increasing; ② different seismic wave and seabed soil characteristics have a great impact on the internal stress of the tunnel and the pore water pressure; ③ the permeability of seabed soil and the depth of the tunnel have a small effect on the internal stress of the tunnel, whereas it has a great effect on the pore water pressure of the seabed soil; ④ the incident angle of the seismic wave has a great influence on the internal stress of the tunnel and the pore water pressure of the seabed soil.

  • 图  1   分析模型

    Figure  1.   Analysis model

    图  2   有限元模型

    Figure  2.   Finite element model

    图  3   局部极坐标位置

    Figure  3.   Local polar position

    图  4   黏弹性人工边界平面示意图(a)和结点处施加人工边界示意图(b)

    Figure  4.   Schematic diagrams for the viscoelastic artificial boundary (a) and boundaries imposed at joint (b)

    图  5   P波斜入射传播示意图

    Figure  5.   Oblique incident propagation of plane P-wave

    图  6   P波自由表面反射示意图

    Figure  6.   Free surface reflection of P -wave

    图  7   输入El-Centro波(a)和Kobe波(b)的加速度时程

    Figure  7.   Acceleration time-history of inputted El-Centro wave (a) and Kobe wave (b)

    图  8   自由场海底模型

    Figure  8.   Free field submarine models

    图  9   入射S波和测点A的位移时程

    Figure  9.   Displacement time-histories of incident shear wave and observation point A

    图  10   入射P波和测点A的位移时程

    Figure  10.   Displacement time-histories of incident P wave and observation point A

    图  11   不同水深引起的应力变化

    (a) 孔隙水压力p;(b) 环向剪应力 τγθ;(c) 环向正应力 σθ

    Figure  11.   Variation of stress caused by different water depths

    (a) Pore water pressure p;(b) Hoop shear stress τγθ;(c) Hoop normal stress σθ

    图  12   不同地震动特性引起的应力变化

    (a) 孔隙水压力p;(b) 环向剪应力 τγθ;(c) 环向正应力 σθ

    Figure  12.   Variation of stress caused by different ground motion characteristics

    (a) Pore water pressure p;(b) Hoop shear stress τγθ;(c) Hoop normal stress σθ

    图  13   不同剪切波速vS引起的应力变化

    (a) 孔隙水压力p;(b) 环向剪应力 τγθ;(c) 环向正应力σθ

    Figure  13.   Variation of stress caused by different shear wave velocity vS

    (a) Pore water pressure p;(b) Hoop shear stress τγθ;(c) Hoop normal stress σθ

    图  14   不同渗透系数k引起的应力变化

    (a) 孔隙水压力p;(b) 环向剪应力 τγθ;(c) 环向正应力 σθ

    Figure  14.   Variation of stress caused by different permeability coefficient k

    (a) Pore water pressure p;(b) Hoop shear stress τγθ;(c) Hoop normal stress σθ

    图  15   不同埋深引起的应力变化

    (a) 孔隙水压力p;(b) 环向剪应力 τγθ;(c) 环向正应力 σθ

    Figure  15.   Variation of stress caused by different tunnel depth

    (a) Pore water pressure p;(b) Hoop shear stress τγθ;(c) Hoop normal stress σθ

    图  16   入射角θ对不同测点竖向(a)、水平向(b)位移的影响

    Figure  16.   Vertical (a) and horizontal (b) displacement for different measuring points by incident angle θ

    图  17   不同入射角下各测点处的位移放大系数示意图

    Figure  17.   Displacement magnification coefficient of the measuring points with different incident angles

    图  18   不同入射角θ下各测点处的应力图

    (a) 孔隙水压力p;(b) 环向正应力σθ;(c) 环向剪应力 τγθ

    Figure  18.   Stress diagrams for different incident angles θ and measuring points

    (a) Pore water pressure p;(b) Hoop normal stress σθ ;(c) Hoop shear stress τγθ

    表  1   模型计算参数

    Table  1   Model calculation parameters

    饱和土体泊松比孔隙率渗透系数/(m·s−1饱和度密度/(kg·m−3弹性模量/MPa
    0.330.3510−2—10−411 90050,200,400
    混凝土隧道隧道半径/m隧道埋深/m泊松比密度/(kg·m−3弹性模量/MPa
    62,4,80.22 40030 000
    下载: 导出CSV

    表  2   不同工况下的计算参数

    Table  2   Calculation parameters for six conditions

     工况地震动特性   入射角
    土的模量
    /MPa
    剪切波速
    /(m·s−1
    渗透系数
    /(m·s−1
    隧道埋深
    /m
    水深
    /m
     1    El-Centro波 0 200 10−3 4 0,20,40,80
     2    El-Centro波,Kobe波 0 200 10−3 4 40
     3    El-Centro波 0 100,200,400 10−3 4 40
     4    El-Centro波 0 200 10−2,10−3,10−4​​​​​​​ 4 40
     5    El-Centro波 0 200 10−3 2,4,8 40
     6    El-Centro波 0,15,30,45,60 200 10−3 4 40
    下载: 导出CSV

    表  3   不同测点在不同入射角作用下位移放大系数

    Table  3   Displacement magnication factor of different measuring points with different incident angles

    测点入射角/°位移放大系数
    测点1测点2测点3测点4测点5测点6
    01.461.471.481.461.461.44
    151.351.371.401.411.411.36
    301.391.421.461.471.391.39
    451.401.421.481.481.401.39
    601.321.341.381.381.381.31
    下载: 导出CSV
  • 陈贵红. 2005. 沉管隧道地震响应的影响因素分析[J]. 中国铁道科学,26(6):93–97. doi: 10.3321/j.issn:1001-4632.2005.06.019

    Chen G H. 2005. Analysis of the affecting factors for seismic response of immersed tunnel[J]. China Railway Science,26(6):93–97 (in Chinese).

    陈向红,张鸿儒. 2012. 暗挖海底隧道地震动水压力响应分析[J]. 北京交通大学学报,36(1):36–40. doi: 10.3969/j.issn.1673-0291.2012.01.007

    Chen X H,Zhang H R. 2012. Analysis of effect of hydrodynamic pressure on undersea tunnels constructed by excavation method[J]. Journal of Beijing Jiaotong University,36(1):36–40 (in Chinese).

    崔杰,欧阳志勇,朱飞,曾凡凯. 2015. 波浪荷载作用下海底隧道-孔隙海床的动力分析[J]. 震灾防御技术,11(3):513–527.

    Cui J,Ouyang Z Y,Zhu F,Zeng F K. 2015. Dynamic analysis of the channel tunnel-porous seabed under wave load[J]. Technology for Earthquake Disaster Prevention,11(3):513–527 (in Chinese).

    董新平. 1999. 南京长江沉管隧道竖向地震反应分析[J]. 隧道建设,19(3):26–31.

    Dong X P. 1999. Dynamic response analysis of Nanjing Yangtze River immersed tunnel subjected to vertical earthquake motion[J]. Tunnel Construction,19(3):26–31 (in Chinese).

    刘晶波,王振宇,杜修力,杜义欣. 2005. 波动问题中的三维时域粘弹性人工边界[J]. 工程力学,22(6):46–51. doi: 10.3969/j.issn.1000-4750.2005.06.008

    Liu J B,Wang Z Y,Du X L,Du Y X. 2005. Three-dimensional visco-elastic artificial boundaries in time domain for wave motion problems[J]. Engineering Mechanics,22(6):46–51 (in Chinese).

    杨辉,陆建飞, 王建华,张庆华. 2001. 黄浦江过江隧道的动力抗震分析[J]. 上海交通大学学报,35(10):1512–1515.

    Yang H,Lu J F,Wang J H,Zhang Q H. 2001. Vibration analysis of a subaqueous tunnel of Huangpu River during earthquake[J]. Journal of Shanghai Jiaotong University,35(10):1512–1515 (in Chinese).

    赵密. 2009. 近场波动有限元模拟的应力型时域人工边界条件及其应用[D]. 北京: 北京工业大学: 1−127.

    Zhao M. 2009. Stress-Type Time-Domain Artificial Boundary Condition for Finite-Element Simulation of Near-Field Wave Motion and Its Engineering Application[D]. Beijing: Beijing University of Technology: 1−127 (in Chinese).

    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 2010. GB50011—2010 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社: 6−7.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. 2010. GB50011−2010 Code for Seismic Design of Building[S]. Beijing: China Architecture & Building Industry Press: 6−7 (in Chinese).

    Anastasopoulos I,Gerolymos N,Drosos V,Kourkoulis R,Georgarakos T,Gazetas G. 2007. Nonlinear response of deep immersed tunnel to strong seismic shaking[J]. J Geotech Geoenviron Eng,133(9):1067–1090.

    Biot M A. 1941. General theory of three-dimensional consolidation[J]. J Appl Phys,12(2):155–164. doi: 10.1063/1.1712886

    Taylor P R,Ibrahim H H,Yang D. 2005. Seismic retrofit of George Massey tunnel[J]. Earthq Eng Struct Dyn,34(4/5):519–542.

图(18)  /  表(3)
计量
  • 文章访问数:  2248
  • HTML全文浏览量:  628
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-05
  • 修回日期:  2019-11-25
  • 网络出版日期:  2020-04-08
  • 刊出日期:  2020-05-20

目录

    /

    返回文章
    返回