Numerical parametric study of seismic dynamic response and amplification effects of slope topography
-
摘要: 本文采用隐式动力有限单元法研究了不同的边坡角度和边坡高度对地形放大效应的影响,并以位移峰值放大系数为衡量地震动放大效应的标准,计算了不同边坡角度和边坡高度条件下的地震响应,在此基础上对模型关键监测点的输出波形以及位移峰值放大系数的变化趋势进行了分析,获得了不同监测点处的地震动时程曲线,揭示了坡角和坡高对单体边坡地震动放大效应的定量作用规律。数值结果表明,相同高度处坡面监测点的水平向位移峰值放大系数大于坡内监测点的,地形放大效应在水平方向具有趋表效应。由于坡面存在入射波和反射波的叠加,因此竖直向位移峰值放大系数的最大值出现在坡体内部。Abstract: In this paper, the implicit dynamic finite element method was applied to analyze the seismic dynamic response and amplification effects of slope topography with different slope angles and heights. With the peak displacement amplification factor (PDA) as the measurement of the amplification effects of seismic waves, the seismic dynamic response based on the PDA under the different conditions was investigated. And then the topographical amplification effects of seismic waves were investigated by analyzing the output waveforms of key monitoring points in the numerical model as well as the variation trend of PDA. Consequently, the time history curves of ground motion at the different monitoring points were obtained. The peak displacement amplification effects induced by different slope angles and heights were quantitatively analyzed and discussed. The numerical results showed that, when the monitoring points were at the same height, the PDAs at the slope surface were larger than those inside the slope. The PDA had the surface effect in horizontal direction. Namely, the more close to the surface was, the larger PDA was. Due to the superposition of the incident seismic waves and the reflected waves induced by the slope surface, the maximum amplification factor of vertical peak displacement appeared inside the slope. The numerical results can provide some guidance in predicting and evaluating the vibration intensity and disaster degree of slopes to some extent.
-
-
表 1 本文模型的材料参数
Table 1 Material parameters of the model in this study
材料 密度/(kg·m−3) 弹性模量/GPa 泊松比 岩体 2 400 50 0.25 节理 2 320 5 0.30 -
陈宝魁,王东升,成虎. 2016. 粘弹性人工边界在地震工程中应用研究综述[J]. 地震研究,<bold>39</bold>(1):137–142. doi: 10.3969/j.issn.1000-0666.2016.01.023 Chen B K,Wang D S,Cheng H. 2016. Research review on the application of viscous-spring artificial boundary in earthquake engineering[J]. <italic>Journal of Seismological Research</italic>,<bold>39</bold>(1):137–142 (in Chinese).
戴嘉伟. 2016. 利用地脉动和强震动观测数据分析汶川地震的场地效应[D]. 哈尔滨: 中国地震局工程力学研究所: 15−22. Dai J W. 2016. Site Effects Analysis of Wenchuan Earthquake by Using Microtremor and Strong Motion Observation Data[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 15−22 (in Chinese).
丁梓涵,赵其华,彭社琴,陈继彬,喻豪俊. 2015. 岩层倾角对顺倾向边坡地震效应的影响[J]. 地震工程学报,<bold>37</bold>(4):956–962. doi: 10.3969/j.issn.1000-0844.2015.04.0956 Ding Z H,Zhao Q H,Peng S Q,Chen J B,Yu H J. 2015. Impact of dip angle of rock stratum on seismic response of consequent slope[J]. <italic>China Earthquake Engineering Journal</italic>,<bold>37</bold>(4):956–962 (in Chinese).
冯永,谢飞亚,李旭光. 2017. 地震荷载下边坡抗滑桩桩土机理的三维模拟分析[J]. 地震工程学报,<bold>39</bold>(1):32–38. doi: 10.3969/j.issn.1000-0844.2017.01.0032 Feng Y,Xie F Y,Li X G. 2017. Three dimensional simulation of pile-soil interaction mechanism of anti-slide piles under seismic loads[J]. <italic>China Earthquake Engineering Journal</italic>,<bold>39</bold>(1):32–38 (in Chinese).
高玉峰. 2019. 河谷场地地震波传播解析模型及放大效应[J]. 岩土工程学报,<bold>41</bold>(1):1–25. Gao Y F. 2019. Analytical models and amplification effects of seismic wave propagation in canyon sites[J]. <italic>Chinese Journal of Geotechnical Engineering</italic>,<bold>41</bold>(1):1–25 (in Chinese).
蒋锋云,朱良玉,李玉江. 2018. 基于三维粘弹性有限元研究汶川地震对川滇地区的震后影响[J]. 地震研究,<bold>41</bold>(2):233–243. doi: 10.3969/j.issn.1000-0666.2018.02.011 Jiang F Y,Zhu L Y,Li Y J. 2018. Study of the co-seismic and post-seismic deformation deduced by the Wenchuan earthquake in the Sichuan-Yunnan region by three dimensional viscoelastic finite element model[J]. <italic>Journal of Seismological Research</italic>,<bold>41</bold>(2):233–243 (in Chinese).
李白基,秦嘉政,罗娣华,叶建庆,陈敏恭,蔡绍平,刘学军. 1999. 云南丽江峡谷的场地放大[J]. 地震学报,<bold>21</bold>(2):175–179. doi: 10.3321/j.issn:0253-3782.1999.02.008 Li B J,Qin J Z,Luo D H,Ye J Q,Chen M G,Cai S P,Liu X J. 1999. Site amplification in the valley of Lijiang,Yunnan[J]. <italic>Acta Seismologica Sinica</italic>,<bold>21</bold>(2):175–179 (in Chinese).
李天斌. 2008. 汶川特大地震中山岭隧道变形破坏特征及影响因素分析[J]. 工程地质学报,<bold>16</bold>(6):742–750. doi: 10.3969/j.issn.1004-9665.2008.06.003 Li T B. 2008. Failure characteristics and influence factor analysis of mountain tunnels at epicenter zones of great Wenchuan earthquake[J]. <italic>Journal of Engineering Geology</italic>,<bold>16</bold>(6):742–750 (in Chinese).
梁建文,陈健琦,巴振宁. 2012. 弹性层状半空间中无限长洞室对斜入射平面SH波的三维散射( Ⅰ ):方法及验证[J]. 地震学报,<bold>34</bold>(6):785–792. doi: 10.3969/j.issn.0253-3782.2012.06.005 Liang J W,Chen J Q,Ba Z N. 2012. 3D scattering of obliquely incident SH waves by a cylindrical cavity in layered elastic half-space ( Ⅰ ):Methodology and verification[J]. <italic>Acta Seismologica Sinica</italic>,<bold>34</bold>(6):785–792 (in Chinese).
刘汉龙,费康,高玉峰. 2003. 边坡地震稳定性时程分析方法[J]. 岩土力学,<bold>24</bold>(4):553–556. doi: 10.3969/j.issn.1000-7598.2003.04.013 Liu H L,Fei K,Gao Y F. 2003. Time history analysis method of slope seismic stability[J]. <italic>Rock and Soil Mechanics</italic>,<bold>24</bold>(4):553–556 (in Chinese).
刘晶波,谷音,杜义欣. 2006. 一致粘弹性人工边界及粘弹性边界单元[J]. 岩土工程学报,<bold>28</bold>(9):1070–1075. doi: 10.3321/j.issn:1000-4548.2006.09.004 Liu J B,Gu Y,Du Y X. 2006. Consistent viscous-spring artificial boundaries and viscous-spring boundary elements[J]. <italic>Chinese Journal of Geotechnical Engineering</italic>,<bold>28</bold>(9):1070–1075 (in Chinese).
刘新荣,邓志云,刘永权,刘树林,路雨明. 2019. 地震作用下水平层状岩质边坡累积损伤与破坏模式研究[J]. 岩土力学,<bold>40</bold>(7):2507–2516. Liu X R,Deng Z Y,Liu Y Q,Liu S L,Lu Y M. 2019. Study of cumulative damage and failure mode of horizontal layered rock slope subjected to seismic loads[J]. <italic>Rock and Soil Mechanics</italic>,<bold>40</bold>(7):2507–2516 (in Chinese).
孙强强,薄景山,刘红帅,景立平. 2019. 隧道对地表地震动放大作用的研究[J]. 现代隧道技术,<bold>56</bold>(3):65–71. Sun Q Q,Bao J S,Liu H S,Jing L P. 2019. Effects of a tunnel on ground motion amplification[J]. <italic>Modern Tunnelling Technology</italic>,<bold>56</bold>(3):65–71 (in Chinese).
王猛,梁庆国,王丽丽,边磊. 2019. 黄土隧道边仰坡动力响应的大型振动台模型试验研究[J]. 地震工程与工程振动,<bold>39</bold>(2):141–150. Wang M,Liang Q G,Wang L L,Bian L. 2019. Large-scale shaking table model test study on dynamic response of loess tunnel side slope[J]. <italic>Earthquake Engineering and Engineering Dynamics</italic>,<bold>39</bold>(2):141–150 (in Chinese).
詹志发,祁生文,何乃武,郑博文,葛传峰. 2019. 强震作用下均质岩质边坡动力响应的振动台模型试验研究[J]. 工程地质学报,<bold>27</bold>(5):946–954. Zhan Z F,Qi S W,He N W,Zheng B W,Ge C F. 2019. Shaking table test study of homogeneous rock slope model under strong earthquake[J]. <italic>Journal of Engineering Geology</italic>,<bold>27</bold>(5):946–954 (in Chinese).
张伯艳,李德玉. 2014. 白鹤滩水电站左岸边坡抗震分析[J]. 工程力学,<bold>31</bold>(增刊1):149–154. Zhang B Y,Li D Y. 2014. Dynamic stability analyses of Bai He Tan hydropower-station left slope[J]. <italic>Engineering Mechanics</italic>,<bold>31</bold>(S1):149–154 (in Chinese).
张泽林,吴树仁,王涛,唐辉明,梁昌玉. 2018. 地震波振幅对黄土-泥岩边坡动力响应规律的影响[J]. 岩土力学,<bold>39</bold>(7):2403–2412. Zhang Z L,Wu S R,Wang T,Tang H M,Liang C Y. 2018. Influence of seismic wave amplitude on dynamic response of loess-mudstone slope[J]. <italic>Rock and Soil Mechanics</italic>,<bold>39</bold>(7):2403–2412 (in Chinese).
郑颖人,叶海林,黄润秋. 2009. 地震边坡破坏机制及其破裂面的分析探讨[J]. 岩石力学与工程学报,<bold>28</bold>(8):1714–1723. doi: 10.3321/j.issn:1000-6915.2009.08.024 Zheng Y R,Ye H L,Huang R Q. 2009. Analysis and discussion of failure mechanism and fracture surface of slope under earthquake[J]. <italic>Chinese Journal of Rock Mechanics and Engineering</italic>,<bold>28</bold>(8):1714–1723 (in Chinese).
Boore D M. 1972. A note on the effect of simple topography on seismic SH waves[J]. <italic>Bull Seismol Soc Am</italic>,<bold>62</bold>(1):275–284.
Bouchon M. 1973. Effect of topography on surface motion[J]. <italic>Bull Seismol Soc Am</italic>,<bold>63</bold>(3):615–632.
Çelebi M. 1987. Topographical and geological amplifications determined from strong-motion and aftershock records of the 3 March 1985 Chile earthquake[J]. <italic>Bull Seismol Soc Am</italic>,<bold>77</bold>(4):1147–1167.
Çelebi M. 1991. Topographical and geological amplification:Case studies and engineering implications[J]. <italic>Struct Saf</italic>,<bold>10</bold>(1/3):199–217.
Chang K H,Tsaur D H,Wang J H. 2015. Response of a shallow asymmetric V-shaped canyon to antiplane elastic waves[J]. <italic>Proc Roy Soc A</italic>:<italic>Math Phy Eng Sci</italic>,<bold>471</bold>(2174):20140215. doi: 10.1098/rspa.2014.0215
Erzin Y,Cetin T. 2012. The use of neural networks for the prediction of the critical factor of safety of an artificial slope subjected to earthquake forces[J]. <italic>Sci Iran</italic>,<bold>19</bold>(2):188–194. doi: 10.1016/j.scient.2012.02.008
Fukushima T, Matsushita K, Usami H, Wakai A. 2013. Finite element simulation for an earthquake-induced landslide considering strain-softening characteristics of sensitive clayey loam[G]//Earthquake-Induced Landslides. Berlin Heidelberg: Springer: 671–678.
Lin M L, Huang C Y. 2017. Numerical simulation of run-out behavior of earthquake-induced landslides[G]//Geotechnical Hazards From Large Earthquakes and Heavy Rainfalls. Tokyo, Japan: Springer: 193–202.
Massa M,Ferretti G,Cevasco A,Isella L,Eva C. 2004. Analysis of site amplification phenomena:An application in Ripabottoni for the 2002 Molise,Italy,earthquake[J]. <italic>Earthq Spectra</italic>,<bold>20</bold>(S1):S107–S118.
Poursartip B,Fathi A,Kallivokas L F. 2017. Seismic wave amplification by topographic features:A parametric study[J]. <italic>Soil Dyn Earthq Eng</italic>,<bold>92</bold>:503–527. doi: 10.1016/j.soildyn.2016.10.031
Sánchez-Sesma F J,Rosenblueth E. 1979. Ground motion at canyons of arbitrary shape under incident SH waves[J]. <italic>Earthq Eng Struct Dyn</italic>,<bold>7</bold>(5):441–450. doi: 10.1002/eqe.4290070505
Sánchez-Sesma F J,Herrera I,Avilés J. 1982. A boundary method for elastic wave diffraction:Application to scattering of SH waves by surface irregularities[J]. <italic>Bull Seismol Soc Am</italic>,<bold>72</bold>(2):473–490.
Sánchez-Sesma F J. 1985. Diffraction of elastic SH waves by wedges[J]. <italic>Bull Seismol Soc Am</italic>,<bold>75</bold>(5):1435–1446.
Sills L B. 1978. Scattering of horizontally-polarized shear waves by surface irregularities[J]. <italic>Geophys J R astr Soc</italic>,<bold>54</bold>(2):319–348. doi: 10.1111/j.1365-246X.1978.tb04263.x
Smith W D. 1975. The application of finite element analysis to body wave propagation problems[J]. <italic>Geophys J Int</italic>,<bold>42</bold>(2):747–768.
Trifunac M D. 2010. Scattering of plane SH waves by a semi-cylindrical canyon[J]. <italic>Earthq Eng Struct Dyn</italic>,<bold>1</bold>(3):267–281.
Wang G,Du C Y,Huang D R,Jin F,Koo R C H,Kwan J S H. 2018. Parametric models for 3D topographic amplification of ground motions considering subsurface soils[J]. <italic>Soil Dyn Earthq Eng</italic>,<bold>115</bold>:41–54. doi: 10.1016/j.soildyn.2018.07.018
Wong H L,Jennings P C. 1975. Effects of canyon topography on strong ground motion[J]. <italic>Bull Seismol Soc Am</italic>,<bold>65</bold>(5):1239–1257.
Zhang W,Zhang Z G,Chen X F. 2012. Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids[J]. <italic>Geophys J Int</italic>,<bold>190</bold>(1):358–378. doi: 10.1111/j.1365-246X.2012.05472.x