Response spectra-compatible artificial ground motion simulation considering iterative correlation and phase spectra
-
摘要: 针对传统频域法拟合人工地震波过程中迭代效率低下的问题,本文提出使用考虑迭代相关的拟合方法与考虑相位谱的拟合方法相结合的综合方法,分别以 《公路桥梁抗震设计规范》 中的设计谱和核电厂设备抗震需求谱为拟合对象,对比了改进的综合方法与传统方法的优劣。结果显示:改进的综合方法对于目标设计谱的拟合精度较传统方法有明显提升,尤其是在反应谱的高频段和低频段;改进方法对于 《公路桥梁抗震设计规范》 中设计谱的拟合效果好于对核电厂设备抗震需求谱的拟合效果。Abstract: The iterative process of conventional frequency-domain method for simulating artificial ground motions is inefficient. To solve this problem, this paper proposed a new method considering iterative correlation and phase spectrum to generate artificial ground motion, targeting at design response spectrum in Specifications for Seismic Design of Highway Bridges and representative response spectra for nuclear plant equipments, and then discussed the charac-teristics of conventional method and the improved method. The result shows that new method achieves a significant improvement in simulation precision, especially in high frequency and low frequency ranges. Meanwhile, the method has a better performance in highway bridge response spectrum simulation than nuclear plant representative response spectrum simulation.
-
Keywords:
- artificial ground motion /
- response spectra /
- phase spectra /
- iterative convergence
-
引言
确定输入地震波是结构抗震工程领域进行时程动力分析过程中的一个重要课题,目前国内外使用比较广泛的方法是根据设计反应谱来拟合匹配的人工地震波,将其作为抗震设计的输入地震波。为了满足某些特定的地震动工程特性,如时域、频域信息等,按照一定的数值算法合成地震动时程的过程即为地震动的反应谱拟合。
反应谱拟合分为时域法和频域法两种(刘帅等,2018)。时域法是通过时域内某个特定点的脉冲来调整反应谱上某点发生的最大位移,例如使用窄带时程叠加法(赵凤新,张郁山,2007;何佳,王海涛,2010)或小波变换来拟合地震动(白泉等,2015;Cecini,Palmeri,2015;谢皓宇等,2019),以及使用Broyden算法的地震动拟合方法(Adekristi,Eatherton,2015)。时域法更多是在已有某地震动的条件下,通过修正地震波的时域分量使其反应谱向设计谱逼近,而频域法则不需要自然波或者其它地震波作为必要条件,仅通过一个随机相位谱即可生成人工地震波(陈永祁等,1981;Gupta,2002),因此频域法拟合人工地震波的随机性高于时域法。
然而,传统的频域法拟合人工地震动在计算过程中并未区别傅里叶谱各频率分量对最大反应的贡献为正或负,也未涉及随机相位谱对于拟合结果的影响,这造成了算法的迭代效率偏低、拟合的频域顽固点较多等问题。因此,亟需研发一种改进的人工地震波拟合方法。
鉴于此,本文在传统的频域法拟合人工地震动的基础上,提出考虑每次迭代的相关性,区别傅里叶谱各频率分量对最大反应的贡献的正负,并对随机相位谱进行修正的一种新的综合方法,以期提高拟合精度,加快计算速度。
1. 频域法拟合人工地震波
频域法的基本原理是通过具有随机相位谱的一组三角函数的叠加来构造一个近似的平稳高斯过程,再乘以一个等时程的包络函数,最终得到一个非平稳的加速度时程(杨庆山,姜海鹏,2002)。频域内拟合人工地震波并使用迭代调整幅值谱的方法主要包括以下几部分:
1) 使用单阻尼反应谱与频谱(功率谱密度函数)之间的近似转换关系(Kaul,1978),将目标反应谱转换为相应的功率谱密度函数。通常使用的近似转换关系为
$ {S_{{{\!\!\ddot x}_0}}}\!\!\!\!\!{\text{(}}{{\omega _k}} {\text{)}}\!\!\!\! {\text{=}} \frac{\textit{ξ} }{{{\rm{\pi }}{\omega _k}}}[S_{\rm{a}}^{\rm{T}}\!\!\!\!{\text{(}}{{\omega _k}} {\text{)}}\!\!\!\!]^2 \cdot {\left\{ { {\text{-}} \ln \left[ {\frac{{ {\text{-}} {\rm{\pi }}}}{{{\omega _k}T}}\ln \!\!\!\!{\text{(}}{1 {\text{-}} \gamma } {\text{)}}\!\!\!\!} \right]} \right\}^{ {\text{-}} 1}} {\text{,}} $
(1) This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
2) 将得到的功率谱密度转化为傅里叶幅值谱:
$ {A}^{2}\!\!\!\!{\text{(}}{\omega }_{k}{\text{)}}\!\!\!\!{\text{=}} 4{S}_{{ \!\!\ddot{x}}_{0}}\!\!\!\!\!\!{\text{(}}{\omega }_{k}{\text{)}}\!\!\!\!\cdot \Delta \omega {\text{,}} $
(2) 式中,A(ωk)为傅里叶幅值谱,Δω为频域采样间隔。
3) 基于通过步骤2)计算所得的傅里叶幅值谱,再引入随机相位谱,使用三角函数的叠加或者快速傅里叶逆变换将得到的傅里叶幅值谱转换为零均值的平稳高斯过程:
$ {\tilde x}_{0}\!\!\!\!{\text{(}}t{\text{)}}\!\!\!\!{\text{=}} \sum\limits_{k {\text{=}} 1}^N A\!\!\!\!{\text{(}}{\omega }_{k}{\text{)}}\!\!\!\!\sin\!\!\!\!{\text{(}}{\omega }_{k}t {\text{+}}{\varphi }_{k}{\text{)}}\!\!\!\!{\text{,}} $
(3) $ {{\tilde x}_0}\!\!\!\!{\text{(}}t {\text{)}}\!\!\!\! {\text{=}} {\rm{FF}}{{\rm{T}}^{ {\text{-}} 1}}\left[ {A\!\!\!\!{\text{(}}{{\omega _k}} {\text{)}}\!\!\!\!{{\rm{e}}^{{\rm{i}}{\varphi _k}}}} \right]{\text{,}} $
(4) This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
式(3)与式(4)所对应的两种方法最后的合成结果几乎一致,不同之处在于:快速傅里叶变换的计算速度更快,但对反应谱采样和插值有一定要求;利用三角函数叠加的计算速度较慢,但计算过程中的限制更少。
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
$ {\ddot{x}}_{{\rm{a}}}\!\!\!\!{\text{(}}t{\text{)}}\!\!\!\! {\text{=}}I\!\!\!\!{\text{(}}t{\text{)}}\!\!\!\!\cdot {\tilde x}_{0}\!\!\!\!{\text{(}}t{\text{)}}\!\!\!\!{\text{,}} $
(5) $ I\!\!\!\!{\text{(}}t {\text{)}}\!\!\!\! {\text{=}} \left\{ {\begin{array}{*{20}{l}} {{{\left( {{\dfrac{t}{{{t_1}}}} } \right)}^2}}&\qquad{0 {\text{<}} t {\text{≤}} {t_1}}{\text{,}}\\ 1&\qquad{{t_1} {\text{<}} t {\text{≤}} {t_2}}{\text{,}}\\ {\exp [{ {\text{-}} c({t {\text{-}} {t_2}} })]\!\!\!\!\!}&\qquad{{t_2} {\text{<}} t {\text{≤}} T}{\text{,}} \end{array}} \right. $
(6) This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
$ {A}_{n {\text{+}}1}\!\!\!\!{\text{(}}\omega_{k}{\text{)}}\!\!\!\!{\text{=}}{A}_{n}\!\!\!\!{\text{(}}\omega_{k}{\text{)}}\!\!\!\!\cdot \frac{{S}_{{\rm{a}}}^{{\rm{T}}}\!\!\!\!{\text{(}}{\omega }_{k}{\text{)}}\!\!\!\!}{{S}_{{\rm{a}}n}\!\!\!\!{\text{(}}{\omega }_{k}{\text{)}}\!\!\!\!}{\text{,}} $
(7) This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
传统的频域法存在两个明显的问题:其一,在迭代过程中,存在迭代次数增加却无法提高收敛精度的频率控制点,这些点被称为顽固点,这些顽固点对应的傅里叶频率分量可能对于该频率反应谱值的收敛并非正贡献,若此时继续按照式(7)进行迭代,则无法使得顽固点收敛,甚至会产生发散的效果;其二,该方法对于相位谱未作任何约束,然而随机反应谱的选取对最终的拟合程度影响很大(胡聿贤,何训,1986;瞿希梅,吴知丰,1995)。基于以上问题,本文提出改进的综合方法,基于传统频域法进行修正,考虑迭代过程中频率分量是否正相关,同时考虑修改随机相位谱,以期达到更好的收敛效果。
2. 考虑迭代相关的反应谱拟合
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
$ a\!\!\!\!{\text{(}}{\omega }_{k}{\text{,}}\!\!\!\!\!t{\text{)}}\!\!\!\!\cdot {a}_{{\omega }_{k}}\!\!\!\!{\text{(}}{\omega }_{k}{\text{,}}\!\!\!\!t{\text{)}}\!\!\!\! {\text{<}} 0{\text{,}} $
(8) This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
$ {S}_{{\rm{a}}n}\!\!\!\!{\text{(}}{\omega }_{k}{\text{)}}\!\!\!\!{\text{>}}{S}_{{\rm{a}}}^{{\rm{T}}}\!\!\!\!{\text{(}}{\omega }_{k}{\text{)}}\!\!\!\!{\text{,}} $
(9) $ \begin{aligned} {\ddot x_{{\rm{a}}\!\!\!\!{\text{(}}{n {\text{+}} 1} {\text{)}}\!\!\!\!}}\!\!\!\!{\text{(}}t {\text{)}}\!\!\!\! {\text{=}}& \sum\limits_{k {\text{=}} 1}^N {A}_{n {\text{+}}1} \!\!\!\!{\text{(}}\omega_k {\text{)}}\!\!\!\!{a_{{\omega _k}}}\!\!\!\!{\text{(}}{{\omega _k}{\text{,}}\!\!\!\!t} {\text{)}}\!\!\!\! \cdot I\!\!\!\!{\text{(}}t {\text{)}}\!\!\!\! {\text{=}} \sum\limits_{k {\text{=}} 1}^N A_n\!\!\!\!\!\!\!\! &(\omega )\frac{{S_{\rm{a}}^{\rm{T}}\!\!\!\!{\text{(}}{{\omega _k}} {\text{)}}\!\!\!\!}}{{{S_{{\rm{a}}n}}\!\!\!\!{\text{(}}{{\omega _k}} {\text{)}}\!\!\!\!}}{a_{{\omega _k}}}\!\!\!\!{\text{(}}{{\omega _k}{\text{,}}\!\!\!\!t} {\text{)}}\!\!\!\! \cdot I\!\!\!\!{\text{(}}t {\text{)}}\!\!\!\!{\text{,}} \end{aligned}$
(10) This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
${S_{{\rm{a}}\!\!\!\!{\text{(}}{n {\text{+}} 1} {\text{)}}\!\!\!\!}}\!\!\!\!{\text{(}}{{\omega _k}} {\text{)}}\!\!\!\! {\text{=}} {\omega _k}{\left| {\int _0^T {{\ddot x}_{{\rm{a}}\!\!\!\!{\text{(}}{n {\text{+}} 1} {\text{)}}\!\!\!\!}}\!\!\!\!{\text{(}}\tau {\text{)}}\!\!\!\! \cdot {\rm{exp}}\left[{ {\text{-}} \xi {\omega _k}\!\!\!\!{\text{(}}{T {\text{-}} \tau } {\text{)}}\!\!\!\!} \right] \sin {\omega _k}\!\!\!\!{\text{(}}{T {\text{-}} \tau } {\text{)}}\!\!\!\!{\rm d}\tau } \right|_{\rm max}}$
(11) $ {S}_{{\rm{a}}(n {\text{+}}1)}\!\!\!\!{\text{(}}{\omega }_{k}{\text{)}}\!\!\!\!{ {\text{>}}S}_{{\rm{a}}n}\!\!\!\!{\text{(}}{\omega }_{k}{\text{)}}\!\!\!\! {\text{>}}{S}_{{\rm{a}}}^{{\rm{T}}}\!\!\!\!{\text{(}}{\omega }_{k}{\text{)}}\!\!\!\! $
(12) This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
$ {A}_{n{\text{+}}1}\!\!\!\!{\text{(}}\omega {\text{)}}\!\!\!\!{\text{=}}{A}_{n}\!\!\!\!{\text{(}}\omega_k {\text{)}}\!\!\!\! \cdot {\left({\frac{{S}_{{\rm{a}}}^{{\rm{T}}}\!\!\!\!{\text{(}}{\omega }_{k}{\text{)}}\!\!\!\!}{{S}_{{\rm{a}}n}\!\!\!\!{\text{(}}{\omega }_{k}{\text{)}}\!\!\!\!}}\right)}^{c}{\text{,}} $
(13) $ c {\text{=}} \left\{ {\begin{array}{*{20}{l}} 1&\quad{a\!\!\!\!{\text{(}}{{\omega _k}{\text{,}}\!\!\!t} {\text{)}}\!\!\!\! \cdot {a_{{\omega _k}}}\!\!\!\!{\text{(}}{{\omega _k}{\text{,}}\!\!\!t} {\text{)}}\!\!\!\! {\text{>}} 0}{\text{,}}\\ { {\text{-}} 1}&\quad{a\!\!\!\!{\text{(}}{{\omega _k}{\text{,}}\!\!\!t} {\text{)}}\!\!\!\! \cdot {a_{{\omega _k}}}\!\!\!\!{\text{(}}{{\omega _k}{\text{,}}\!\!\!t} {\text{)}}\!\!\!\! {\text{<}} 0}{\text{,}} \end{array}} \right. $
(14) 式中,c代表迭代过程中的修正系数。
3. 考虑相位谱的反应谱拟合
某频率ωk在反应谱拟合过程中为顽固点,则存在两种情况:① 合成波对应的谱加速度大于设计反应谱加速度,谱最大加速度发生的时间为t,且存在该频率对应的傅里叶分量所产生的加速度分量在该时间与谱最大加速度同向;② 合成波对应的谱值小于设计反应谱值,谱最大加速度发生的时间为t,且存在该频率对应的傅里叶分量所产生的加速度分量在该时间与谱最大加速度反向。这两种情况由式(15)描述,在此种情况下,传统的迭代方法已经无法有效地使顽固点收敛,因此考虑对相位谱进行修正,过程如下:
$\left\{ { \begin{array}{*{20}{l}} \!\!\!{{S_{{\rm{a}}n}}\!\!\!\!{\text{(}}{{\omega _k}} {\text{)}}\!\!\!\! {\text{>}} S_{\rm{a}}^{\rm{T}}\!\!\!\!{\text{(}}{{\omega _k}} {\text{)}}\!\!\!\!}\\ \!\!\!{a\!\!\!\!{\text{(}}{{\omega _k}{\text{,}}\!\!\!t} {\text{)}}\!\!\!\! \cdot {a_{{\omega _k}}}\!\!\!\!{\text{(}}{{\omega _k}{\text{,}}\!\!\!t} {\text{)}}\!\!\!\! {\text{>}} 0} \end{array}\;\;{\text{或}}\;\;} \right.\left\{ {\begin{array}{*{20}{l}} \!\!\!{{S_{{\rm{a}}n}}\!\!\!\!{\text{(}}{{\omega _k}} {\text{)}}\!\!\!\! {\text{<}} S_{\rm{a}}^{\rm{T}}\!\!\!\!{\text{(}}{{\omega _k}} {\text{)}}\!\!\!\!}\\ \!\!\!{a\!\!\!\!{\text{(}}{{\omega _k}{\text{,}}\!\!\!t} {\text{)}}\!\!\!\! \cdot {a_{{\omega _k}}}\!\!\!\!{\text{(}}{{\omega _k}{\text{,}}\!\!\!t} {\text{)}}\!\!\!\! {\text{<}} 0} \end{array}} \right. $
(15) $ {\varphi '_k} {\text{=}} {\varphi _k} {\text{+}} {\rm{\pi }} $
(16) This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
$ x'\!\!\!\!{\text{(}}t {\text{)}}\!\!\!\! {\text{=}} \sin \!\!\!\!{\text{(}}{{\omega _k}t {\text{+}} {\varphi _k} {\text{+}} {\rm{\pi }}} {\text{)}}\!\!\!\! {\text{=}} {\text{-}} \sin \!\!\!\!{\text{(}}{{\omega _k}t {\text{+}} {\varphi _k}} {\text{)}}\!\!\!\! {\text{=}} {\text{-}} x\!\!\!\!{\text{(}}t {\text{)}}\!\!\!\!{\text{,}} $
(17) $\begin{aligned} a'\!\!\!\!{\text{(}}{{\omega _k}{\text{,}}t} {\text{)}}\!\!\!\! {\text{=}}& {\rm{F^{-1}}}\left\{ {{H\!\!\!\!{\text{(}}\omega {\text{)}}\!\!\!\! \cdot {\rm{F}}\left[ {{x'\!\!\!\!{\text{(}}t {\text{)}}} } \!\!\!\right]} } \right\} {\text{=}} {\text{-}} {\rm{F^{-1}}}\left\{ {H {\!\!\!\!\text{(}}\omega {\text{)}}\!\!\!\!} \right.\left. \!\!\!\! \cdot{{\rm{F}}\left[ {x({t})} \right]} \right\} {\text{=}} {\text{-}} a\!\!\!\!{\text{(}}{{\omega _k}{\text{,}}\!\!\!\!t} {\text{)}}\!\!\!\!{\text{,}} \end{aligned}$
(18) $ H\!\!\!\!{\text{(}}\omega {\text{)}}\!\!\!\! {\text{=}}\frac{{ {\omega _k^2 {\text{+}} 2{\rm{i}}\xi {\omega _k}\omega } }}{{{\omega _k^2 {\text{-}} {\omega ^2} {\text{+}} 2{\rm{i}}\xi {\omega _k}\omega } }}{\text{,}} $
(19) This page contains the following errors:
error on line 1 at column 1: Start tag expected, '<' not foundBelow is a rendering of the page up to the first error.
4. 反应谱拟合案例
两种改进反应谱拟合过程的方法是考虑迭代相关的反应谱拟合以及考虑相位谱的反应谱拟合。本文以 《公路桥梁抗震设计规范》 (中华人民共和国交通运输部,2020)中的设计谱及美国核管会标准审查大纲(U.S. NRC,2014)中的核电厂设备的抗震需求谱分别作为目标谱,对比经改进之后的拟合方法与传统方法所生成的模拟结果。
考虑到相位谱的反应谱拟合方法对相位谱的修正较大,修正之后会显著增加迭代计算的计算量、运算时间,所以需严格约束此方法的使用范围和修正的迭代次数。具体改进方案如下:首先使用考虑迭代相关的反应谱拟合方法迭代10次,再使用考虑相位谱的反应谱拟合迭代1次,最后使用考虑迭代相关的反应谱拟合方法迭代9次,总共迭代20次,以此与使用传统拟合方法迭代20次的结果进行对比。
图1为使用3组随机相位谱,针对某公路桥梁抗震设计谱(中华人民共和国交通运输部,2020),通过传统方法和改进方法分别模拟出的6条人工地震波反应谱对比图,图2为传统方法与改进方法在高频以及低频部分的局部对比图,图(a),(b)和(c)分别对应于特定的一组随机相位谱。图3为图1a和1b中下行拟合结果所对应的人工地震波波形。表1列出了6条人工波反应谱与目标谱之间81个控制点的平均误差对比。从图1和表1可以看到,改进方法所生成的人工地震波反应谱与传统方法相比拟合精度有显著提高,尤其在高频段和低频段的顽固点数量大幅减少,误差最少降低50%。
表 1 改进方法和传统方法模拟人工地震反应谱的误差Table 1. Errors of response spectra of artificial ground motions generated by conventional and improved methods相位谱编号 反应谱平均误差 传统方法 改进方法 第一组 4.81% 1.40% 第二组 4.44% 1.37% 第三组 3.25% 1.60% 图4为使用三组随机相位谱分别通过传统方法和改进方法拟合而得的人工地震波反应谱对比图,其中各列子图对应一组随机相位谱,后两列为低频及高频部分的细部图。可以看到,无论是传统方法还是改进方法对于核电厂设计需求谱的拟合在频率中间段0.4—20 Hz的精度较高,但在高频及低频段均难以有效地拟合目标谱,部分原因是自然频率较高时单自由度体会随着地震波作刚体运动,地震波的加速度峰值即为高频段的谱加速度值,因此难以有效拟合。根据图4b和4c中的细部图可以发现在传统方法与改进方法都难以有效拟合的情况下,改进方法的拟合结果仍然较传统方法更接近目标谱的取值。
5. 结论
根据反应谱拟合人工地震波是结构抗震领域一个很重要的课题。然而,传统的频域法拟合人工地震波存在诸多问题,包括迭代效率低、顽固点多等。针对这些问题,本文通过优化频域法迭代过程中相关性的处理以及考虑相位谱的影响,提出综合改进的方法,通过提升拟合过程中迭代过程的工作效率进一步提高人工地震波对设计反应谱的拟合精度。算例结果表明,该方法的拟合精度较高,较传统方法有明显改进。
调整综合方法中两种改进方法的迭代次数、比例,形成更优化的综合方法,以进一步地提升迭代效率将是之后的研究重点。
-
表 1 改进方法和传统方法模拟人工地震反应谱的误差
Table 1 Errors of response spectra of artificial ground motions generated by conventional and improved methods
相位谱编号 反应谱平均误差 传统方法 改进方法 第一组 4.81% 1.40% 第二组 4.44% 1.37% 第三组 3.25% 1.60% -
白泉,韩晶晶,盛国华,张正帅. 2015. 地震动反应谱拟合过程中小波基函数的选取[J]. 地震学报,<bold>37</bold>(6):1037–1044. doi: 10.11939/jass.2015.06.013 Bai Q,Han J J,Sheng G H,Zhang Z S. 2015. Selection of wavelet basis function in the simulation of seismic response spectrum[J]. <italic>Acta Seismologica Sinica</italic>,<bold>37</bold>(6):1037–1044 (in Chinese).
陈永祁,刘锡荟,龚思礼. 1981. 拟合标准反应谱的人工地震波[J]. 建筑结构学报,<bold>8</bold>(4):34–43. Chen Y Q,Liu X H,Gong S L. 1981. The artificial earthquake ground motions compatible with standard response spectra[J]. <italic>Journal of Building Structures</italic>,<bold>8</bold>(4):34–43 (in Chinese).
何佳,王海涛. 2010. 用于窄带叠加人工时程模拟的一种窄带构造算法[J]. 核动力工程,<bold>33</bold>(3):69–73. He J,Wang H T. 2010. A new construction algorithm of narrow-band function for artificial history simulation method based on narrow-band superposition[J]. <italic>Nuclear Power Engineering</italic>,<bold>33</bold>(3):69–73 (in Chinese).
胡聿贤,何训. 1986. 考虑相位谱的人造地震动反应谱拟合[J]. 地震工程与工程振动,<bold>6</bold>(2):37–51. Hu Y X,He X. 1986. Phase angle consideration in generating response spectrum-compatible ground motion[J]. <italic>Earthquake Engineering and Engineering Vibration</italic>,<bold>6</bold>(2):37–51 (in Chinese).
刘帅,潘超,周志光. 2018. 对人造地震动反应谱求解及拟合的几个相关问题探讨[J]. 地震学报,<bold>40</bold>(4):519–530. Liu S,Pan C,Zhou Z G. 2018. Discussions on the response spectral solution and fitting of spectrum-compatible artificial seismic waves[J]. <italic>Acta Seismologica Sinica</italic>,<bold>40</bold>(4):519–530 (in Chinese).
谢皓宇,本田利器,郑万山. 2019. 复连续小波变换实现地震波在任意时-频域随机相位的方法[J]. 地震研究,<bold>42</bold>(4):510–515. doi: 10.3969/j.issn.1000-0666.2019.04.008 Xie H Y,Honda R,Zheng W S. 2019. Phase randomization of ground motions with arbitrary time-frequency range using complex continuous wavelets[J]. <italic>Journal of Seismological Research</italic>,<bold>42</bold>(4):510–515 (in Chinese).
杨庆山,姜海鹏. 2002. 基于相位差谱的时-频非平稳人造地震动的反应谱拟合[J]. 地震工程与工程振动,<bold>22</bold>(1):32–38. doi: 10.3969/j.issn.1000-1301.2002.01.006 Yang Q S,Jiang H P. 2002. Generation of response-spectrum-compatible ground motions based on phase-difference spectrum[J]. <italic>Earthquake Engineering and Engineering Vibration</italic>,<bold>22</bold>(1):32–38 (in Chinese).
瞿希梅,吴知丰. 1995. 人工地震波反应谱拟合技术的改进[J]. 哈尔滨工业大学学报,<bold>27</bold>(6):130–133. Zhai X M,Wu Z F. 1995. Improvement in the fitting technology of response spectra for simulated earthquake wave[J]. <italic>Journal of Harbin Institute of Technology</italic>,<bold>27</bold>(6):130–133 (in Chinese).
赵凤新,张郁山. 2007. 人造地震动反应谱拟合的窄带时程叠加法[J]. 工程力学,<bold>24</bold>(4):87–91. doi: 10.3969/j.issn.1000-4750.2007.04.016 Zhao F X,Zhang Y S. 2007. Narrowband-time-history’s superimposing method of generating response-spectrum-compatible accelerogram[J]. <italic>Engineering Mechanics</italic>,<bold>24</bold>(4):87–91 (in Chinese).
中华人民共和国交通运输部. 2020. JTG/T 2231-01—2020. 公路桥梁抗震设计规范[S]. 北京: 人民交通出版社: 36–41. Ministry of Transport of the People’s Republic of China. 2020. JTG/T 2231-01−2020. Specifications for Seismic Design of Highway Bridges[S]. Beijing: China Communications Publishing: 36–41 (in Chinese).
Adekristi A,Eatherton R M. 2015. Time-domain spectral matching of earthquake ground motions using Broyden Updating[J]. <italic>J Earthq Eng</italic>,<bold>20</bold>(5):679–698. doi: 10.1080/13632469.2015.1104753
Cecini D,Palmeri A. 2015. Spectrum-compatible accelerograms with harmonic wavelets[J]. <italic>Comput Struct</italic>,<bold>147</bold>:26–35. doi: 10.1016/j.compstruc.2014.10.013
Gupta K V. 2002. Development in response spectrum-based stochastic response of structural systems[J]. <italic>ISET J Earthq Technol</italic>,<bold>39</bold>(4):347–365.
Kaul K M. 1978. Stochastic characterization of earthquakes through their response spectrum[J]. <italic>Earthq Eng Struc Dyn</italic>,<bold>6</bold>(1):497–509.
U.S. NRC. 2014. Standard Review Plan, Section 3.7.1. Seismic Design Parameters: NUREG-0800[R]. Washington: Nuclear Regulatory Commission: 8–18.
-
期刊类型引用(11)
1. 戴纳新,胡群,刘彦辉,周福霖,彭林欣. 基于核电厂规范反应谱的时-频人工波合成及楼层反应谱研究. 广西大学学报(自然科学版). 2025(01): 70-82 . 百度学术
2. 王伟,许晨夜. 上承式大跨度钢箱无铰拱桥地震响应分析. 黑龙江交通科技. 2024(09): 127-130+137 . 百度学术
3. 唐光武,于雯,谢皓宇,刘海明. 近场地震作用下桥梁结构动力响应研究进展. 公路交通技术. 2023(01): 60-68 . 百度学术
4. 杨兰兰,傅梓岳,王登峰,XIE Weichau. 基于数字滤波技术拟合规范反应谱的地震动研究. 振动与冲击. 2023(09): 57-67+105 . 百度学术
5. 张树翠,夏宏升,张欣刚,姚文莉,齐朝晖,刘大强. 一种内蕴基线漂移校正的人工地震波反应谱拟合方法. 地震工程学报. 2023(05): 1171-1178 . 百度学术
6. 杨连,林雄伟,王军. 超高层建筑中考虑相位随机性的基岩地震动时程分析. 粉煤灰综合利用. 2022(01): 39-43+49 . 百度学术
7. 高树飞,冯云芬. 基于Newmark滑块位移法的岸坡地震稳定性简易分析方法. 水运工程. 2022(06): 40-48 . 百度学术
8. 谢皓宇,潘飞,朱翊洲,郑万山,仉文岗. 核设备设计地震动包络标准PSD的拟合及试验研究. 土木与环境工程学报(中英文). 2021(03): 128-134 . 百度学术
9. 谢皓宇,朱翊洲,仉文岗,唐光武,谢永诚. 核电厂设备抗震设计标准功率谱密度的生成方法. 核动力工程. 2021(05): 128-133 . 百度学术
10. 别江波,刘星星,刘宏. 某机场高填方边坡的动力特性模拟分析. 工程建设. 2021(09): 13-18 . 百度学术
11. 杜迎乾,王之军,周承浩,许汉兵,贾书海. 人工地震波遗传优化生成方法. 工程抗震与加固改造. 2021(06): 149-156+95 . 百度学术
其他类型引用(0)