Pn-wave velocity structure and anisotropy beneath northern Ordos block and its adjacent areas
-
摘要: 利用鄂尔多斯地块北部及其邻区2008—2018年期间固定台网的地震波形记录,手动拾取出高质量的Pn波到时资料,反演获得了研究区上地幔顶部的Pn波速度结构及各向异性。结果表明:鄂尔多斯地块北部及其邻区上地幔顶部的Pn波速度存在明显的横向不均匀性,与区域地质构造和地震活动相关;研究区内平均Pn波速为8.18 km/s,鄂尔多斯地块内部表现出大范围的高速异常,阿拉善地块的高速异常体中存在低速异常现象,河套断陷带、阴山—燕山造山带、银川—吉兰泰断陷带和海原—六盘山弧形断裂带区域均表现为显著的低速异常,河套断陷带下方存在向鄂尔多斯地块内部延伸的明显低速异常条带,大同火山群下方存在强低速异常;多数历史强震均发生在低速异常区或高低速异常过渡带上;鄂尔多斯地块内部Pn波各向异性快波方向西部为近NE−SW向,而东部为近NW−SE向,河套断陷带和鄂尔多斯地块西缘、青藏高原东北缘与阿拉善地块的交界带以及阴山—燕山造山带的各向异性快波方向总体均呈现为NW−SE向,而阴山—燕山造山带东部则呈NE−SW向。Abstract: This paper picked up the high-quality Pn-wave arrival times from the waveform data recorded at the digital seismic networks in the northern Ordos block and its adjacent areas from 2008 to 2018, and obtained Pn velocity structure and anisotropy structure in the uppermost mantle of the region by performing tomographic inversion. The results show that there exist obvious lateral heterogeneities in the study area. Such lateral heterogeneities not only exist inside the block but also on its margins, which shows a close correlation to the regional tectonics and earthquakes. The average Pn velocity in the region can amount up to 8.18 km/s. The Ordos block shows a broad high velocity anomaly, whereas the Alxa block is imaged as a mixture of both high and low velocity anomalies. Obvious low velocity anomalies are observed beneath the Hetao graben, Yinshan-Yanshan orogenic belt, Yinchuan-Jilantai fault zone, and Haiyuan-Liupanshan arc-shaped fault zone. Beneath the Hetao graben the low velocity anomaly extends southward to the Ordos block. A strong low velocity anomaly exists beneath the Datong volcano. Most strong historical earthquakes in the study region occurred in the low velocity anomalous areas or in the high-to-low velocity anomalous transition zones. The fast direction of Pn anisotropy shows nearly a NE-SW direction in the western Ordos block and a NW-SE direction in its eastern parts. The fast wave of anisotropy is in NW-SE in the Hetao graben, junction zone of the Alxa block and the western margin of the Ordos block and the northeastern margin of the Tibetan block, and it is mainly in NW-SE in the Yinshan-Yanshan orogenic belt, except for a NE-SW direction in the eastern Yinshan-Yanshan orogenic belt.
-
Keywords:
- Pn anisotropy /
- seismic tomography /
- Ordos block /
- uppermost mantle
-
引言
珊溪水库位于浙江省温州市文成县与泰顺县交界处,隶属于浙东南褶皱带次级构造单元温州—临海坳陷带南部的泰顺—青田断坳,其西侧以北东向的余姚—丽水深断层为界(马志江等,2016)。该水库于2000年5月开始蓄水,蓄水前地质构造相对稳定,无历史地震记录(赵冬等,2006)。蓄水两年后,库区附近浅源地震频发,且持续至今,震群在时空上呈明显的丛集分布特性,地震总体沿贯穿水库的双溪—焦溪垟断裂成组成段优势分布,先后发生多组显著的高密度震群活动,时序上沿断裂走向由断层库区淹没区向断层两端迁移(钟羽云等,2015)。该水库的地震活动与库区岩性、断层分布及水库蓄水等特征密切相关。双溪—焦溪垟断裂为高倾角(>70°)、右旋走滑兼逆冲型断层,总长度超过20 km,切割深度在5 km以上,切穿变质岩地层基底,为库区附近淹没段最长的断层分支,并发育次级断面,破碎带周围竖向节理发育,胶结程度差,断层两侧为隔水性较好的层状岩层,此断面结构易于库水下渗(周昕等,2006;马志江等,2016)。珊溪水库孕震区是水库地震研究的热点(周昕等,2006;朱新运等,2010;钟羽云等,2015;马志江等,2016;马起杨,朱新运,2016;侯林锋等,2018),通过库区地震震源深度的定位圈定孕震区范围,为水库地震孕震机理的分析提供重要信息。
震源深度是确定孕震区范围的重要位置参数,能够反映地壳岩石流变特性和脆塑性特征(Scholz,2002),因此准确地确定震源深度一直是地震学研究的重要内容之一。然而震源深度的反演既依赖于地震波波速模型,又与发震时刻之间存在折衷,尤其是稀疏台网下,对震源深度的测定尤为困难。经典线性走时拟合方法是目前使用较为广泛的地震定位方法,通过拾取多个地震台的P波、S波震相到时,给定波速模型拟合各个台站的观测到时,使全部台站的走时误差达到最小,从而解算出发震时刻和震源位置。在此基础上发展的诸如联合定位法、相对定位法和双重残差法等方法,均是基于走时计算,需要计算观测值与理论值之间的残差函数,对台网的台站密度和波速模型的依赖较大(崇加军等,2010)。
地震波深度震相蕴含丰富的震源深度信息,为震源深度定位提供了一种新的途径。深度震相是指地震波从震源上行出射经地表反射后传播至台站而形成的震相。震相经地表反射后的传播路径与其对应参考震相的传播路径相似,因此两者到时差主要与震源深度相关,利用深度震相进行震源深度定位可以规避传统走时定位发震时刻与定位深度的折衷性,且基本不依赖于震中距,降低了传统方法对传播路径的三维波速模型的依赖。不同深度震相有其相应的优势震中距范围。中强震在震中距远的波形记录上能够观测到远震深度震相pP和sP。对于中小地震可以采用近震深度震相(sPg,sPn,sPL)来约束震源深度(张瑞青,吴庆举,2008;崇加军等,2010)。因首波的发育需要超过临界震中距,故以首波Pn为参考震相的深度震相sPn,观测台站的震中距通常大于100 km。震相sPg在地壳速度结构具有一定梯度时发育较为明显,其观测台站的震中距介于50—100 km之间。对于震中距50 km以内的台站,上行S波经地表反射转化为P波则会沿地表浅部直接传播到台站,传播过程同时耦合P波在地表浅部的多次波及散射波,其震相为sPL震相(崇加军等,2010;Wang et al,2011)。由于sPL震相发育于较近震中距,可约束中小地震震源深度,适用于类似于珊溪水库这样震群震级普遍偏小的弱震区。
1. 地震概况
珊溪水库蓄水后表现出间歇性的震群活动,最大余震与主震的震级差较小,持续时间长。浙江省地震监测台网记录到的最近一次高密度震群活动从2014年9月持续至2015年3月底,此次震群中地震的最大震级为ML4.2。自2002年起,浙江省地震局在珊溪水库的库区逐步建成了子台密度较大的水库地震监测台网,覆盖整个库区,库区周边台站及地震分布见图1。台网记录到的震群的最小完备震级Mc由2002年初始的ML1.5降至2014年的ML0.3(于俊谊,马起杨,2017),库区监测能力不断提高,台网的定位能力得到了改善。2014年之前监测到的水库地震,由于受台网台站密度条件限制,定位精度有限,台网定位地震的空间分布较为离散,未能显示出明显的优势分布方向;而台网定位的2014年震群的地震空间展布与贯穿库区的双溪—焦溪垟断裂一致,定位精度显著提高。
图 1 珊溪水库区域断裂、地震和台站分布图灰色填充区为珊溪水库,三角形为台站,圆圈代表2014年震群,加号为2014年之前地震,黑线为断层Figure 1. Fault structure and distribution of earthquakes and stations in Shanxi reservoir regionGray region indicates Shanxi reservoir,and its surrounding fault system is depicted by line segments,open circles denote the swarm epicenters of the year 2014 while plus signs denote the swarm before the year 2014,seismic stations are indicated by triangles2. sPL震相
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
图 2 sPL射线路径示意图(a)和万阜台记录的三分向位移波形(b)图(a)中黑色为sPL及其参考震相Pg,灰色射线示意相对sPL震相其它深度震相则需更远的震中距才发育Figure 2. Schematic illustration of sPL ray path (a) and three-component displacement waveforms recorded at Wanfu station to view sPL phase (b)Black ray for sPL-Pg pair and gray for other depth phases which appear in farther epicentral distance in Fig.(a)近震深度震相和其参考震相的走时差,与震源深度近于线性相关,可以用于约束地震震源深度。本文使用频率−波数域方法(Zhu,Rivera,2002)计算不同深度上走滑型双力偶源的三分量格林函数,来合成万阜台的理论地震图,以观测sPL震相随震源深度变化的敏感特性。速度模型采用从全球地壳模型CRUST1.0 (Laske et al,2013)提取的一维分层模型。如图3a所示,sPL与P波的到时差随着深度增加而明显增大,近乎呈线性关系。敏感性测试中波形合成采用的双力偶源震源机制是基于库区发震构造由CAP (cut and paste)波形拟合方法(Zhao,Helmberger,1994;Zhu,Helmberger,1996)反演所得,符合库区实际情况。近震CAP方法是一种全波形拟合反演方法,由于反演结果对地壳速度模型和结构横向变化的依赖性相对较小,因此被广泛应用于震源机制和震源深度反演,其原理是在给定的参数空间中网格搜索使波形拟合误差达到最小的最佳解。2014年珊溪水库震群震级最大的主震震源机制和震源深度的CAP反演结果(图3b)显示,断层走向127°,倾角83°,滑动角−177°,为高倾角右旋走滑型震源机制,且走向与余震展布一致,表明其发震构造为双溪—焦溪垟断裂。
图 3 基于sPL和CAP方法确定2014年珊溪水库震群主震震源深度(a) sPL震相敏感性测试,灰色波形表示不同深度三分向理论波形,红色波形表示万阜台显示的主震最佳拟合深度;(b) CAP反演所得的主震最优震源机制(左)和震源深度(右)Figure 3. Focal depth determined by sPL and CAP method for the mainshock of the Shanxi reservoir swarm in 2014(a) sPL phase depth sensitivity test,where gray waveforms represent three-component synthetics at different focal depths and red ones represent data recorded by Wanfu staion at best fitting;(b) Focal mechanism (left) and depth (right) determined by CAP method3. 结果分析
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
表 1 珊溪水库震群七次地震事件震源深度的测定结果Table 1. Focal depths of seven events from Shanxi reservoir seismic swarm序号 发震时刻 震中位置 ML 震源深度/km 年−月−日 时:分:秒 东经 北纬 sPL结果 台网结果* CAP结果 0 2014−10−14 04:14:57 119.94 27.71 4.2 5 4 4 1 2014−09−17 20:47:31 119.95 27.71 3.5 4—5 4 4 2 2014−09−23 17:40:25 119.94 27.71 3.7 4—5 4 4 3 2014−10−15 15:49:27 119.95 27.71 4.0 5—6 5 5 4 2014−10−15 16:37:24 119.96 27.70 4.0 6 5 5 5 2014−10−23 08:35:02 119.93 27.72 3.7 5 4 4 6 2014−10−26 07:03:41 119.97 27.69 3.4 4 4 / *引自浙江省数字地震台网中心地震目录(内部资料). 图 4 表1中万阜台水库震群事件1—6的位移波形图Figure 4. Displacement records of six events labeled with one to six in Table 1 at Wanfu station with vertical (red),radial (blue) and tangential (green) componentsThis page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
4. 讨论与结论
通过实际观测和正演分析可知,在震中距小于50 km的范围内,在近震深度发育sPL震相,sPL震相及其参考震相Pg之间的走时差与震中距无关,与深度存在线性关系,可用于约束震源深度。sPL震相具有低频特性,优势震中距30—50 km上的震相清晰,只在径向和垂向分量上出现,一般径向幅度大于垂向分量。
采用万阜台观测到的sPL震相测定的珊溪水库地震序列中7次地震事件(包括主震)的震源深度介于4—6 km,与地下活动断层探测结果相一致。跨库区的花状构造的三条平行分支断层在地下深约6 km处交会(侯林锋等,2018),地下4—6 km处岩石相对更为破碎,库水沿断裂面向深部渗透易汇集于此深度,孔隙压升高,正应力降低,打破应力平衡诱发地震(马志江等,2016)。断层浅部有断层泥的充填难以积累足够应变产生地震,太深岩石强度又超过周围偏应力水平,地震很难往深部发展迁移。与高密度台站下台网采用Hyposat方法和波形CAP反演的深度结果进行对比,表明sPL震相测定的震源深度是非常可靠的。
在地壳结构相对简单的情况下,sPL震相一般易于识别,可较好地应用于地震深度的测定,但不排除某些特殊情况,例如震源持续时间较长或震中距太近,sPL震相会受到扩展P波(Pnl)的干扰,震相拾取会相对困难。尽管精确拾取到时有时存在一定困难,但深度误差范围一般可控制在1—2 km之内。sPL震相的优势震中距为30—50 km,鉴于区域台网的台间距较小,通常不会大于50 km,sPL震相有很强的适用性。本文利用单台即可获取可信的震源深度,可运用于稀疏台网(如2014年之前珊溪水库台网),并适用于中小地震,扩展了其应用性。
本研究虽然通过波形拟合,但sPL震相是利用到时差与深度的近乎线性关系来约束地震,对于区域台网,尤其震群来说,其线性关系是相对固定的,且一般从未滤波的原始波形能直接识别sPL震相,以理论到时差为量板,无需震中水平位置信息,sPL震相可快速地测定出可靠的震源深度。
-
-
常利军,王椿镛,丁志峰. 2011. 鄂尔多斯块体及周缘上地幔各向异性研究[J]. 中国科学:地球科学,<bold>41</bold>(5):686–699. Chang L J,Wang C Y,Ding Z F. 2011. Upper mantle anisotropy in the Ordos block and its margins[J]. <italic>Science China Earth Sciences</italic>,<bold>54</bold>(6):888–900. doi: 10.1007/s11430-010-4137-2
陈俊磊,郑定昌,龙飞. 2019. 基于接收函数与背景噪声联合反演的研究与应用[J]. 地球物理学进展,<bold>34</bold>(3):862–869. doi: 10.6038/pg2019CC0218 Chen J L,Zheng D C,Long F. 2019. Joint inversion of receiver function and ambient noise:Research and application[J]. <italic>Progress in Geophysics</italic>,<bold>34</bold>(3):862–869 (in Chinese).
陈生生,樊祺诚,赵勇伟,史仁灯. 2013. 内蒙古贝力克玄武岩地球化学特征及地质意义[J]. 岩石学报,<bold>29</bold>(8):2695–2708. Chen S S,Fan Q C,Zhao Y W,Shi R D. 2013. Geochemical characteristics of basalts in Beilike area and its geological significance,Inner Mongolia[J]. <italic>Acta Petrologica Sinica</italic>,<bold>29</bold>(8):2695–2708 (in Chinese).
陈兆辉,王椿镛,楼海. 2018. 鄂尔多斯地块地壳上地幔速度结构及构造意义[J]. 科学通报,<bold>63</bold>(3):327–339. Chen Z H,Wang C Y,Lou H. 2018. Crust and upper mantle velocity structure beneath the Ordos block and its tectonic significance[J]. <italic>Chinese Science Bulletin</italic>,<bold>63</bold>(3):327–339 (in Chinese). doi: 10.1360/N972017-00741
高家乙, 李永华, 徐小明, 张风雪. 2015. 云南地区地壳速度结构和地震活动性研究[C]//2015中国地球科学联合学术年会论文集. 北京: 中国地球物理学会: 308–310. Gao J Y, Li Y H, Xu X M, Zhang F X. 2015. Study on crustal velocity structure and seismicity in Yunnan Province[C]//Annual Meeting of Chinese Geoscience Union 2015. Beijing: Chinese Geophysical Society: 308–310 (in Chinese).
高立新,韩晓明,戴勇,李娟,杨红缨. 2017. 鄂尔多斯地块的运动特性与现今地震活动性[J]. 大地测量与地球动力学,<bold>37</bold>(4):349–354. Gao L X,Han X M,Dai Y,Li J,Yang H Y. 2017. Movement characteristics and the present seismic behavior of the Ordos block[J]. <italic>Journal of Geodesy and Geodynamics</italic>,<bold>37</bold>(4):349–354 (in Chinese).
郭飚,刘启元,陈九辉,赵大鹏,李顺成,赖院根. 2004. 青藏高原东北缘—鄂尔多斯地壳上地幔地震层析成像研究[J]. 地球物理学报,<bold>47</bold>(5):790–797. doi: 10.3321/j.issn:0001-5733.2004.05.009 Guo B,Liu Q Y,Chen J H,Zhao D P,Li S C,Lai Y G. 2004. Seismic tomographic imaging of the crust and upper mantle beneath the northeastern edge of the Qinghai-Xizang Plateau and the Ordos area[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>47</bold>(5):790–797 (in Chinese).
郭慧丽,徐佩芬,张福勤. 2014. 华北克拉通及东邻西太平洋活动大陆边缘地区的P波速度结构:对岩石圈减薄动力学过程的探讨[J]. 地球物理学报,<bold>57</bold>(7):2352–2361. doi: 10.6038/cjg20140729 Guo H L,Xu P F,Zhang F Q. 2014. P wave velocity structure of the North China Craton and West Pacific active continental margin:Exploration for dynamic processes of lithospheric thinning[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>57</bold>(7):2352–2361 (in Chinese).
国家地震局 《鄂尔多斯周缘活动断裂系》 课题组. 1988. 鄂尔多斯周缘活动断裂系[M]. 北京: 地震出版社: 20–27. Research Group of Ordos Peripheral Active Fault System, State Seismological Bureau. 1988. Peripherally Active Fault System in Ordos[M]. Beijing: Seismological Press: 20–27 (in Chinese).
国家地震局震害防御司. 1995. 中国历史强震目录(公元前23世纪—公元1911年)[M]. 北京: 地震出版社: 1–514. Department of Earthquake Damage Prevention, State Seismological Bureau. 1995. Catalogue of Strong Earthquakes in China (23rd Century BC—1911 AD)[M]. Beijing: Seismological Press: 1–514 (in Chinese).
何正勤,丁志峰,叶太兰,孙为国,张乃铃. 2001. 中国大陆及其邻域地壳上地幔速度结构的面波层析成像研究[J]. 地震学报,<bold>24</bold>(6):596–603. doi: 10.3321/j.issn:0253-3782.2001.06.005 He Z Q,Ding Z F,Ye T L,Sun W G,Zhang N L. 2001. Surface wave tomography of the crust and upper mantle of Chinese mainland[J]. <italic>Acta Seismologica Sinica</italic>,<bold>24</bold>(6):596–603 (in Chinese).
黄方,何丽娟,吴庆举. 2015. 鄂尔多斯盆地深部热结构特征及其对华北克拉通破坏的启示[J]. 地球物理学报,<bold>58</bold>(10):3671–3686. doi: 10.6038/cjg20151020 Huang F,He L J,Wu Q J. 2015. Lithospheric thermal structure of the Ordos basin and its implications to destruction of the North China Craton[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>58</bold>(10):3671–3686 (in Chinese).
黄忠贤,李红谊,胥颐. 2013. 南北地震带岩石圈S波速度结构面波层析成像[J]. 地球物理学报,<bold>56</bold>(4):1121–1131. doi: 10.6038/cjg20130408 Huang Z X,Li H Y,Xu Y. 2013. Lithospheric S-wave velocity structure of the North-South Seismic Belt of China from surface wave tomography[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>56</bold>(4):1121–1131 (in Chinese).
贾萌,王显光,李世林,陈永顺. 2015. 鄂尔多斯块体及周边区域地壳结构的接收函数研究[J]. 地球物理学进展,<bold>30</bold>(6):2474–2481. doi: 10.6038/pg20150605 Jia M,Wang X G,Li S L,Chen Y S. 2015. Crustal structures of Ordos block and surrounding regions from receiver functions[J]. <italic>Progress in Geophysics</italic>,<bold>30</bold>(6):2474–2481 (in Chinese).
雷建设,赵大鹏,徐义刚,樊祺诚,米琦,杜沫霏,鲁明文. 2018. 长白山火山下方地幔转换带中滞留的俯冲太平洋板块存在空缺吗?[J]. 岩石学报,<bold>34</bold>(1):13–22. Lei J S,Zhao D P,Xu Y G,Fan Q C,Mi Q,Du M F,Lu M W. 2018. Is there a gap in the stagnant Pacific slab in the mantle transition zone under the Changbaishan volcano?[J]. <italic>Acta Petrologica Sinica</italic>,<bold>34</bold>(1):13–22 (in Chinese).
黎源,雷建设. 2012. 青藏高原东缘上地幔顶部Pn波速度结构及各向异性研究[J]. 地球物理学报,<bold>55</bold>(11):3615–3624. doi: 10.6038/j.issn.0001-5733.2012.11.010 Li Y,Lei J S. 2012. Velocity and anisotropy structure of the uppermost mantle under the eastern Tibetan Plateau inferred from Pn tomography[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>55</bold>(11):3615–3624 (in Chinese).
李多,周仕勇,陈永顺,冯永革,李鹏. 2012. 鄂尔多斯地区上地幔岩石圈三维速度结构面波反演研究[J]. 地球物理学报,<bold>55</bold>(5):1613–1623. doi: 10.6038/j.issn.0001-5733.2012.05.019 Li D,Zhou S Y,Chen Y S,Feng Y G,Li P. 2012. 3-D lithospheric structure of upper mantle beneath Ordos region from Rayleigh-wave tomography[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>55</bold>(5):1613–1623 (in Chinese).
李贞,郭飚,刘启元,陈九辉. 2015. 地震层析成像中模型参数化研究进展[J]. 地球物理学进展,<bold>30</bold>(4):1616–1624. doi: 10.6038/pg20150416 Li Z,Guo B,Liu Q Y,Chen J H. 2015. Parameterization in seismic tomography[J]. <italic>Progress in Geophysics</italic>,<bold>30</bold>(4):1616–1624 (in Chinese).
李志伟,胥颐,Roecker S W,郝天珧,刘劲松. 2007. 中天山地区的Pn波速度结构与各向异性[J]. 地球物理学报,<bold>50</bold>(4):1066–1072. doi: 10.3321/j.issn:0001-5733.2007.04.013 Li Z W,Xu Y,Roecker S W,Hao T Y,Liu J S. 2007. Pn wave velocity structure and anisotropy in the central Tianshan region[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>50</bold>(4):1066–1072 (in Chinese).
李志伟,郝天珧,徐亚. 2011. 华北克拉通上地幔顶部构造特征:来自台站间Pn波到时差成像的约束[J]. 科学通报,<bold>56</bold>(12):962–970. Li Z W,Hao T Y,Xu Y. 2011. Uppermost mantle structure of the North China Craton:Constraints from interstation Pn travel time difference tomography[J]. <italic>Chinese Science Bulletin</italic>,<bold>56</bold>:1691. doi: 10.1007/s11434-011-4487-y
吕坚,谢祖军,郑勇,查小惠,胡睿,曾新福. 2016. 华南地块及其邻区Rayleigh波相速度层析成像研究[J]. 中国科学:地球科学,<bold>46</bold>(11):1528–1541. Lü J,Xie Z J,Zheng Y,Zha X H,Hu R,Zeng X F. 2016. Rayleigh wave phase velocities of South China block and its adjacent areas[J]. <italic>Science China Earth Sciences</italic>,<bold>59</bold>(11):2165–2178. doi: 10.1007/s11430-015-5372-5
吕子强,雷建设,周智刚,张刚,张书建,于澄,颜启. 2016. 环渤海地区Pn波速度结构与各向异性[J]. 地球物理学报,<bold>59</bold>(6):2047–2055. doi: 10.6038/cjg20160611 Lü Z Q,Lei J S,Zhou Z G,Zhang G,Zhang S J,Yu C,Yan Q. 2016. Pn-wave velocity and anisotropy around the Bohai Sea areas[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>59</bold>(6):2047–2055 (in Chinese).
毛慧慧,雷建设,滕吉文. 2016. 鄂尔多斯盆地北缘南北向剖面上地幔远震P波层析成像[J]. 地球物理学报,<bold>59</bold>(6):2056–2065. doi: 10.6038/cjg20160612 Mao H H,Lei J S,Teng J W. 2016. Teleseismic P-wave tomography of the upper mantle along the north-south profile under the northern Ordos basin[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>59</bold>(6):2056–2065 (in Chinese).
庞广华,张林行,刘婷婷,李君辉. 2014. 利用背景噪声研究壳幔结构发展综述[J]. 地球物理学进展,<bold>29</bold>(4):1518–1525. doi: 10.6038/pg20140406 Pang G H,Zhang L H,Liu T T,Li J H. 2014. An overview of development of ambient noise’s application on crust and upper mantle’s structure[J]. <italic>Progress in Geophysics</italic>,<bold>29</bold>(4):1518–1525 (in Chinese).
裴顺平,许忠淮,汪素云,Hearn T M. 2002. 新疆及邻区Pn速度层析成像[J]. 地球物理学报,<bold>45</bold>(2):218–225. doi: 10.3321/j.issn:0001-5733.2002.02.008 Pei S P,Xu Z H,Wang S Y,Hearn T M. 2002. Pn velocity tomography of Xinjiang,China and adjacent region[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>45</bold>(2):218–225 (in Chinese).
邱瑞照,邓晋福,周肃,李金发,肖庆辉,吴宗絮,刘翠. 2004. 华北地区岩石圈类型:地质与地球物理证据[J]. 中国科学:D辑,<bold>34</bold>(8):698–711. Qiu R Z, Deng J F, Zhou S, Li J F, Xiao Q H, Wu Z X, Liu C. 2005. Lithosphere types in North China: Evidence from geology and geophysics[J]. Science in China: Series D, 48(11): 1809–1827.
宋晓东,李思田,李迎春,郑斯华,解习农. 2004. 岩石圈地幔结构及其对中国大型盆地的演化意义[J]. 地球科学: 中国地质大学学报,<bold>29</bold>(5):531–538. Song X D,Li S T,Li Y C,Zheng S H,Xie X N. 2004. Structure of lithospheric mantle and its implications for the evolution of major basins in China[J]. <italic>Earth Science</italic>:<italic>Journal of China University of Geosciences</italic>,<bold>29</bold>(5):531–538 (in Chinese).
宋晓东,李江涛,鲍学伟,李思田,王良书,任建业. 2015. 中国西部大型盆地的深部结构及对盆地形成和演化的意义[J]. 地学前缘,<bold>22</bold>(1):126–136. Song X D,Li J T,Bao X W,Li S T,Wang L S,Ren J Y. 2015. Deep structure of major basins in western China and implications for basin formation and evolution[J]. <italic>Earth Science Frontiers</italic>,<bold>22</bold>(1):126–136 (in Chinese).
宋晓燕,张建中,王鑫,张帆. 2020. 鄂尔多斯块体北缘Pn波层析成像研究[J]. 大地测量与地球动力学,<bold>40</bold>(1):35–38. Song X Y,Zhang J Z,Wang X,Zhang F. 2020. Pn velocity tomography around the northern Ordos block[J]. <italic>Journal of Geodesy and Geodynamics</italic>,<bold>40</bold>(1):35–38 (in Chinese).
汪素云,Hearn T M,许忠淮,Ni J F,俞言祥,张晓东. 2001. 中国大陆上地幔顶部Pn速度结构[J]. 中国科学:D辑,<bold>31</bold>(6):449–454. Wang S Y,Hearn T M,Xu Z H,Ni J F,Yu Y X,Zhang X D. 2002. Velocity structure of uppermost mantle beneath China continent from Pn tomography[J]. <italic>Science in China</italic>:<italic>Series D</italic>,<bold>45</bold>(2):143–150. doi: 10.1007/BF02879791
汪素云,许忠淮,裴顺平. 2003. 华北地区上地幔顶部Pn波速度结构及其构造含义[J]. 中国科学:D辑,<bold>33</bold>(增刊1):91–98. Wang S Y,Xu Z H,Pei S P. 2003. Velocity structure of uppermost mantle beneath North China from Pn tomography and its implications[J]. <italic>Science in China </italic>:<italic>Series D</italic>,<bold>46</bold>(2):130–140.
王海洋,Hearn T M,陈永顺,裴顺平,冯永革,岳汉,金戈,周仕勇,王彦宾,盖增喜,宁杰远,Sandvol E,Ni J F. 2013. 青藏高原东部的Pn波层析成像研究[J]. 地球物理学报,<bold>56</bold>(2):472–480. doi: 10.6038/cjg20130211 Wang H Y,Hearn T M,Chen Y S,Pei S P,Feng Y G,Yue H,Jin G,Zhou S Y,Wang Y B,Ge Z X,Ning J Y,Sandvol E,Ni J F. 2013. Pn wave tomography of eastern Tibetan Plateau[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>56</bold>(2):472–480 (in Chinese).
王霞,宋美琴,郑勇,艾三喜. 2019. 山西及邻区壳幔速度图像特征及其构造意义[J]. 地震地质,<bold>41</bold>(1):119–136. doi: 10.3969/j.issn.0253-4967.2019.01.008 Wang X,Song M Q,Zheng Y,Ai S X. 2019. Velocity characteristics of Shanxi and adjacent area and its tectonic significance[J]. <italic>Seismology and Geology</italic>,<bold>41</bold>(1):119–136 (in Chinese).
王兴臣,丁志峰,武岩,朱露培. 2017. 中国南北地震带北段及其周缘地壳厚度与泊松比研究[J]. 地球物理学报,<bold>60</bold>(6):2080–2090. doi: 10.6038/cjg20170605 Wang X C,Ding Z F,Wu Y,Zhu L P. 2017. Crustal thicknesses and Poisson’s ratios beneath the northern section of the North-South Seismic Belt and surrounding areas in China[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>60</bold>(6):2080–2090 (in Chinese).
肖庆辉,邱瑞照,邓晋福,李廷栋,莫宣学,洪大卫,卢欣详,王涛,吴福元,谢才富. 2005. 中国花岗岩与大陆地壳生长方式初步研究[J]. 中国地质,<bold>32</bold>(3):343–352. doi: 10.3969/j.issn.1000-3657.2005.03.001 Xiao Q H,Qiu R Z,Deng J F,Li T D,Mo X X,Hong D W,Lu X X,Wang T,Wu F Y,Xie C F. 2005. Granitoids and continental crustal growth modes in China[J]. <italic>Geology in China</italic>,<bold>32</bold>(3):343–352 (in Chinese).
徐义刚,李洪颜,洪路兵,马亮,马强,孙明道. 2018. 东亚大地幔楔与中国东部新生代板内玄武岩成因[J]. 中国科学:地球科学,<bold>48</bold>(7):825–843. Xu Y G,Li H Y,Hong L B,Ma L,Ma Q,Sun M D. 2018. Generation of Cenozoic intraplate basalts in the big mantle wedge under eastern Asia[J]. <italic>Science China Earth Sciences</italic>,<bold>61</bold>(7):869–886. doi: 10.1007/s11430-017-9192-y
许忠淮,汪素云,裴顺平. 2003. 青藏高原东北缘地区Pn波速度的横向变化[J]. 地震学报,<bold>25</bold>(1):24–31. doi: 10.3321/j.issn:0253-3782.2003.01.003 Xu Z H,Wang S Y,Pei S P. 2003. Lateral variation of Pn velocity beneath northeastern marginal region of Qinghai-Xizang Plateau[J]. <italic>Acta Seismologica Sinica</italic>,<bold>16</bold>(1):26–33.
杨利普, 徐志萍, 秦建增, 徐顺强, 熊伟. 2017. 利用卫星重力资料研究鄂尔多斯及其周缘地壳结构特征[C]//2017中国地球科学联合学术年会论文集. 北京: 中国地球物理学会: 2042–2044. Yang L P, Xu Z P, Qin J Z, Xu S Q, Xiong W. 2017. Satellite gravity data were used to study the structural characteristics of Ordos and its surrounding crust[C]//Annual Meeting of Chinese Geoscience Union 2017. Beijing: Chinese Geophysical Society: 2042–2044 (in Chinese).
杨彦明,陈婧,熊峰,张云,马援,贾昕晔,贾彦杰. 2019. 华北克拉通西部地块北缘及邻区地壳厚度与泊松比分布特征[J]. 地震,<bold>39</bold>(2):97–109. doi: 10.3969/j.issn.1000-3274.2019.02.010 Yang Y M,Chen J,Xiong F,Zhang Y,Ma Y,Jia X Y,Jia Y J. 2019. Distribution of crustal thickness and Poisson’s ratio beneath the northern margin of the western part of North China Craton and adjacent areas[J]. <italic>Earthquake</italic>,<bold>39</bold>(2):97–109 (in Chinese).
杨婷,吴建平,房立华,王未来,范莉苹. 2015. 鄂尔多斯及其周边区域远震P波速度结构及与强震活动的关系[J]. 国际地震动态,(9):49. doi: 10.3969/j.issn.0253-4975.2015.09.049 Yang T,Wu J P,Fang L H,Wang W L,Fan L P. 2015. Relationship between P wave velocity structure and strong earthquake activity in Ordos and its surrounding areas[J]. <italic>Recent Developments in World Seismology</italic>,(9):49 (in Chinese).
张成立,苟龙龙,第五春荣,刘欣雨,赵娇,胡育华. 2018. 华北克拉通西部基底早前寒武纪地质事件、性质及其地质意义[J]. 岩石学报,<bold>34</bold>(4):981–998. Zhang C L,Gou L L,Diwu C R,Liu X Y,Zhao J,Hu Y H. 2018. Early Precambrian geological events of the basement in western block of North China Craton and their properties and geological significance[J]. <italic>Acta Petrologica Sinica</italic>,<bold>34</bold>(4):981–998 (in Chinese).
张恩会,石磊,罗娇,李勇江,杨晨艺. 2018. 鄂尔多斯地块及邻区重力均衡研究[J]. 地震学报,<bold>40</bold>(6):774–784. Zhang E H,Shi L,Luo J,Li Y J,Yang C Y. 2018. Gravity isostaty of Ordos block and its surrounding regions[J]. <italic>Acta Seismologica Sinica</italic>,<bold>40</bold>(6):774–784 (in Chinese).
赵连锋,谢小碧,范娜,姚振兴. 2013. 青藏高原地区Lg波衰减成像及其对地壳流分布的约束[J]. 国际地震动态,(11):40–41. doi: 10.3969/j.issn.0235-4975.2013.11.017 Zhao L F,Xie X B,Fan N,Yao Z X. 2013. Attenuation imaging of Lg wave in Qinghai-Tibet Plateau and its constraint on crustal flow distribution[J]. <italic>Recent Developments in World Seismology</italic>,(11):40–41 (in Chinese).
郑晨,丁志峰,宋晓东. 2016. 利用面波频散与接收函数联合反演青藏高原东南缘地壳上地幔速度结构[J]. 地球物理学报,<bold>59</bold>(9):3223–3236. doi: 10.6038/cjg20160908 Zheng C,Ding Z F,Song X D. 2016. Joint inversion of surface wave dispersion and receiver functions for crustal and uppermost mantle structure in southeast Tibetan Plateau[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>59</bold>(9):3223–3236 (in Chinese).
郑现,赵翠萍,周连庆,郑斯华. 2012. 中国大陆中东部地区基于背景噪声的瑞利波层析成像[J]. 地球物理学报,<bold>55</bold>(6):1919–1928. doi: 10.6038/j.issn.0001-5733.2012.06.013 Zheng X,Zhao C P,Zhou L Q,Zheng S H. 2012. Rayleigh wave tomography from ambient noise in central and eastern Chinese mainland[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>55</bold>(6):1919–1928 (in Chinese).
Chang L J,Ding Z F,Wang C Y,Flesch L M. 2017. Vertical coherence of deformation in lithosphere in the NE margin of the Tibetan Plateau using GPS and shear-wave splitting data[J]. <italic>Tectonophysics</italic>,<bold>699</bold>:93–101. doi: 10.1016/j.tecto.2017.01.025
Hearn T M. 1996. Anisotropic Pn tomography in the western United States[J]. <italic>J Geophys Res</italic>:<italic>Solid Earth</italic>,<bold>101</bold>(B4):8403–8414. doi: 10.1029/96JB00114
Hearn T M. 1999. Uppermost mantle velocities and anisotropy beneath Europe[J]. <italic>J Geophys Res</italic>:<italic>Solid Earth</italic>,<bold>104</bold>(B7):15123–15139. doi: 10.1029/1998JB900088
Huang J L,Zhao D P. 2006. High-resolution mantle tomography of China and surrounding regions[J]. <italic>J Geophys Res</italic>:<italic>Solid Earth</italic>,<bold>111</bold>(B9):B09305.
Komabayashi T,Omori S,Maruyama S. 2004. Petrogenetic grid in the system MgO-SiO<sub>2</sub>-H<sub>2</sub>O up to 30 GPa,1600 ℃:Applications to hydrous peridotite subducting into the Earth’s deep interior[J]. <italic>J Geophys Res</italic>:<italic>Solid Earth</italic>,<bold>109</bold>(B3):B03206.
Lei J S. 2012. Upper-mantle tomography and dynamics beneath the North China Craton[J]. <italic>J Geophys Res</italic>:<italic>Solid Earth</italic>,<bold>117</bold>(B6):B06313.
Lei J S,Zhao D P. 2005. P-wave tomography and origin of the Changbai intraplate volcano in northeast Asia[J]. <italic>Tectonophysics</italic>,<bold>397</bold>(3/4):281–295.
Lei J S,Zhao D P. 2016. Teleseismic P-wave tomography and mantle dynamics beneath eastern Tibet[J]. <italic>Geochem Geophys Geosyst</italic>,<bold>17</bold>(5):1861–1884. doi: 10.1002/2016GC006262
Lei J S,Zhao D P,Su Y J. 2009. Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data[J]. <italic>J Geophys Res </italic>:<italic>Solid Earth</italic>,<bold>114</bold>(B5):B05302.
Montelli R,Nolet G,Dahlen F A,Masters G,Engdahl E R,Hung S H. 2004. Finite-frequency tomography reveals a variety of plumes in the mantle[J]. <italic>Science</italic>,<bold>303</bold>(5656):338–343. doi: 10.1126/science.1092485
Shapiro N M,Campillo M,Stehly L,Ritzwoller M H. 2005. High-resolution surface-wave tomography from ambient seismic noise[J]. <italic>Science</italic>,<bold>307</bold>(5715):1615–1618. doi: 10.1126/science.1108339
Shieh S R,Mao H K,Hemley R J,Ming L C. 1998. Decomposition of phase D in the lower mantle and the fate of dense hydrous silicates in subducting slabs[J]. <italic>Earth Planet Sci Lett</italic>,<bold>159</bold>(1/2):13–23.
Tape C,Liu Q Y,Maggi A,Tromp J. 2009. Adjoint tomography of the southern California crust[J]. <italic>Science</italic>,<bold>325</bold>(5943):988–992. doi: 10.1126/science.1175298
Tian X B,Teng J W,Zhang H S,Zhang Z J,Zhang Y Q,Yang H,Zhang K K. 2011. Structure of crust and upper mantle beneath the Ordos block and the Yinshan mountains revealed by receiver function analysis[J]. <italic>Phys Earth Planet Inter</italic>,<bold>184</bold>(3/4):186–193.
Wang Q,Niu F L,Gao Y,Chen Y T. 2016. Crustal structure and deformation beneath the NE margin of the Tibetan Plateau constrained by teleseismic receiver function data[J]. <italic>Geophys J Int</italic>,<bold>204</bold>(1):167–179. doi: 10.1093/gji/ggv420
Zhao D P,Hasegawa A,Horiuchi S. 1992. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan[J]. <italic>J Geophys Res</italic>:<italic>Solid Earth</italic>,<bold>97</bold>(B13):19909–19928. doi: 10.1029/92JB00603
Zhou Z G,Lei J S. 2016. Pn anisotropic tomography and mantle dynamics beneath China[J]. <italic>Phys Earth Planet Inter</italic>,<bold>257</bold>:193–204. doi: 10.1016/j.pepi.2016.06.005
-
期刊类型引用(5)
1. 彭骁,张蓓蕾. 多种方法测定2019年皎口水库地区2.5级以上地震震源深度. 地震科学进展. 2023(04): 145-152 . 百度学术
2. 赵韬,王莹,徐一斐,刘盼,刘春. 利用CAP方法和瑞利面波振幅谱联合反演宁强5.3级地震震源深度. 中国地震. 2023(04): 893-901 . 百度学术
3. 郑雪刚,马学军,赵鹏毕. 新疆伽师M_S6.4地震震源深度测定研究. 内陆地震. 2022(02): 130-138 . 百度学术
4. 尹晶飞,张明,汪贞杰,沈钰. 珊溪水库地震台阵建设. 地震地磁观测与研究. 2021(01): 126-131 . 百度学术
5. 龚俊,汪贞杰,戴煜暄. 联合测震和GPS资料反演双溪-焦溪垟断裂运动特征. 测绘科学. 2021(12): 1-6+15 . 百度学术
其他类型引用(0)