Characteristics of ionospheric anomalies before the earthquake in Indonesia on August 5,2018
-
摘要: 基于2018年8月5日印度尼西亚地震震中(116.45°E,8.33°S)附近的澳大利亚达尔文站和位于震中磁力线共轭区域的武汉站的电离层测高仪观测数据,以及相同区域全球卫星导航系统接收机的观测数据,对该地震震前的电离层异常扰动特征进行了分析。结果显示,震前同时观测到了电离层F2层临界频率(foF2)和总电子含量(TEC)时间序列的异常。基于岩石圈-大气层-电离层直流电场耦合模式和美国国家大气研究中心的热层-电离层环流耦合模式(NCAR/HAO TIEGCM)对震前震中及其对应磁力线共轭点区域的电子密度异常进行了模拟,模拟结果表明,在地震异常电场的作用下,地震区域及其对应半球的磁共轭区域的TEC和电离层F2层峰值电子密度NmF2发生了明显扰动。
-
关键词:
- 岩石圈-大气层-电离层耦合 /
- foF2 /
- TEC /
- TIEGCM模拟
Abstract: Based on the observations of the ionosondes at the Darwin station in Australia near the epicenter (116.45°E, 8.33°S) of the earthquake in Indonesia on August 5, 2018 and at the Wuhan station in the magnetically conjugated area of the epicenter, and the observations of the GNSS receiver in the corresponding regions, this paper analyzed the characteristics and the mechanism of the ionospheric anomaly disturbance. The results show that both the critical frequency ( foF2) and time series of the ionospheric total electron content (TEC) were observed to be abnormal before the earthquake. Based on the lithosphere-atmosphere-ionosphere DC electric field coupling model and thermosphere-ionosphere-electrodynamics general circulation model (TIEGCM) from the National Center for Atmospheric Research (NCAR/HAO), the electron density anomalies of the seismic area and the magnetically conjugated area before the earthquake are simulated. The simulation results show that TEC and maximum electron density NmF2 of the seismic area and the magnetically conjugated area are significantly disturbed by the abnormal electric field before the earthquake.-
Keywords:
- lithosphere-atmosphere-ionosphere coupling /
- foF2 /
- TEC /
- TIEGCM simulation
-
-
图 4 2018年8月3日至9日武汉站和达尔文站的foF2异常扰动观测
红色、绿色曲线分别表示原始foF2数据减去月中值、月均值后再减去两倍标准差的结果,蓝色方框为武汉站和达尔文站的foF2同时呈现异常的时间点
Figure 4. The abnormal disturbances of foF2 observed by the stations Wuhan and Darwin from August 3 to 9,2018
The red curve indicates the result that the original foF2 data minuses the 31-day median and then subtracts twice the standard deviation. The green curve indicates the result that the original foF2 data minuses the 31-day mean and then subtracts twice the standard deviation. The blue box indicates the time point at which the foF2 in Wuhan and Darwin stations are simultaneously anomalous
图 7 地震区域2018年8月4日(年积日216) UTC 03:40电离层底部z=90 km处的异常水平电场分布
(a) 总电场强度E;(b) 磁南北向电场强度ESN;(c) 磁东西向电场强度EEW
Figure 7. Distribution of the abnormal horizontal electric field at UTC 03:40 on August 4,2018(216 day of the year) at the bottom of the ionosphere (z=90 km)
(a) Total electric field intensity E;(b) The electric field intensity ESN in magnetic north-south direction;(c) The electric field intensity EEW in magnetic east-west direction
-
丁宗华,吴健,孙树计,陈金松,班盼盼. 2010. 汶川大地震前电离层参量的变化特征与分析[J]. 地球物理学报,<bold>53</bold>(1):30–38. doi: 10.3969/j.issn.0001-5733.2010.01.004 Ding Z H,Wu J,Sun S J,Chen J S,Ban P P. 2010. The variation of ionosphere on some days before the Wenchuan earthquake[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>53</bold>(1):30–38 (in Chinese).
刘静,万卫星,黄建平,张学民,赵庶凡,欧阳新艳,泽仁志玛. 2011. 智利8.8级地震的震前电子浓度扰动[J]. 地球物理学报,<bold>54</bold>(11):2717–2725. Liu J,Wan W X,Huang J P,Zhang X M,Zhao S F,Ouyang X Y,Zeren Z M. 2011. Electron density perturbation before Chile <italic>M</italic>8.8 earthquake[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>54</bold>(11):2717–2725 (in Chinese).
马新欣,林湛,陈化然,金红林,焦立果,刘晓灿. 2014. 基于GPS和COSMIC数据分析汶川地震TEC和<italic>N</italic><sub>mF2</sub>扰动[J]. 地球物理学报,<bold>57</bold>(8):2415–2422. doi: 10.6038/cjg20140803 Ma X X,Lin Z,Chen H R,Jin H L,Jiao L G,Liu X C. 2014. Analysis on ionospheric perturbation of TEC and <italic>N</italic><sub>mF2</sub> based on GPS and COSMIC data before and after the Wenchuan earthquake[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>57</bold>(8):2415–2422 (in Chinese).
滕荣荣,赵谊,刘耀炜,马玉川. 2010. 强震地壳逸出氡和电离层异常耦合关系的讨论[J]. 中国地震,<bold>26</bold>(1):60–72. doi: 10.3969/j.issn.1001-4683.2010.01.006 Teng R R,Zhao Y,Liu Y W,Ma Y C. 2010. The study on the strong earthquakes coupling relationship between abnormal radon escaped from crustal and ionosphere[J]. <italic>Earthquake Research in China</italic>,<bold>26</bold>(1):60–72 (in Chinese).
余涛,毛田,王云冈,王劲松. 2009. 汶川特大地震前电离层主要参量变化[J]. 科学通报,<bold>54</bold>(4):493–499. Yu T,Mao T,Wang Y G,Wang J S. 2009. Study of the ionospheric anomaly before the Wenchuan earthquake[J]. <italic>Chinese Science Bulletin</italic>,<bold>54</bold>(6):1080–1086.
张明敏,刘智敏,刘盼,从建锋. 2018. 九寨沟7.0级地震前电离层TEC异常分析[J]. 测绘工程,<bold>27</bold>(12):24–30. Zhang M M,Liu Z M,Liu P,Cong J F. 2018. Analysis of ionospheric TEC anomalies before the Jiuzhaigou <italic>M</italic><sub>S</sub>7.0 earth-quake[J]. <italic>Engineering of Surveying and Mapping</italic>,<bold>27</bold>(12):24–30 (in Chinese).
Carter B A,Kellerman A C,Kane T A,Dyson P L,Norman R,Zhang K. 2013. Ionospheric precursors to large earthquakes:A case study of the 2011 Japanese Tohoku earthquake[J]. <italic>J Atmos Solar-Terr Phys</italic>,<bold>102</bold>:290–297. doi: 10.1016/j.jastp.2013.06.006
Chuo Y J,Liu J Y,Pulinets S A,Chen Y I. 2002. The ionospheric perturbations prior to the Chi-Chi and Chia-Yi earthquakes[J]. <italic>J Geodyn</italic>,<bold>33</bold>(4/5):509–517.
Dabas R S,Das R M,Sharma K,Pillal K G M. 2007. Ionospheric precursors observed over low latitudes during some of the recent major earthquakes[J]. <italic>J Atmos Solar-Terr Phys</italic>,<bold>69</bold>(15):1813–1824. doi: 10.1016/j.jastp.2007.09.005
Freund F T,Kulahci I G,Cyr G,Ling J,Winnick M,Tregloan-Reed J,Freund M M. 2009. Air ionization at rock surfaces and pre-earthquake signals[J]. <italic>J Atmos Solar-Terr Phys</italic>,<bold>71</bold>(17/18):1824–1834.
Hayakawa M,Molchanov O A,NASDA/UEC Team. 2004. Achievements of NASDA’s earthquake remote sensing frontier project[J]. <italic>Terr Atmos Ocean Sci</italic>,<bold>15</bold>(3):311–327. doi: 10.3319/TAO.2004.15.3.311(EP)
Heinicke J,Koch U,Martinelli G. 1995. CO<sub>2</sub> and radon measurements in the Vogtland area (Germany):A contribution to earthquake prediction research[J]. <italic>Geophys Res Lett</italic>,<bold>22</bold>(7):771–774. doi: 10.1029/94GL03074
Kong J,Yao Y B,Zhou C,Liu Y,Zhai C Z,Wang Z M,Liu L. 2018. Tridimensional reconstruction of the co-seismic ionospheric disturbance around the time of 2015 Nepal earthquake[J]. <italic>J Geodyn</italic>,<bold>92</bold>(11):1255–1266. doi: 10.1007/s00190-018-1117-3
Leonard R S,Barnes R A. 1965. Observation of ionospheric disturbances following the Alaska earthquake[J]. <italic>J Geophys Res</italic>,<bold>70</bold>(5):1250–1253.
Liperovsky V A,Pokhotelov O A,Meister C V,Liperovskaya E V. 2008. Physical models of coupling in the lithosphere-atmosphere-ionosphere system before earthquakes[J]. <italic>Geomagn Aeron</italic>,<bold>48</bold>(6):795–806. doi: 10.1134/S0016793208060133
Liu J Y,Chen Y I,Pulinets S A,Tsai Y B,Chuo Y J. 2000. Seismo-ionospheric signatures prior to <italic>M</italic>≥6.0 Taiwan earthquakes[J]. <italic>Geophys Res Lett</italic>,<bold>27</bold>(19):3113–3116. doi: 10.1029/2000GL011395
Liu J Y,Chuo Y J,Shan S J,Tsai Y B,Chen Y I,Pulinets S A,Yu S B. 2004. Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements[J]. <italic>Annal Geophys</italic>,<bold>22</bold>(5):1585–1593. doi: 10.5194/angeo-22-1585-2004
Oyama K I,Kakinami Y,Liu J Y,Kamogawa M,Kodama T. 2008. Reduction of electron temperature in low-latitude ionosphere at 600 km before and after large earthquakes[J]. <italic>J Geophys Res</italic>:<italic>Space Phys</italic>,<bold>113</bold>:A11317.
Popov K V,Liperovsky V A,Meister C V,Biagi P F,Liperovskaya E V,Silina A S. 2004. On ionospheric precursors of earthquakes in scales of 2−3 h[J]. <italic>Phys Chem Earth</italic>,<bold>29</bold>(4/5/6/7/8/9):529–535.
Pulinets S A,Boyarchuk K A,Hegai V V,Kim V P,Lomonosov A M. 2000. Quasielectrostatic model of atmosphere-thermosphere-ionosphere coupling[J]. <italic>Adv Space Res</italic>,<bold>26</bold>(8):1209–1218. doi: 10.1016/S0273-1177(99)01223-5
Pulinets S A,Legen’ka A D. 2003. Spatial-temporal characteristics of large scale disturbances of electron density observed in the ionospheric F-region before strong earthquakes[J]. <italic>Cosmic Res</italic>,<bold>41</bold>(3):221–229. doi: 10.1023/A:1024046814173
Pulinets S A,Legen’ka A D,Gaivoronskaya T V,Depuev V K. 2003. Main phenomenological features of ionospheric precursors of strong earthquakes[J]. <italic>J Atmos Solar-Terr Phys</italic>,<bold>65</bold>(16/18):1337–1347.
Pulinets S. 2004. Ionospheric precursors of earthquakes:Recent advances in theory and practical applications[J]. <italic>Terr Atmos Ocean Sci</italic>,<bold>15</bold>(3):413–435. doi: 10.3319/TAO.2004.15.3.413(EP)
Pulinets S,Ouzounov D. 2011. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model:An unified concept for earthquake precursors validation[J]. <italic>J Asian Earth Sci</italic>,<bold>41</bold>(4/5):371–382.
Pulinets S,Davidenko D. 2014. Ionospheric precursors of earthquakes and Global Electric Circuit[J]. <italic>Adv Space Res</italic>,<bold>53</bold>(5):709–723. doi: 10.1016/j.asr.2013.12.035
Richmond A D,Ridley E C,Roble R G. 1992. A thermosphere/ionosphere general circulation model with coupled electrodynamics[J]. <italic>Geophys Res Lett</italic>,<bold>19</bold>(6):601–604. doi: 10.1029/92GL00401
Richmond A D. 1995. Ionospheric electrodynamics using magnetic apex coordinates[J]. <italic>J Geomagn Geoelectr</italic>,<bold>47</bold>(2):191–212. doi: 10.5636/jgg.47.191
Sharma K,Dabas R S,Sarkar S K,Das R M,Ravindran S,Gwal A K. 2010. Anomalous enhancement of ionospheric F<sub>2</sub> layer critical frequency and total electron content over low latitudes before three recent major earthquakes in China[J]. <italic>J Geophys Res</italic>:<italic>Space Phys</italic>,<bold>115</bold>(A11):A11313.
Sorokin V M,Chmyrev V M,Yaschenko A K. 2005. Theoretical model of DC electric field formation in the ionosphere stimulated by seismic activity[J]. <italic>J Atmos Solar-Terr Phys</italic>,<bold>67</bold>(14):1259–1268. doi: 10.1016/j.jastp.2005.07.013
Sorokin V M,Yaschenko A K,Hayakawa M. 2007. A perturbation of DC electric field caused by light ion adhesion to aerosols during the growth in seismic-related atmospheric radioactivity[J]. <italic>Nat Hazards Earth Syst Sci</italic>,<bold>7</bold>(1):155–163. doi: 10.5194/nhess-7-155-2007
Tariq M A,Shah M,Hernández-Pajares M,Iqbal T. 2019. Pre-earthquake ionospheric anomalies before three major earthquakes by GPS-TEC and GIM-TEC data during 2015−2017[J]. <italic>Adv Space Res</italic>,<bold>63</bold>(7):2088–2099. doi: 10.1016/j.asr.2018.12.028
Virk H S,Singh B. 1994. Radon recording of Uttarkashi earthquake[J]. <italic>Geophys Res Lett</italic>,<bold>21</bold>(8):737–740. doi: 10.1029/94GL00310
Zhao B Q,Wang M,Yu T,Wan W X,Lei J H,Liu L B,Ning B Q. 2008. Is an unusual large enhancement of ionospheric electron density linked with the 2008 great Wenchuan earthquake?[J]. <italic>J Geophys Res</italic>:<italic>Space Phys</italic>,<bold>113</bold>:A11304.
Zhou C,Liu Y,Zhao S F,Liu J,Zhang X M,Huang J P,Shen X H,Ni B B,Zhao Z Y. 2017. An electric field penetration model for seismo-ionospheric research[J]. <italic>Adv Space Res</italic>,<bold>60</bold>(10):2217–2232. doi: 10.1016/j.asr.2017.08.007
-
期刊类型引用(6)
1. 周锐,李营. 泉水知地震. 矿物岩石地球化学通报. 2022(02): 461-464 . 百度学术
2. 陈张,林青,唐凤,胡蓉,殷亚兰,高雁. 乌鲁木齐10号泉水体细菌群落的映震分析. 新疆农业科学. 2016(04): 730-736 . 百度学术
3. 罗娇,杨红梅,高小其,尤陆花,娄恺. 乌鲁木齐10号泉泉水细菌群落对有感地震的响应. 微生物学报. 2015(03): 341-350 . 百度学术
4. 唐凤,史应武,李萍,罗娇,晁群芳. 乌鲁木齐10号冷泉细菌群落密度实时荧光定量PCR检测体系的建立. 新疆农业科学. 2015(10): 1872-1877 . 百度学术
5. 罗娇,李萍,薛娟,尤陆花,高小其,杨红梅. 乌鲁木齐10号泉水体可培养细菌群落的季节动态变化. 新疆农业科学. 2014(03): 517-523 . 百度学术
6. 李萍,曾军,祖丽皮亚·玉努斯,高小其,董秀黄,薛娟,娄恺. 新疆乌鲁木齐10号冷泉古菌群落结构多样性. 微生物学报. 2013(03): 230-240 . 百度学术
其他类型引用(6)