中国东南沿海地区钻孔体应变对超强台风“利奇马” 的响应特征与机制

杨小林, 杨锦玲, 危自根

杨小林, 杨锦玲, 危自根. 2020: 中国东南沿海地区钻孔体应变对超强台风“利奇马” 的响应特征与机制. 地震学报, 42(3): 306-318. DOI: 10.11939/jass.20190156
引用本文: 杨小林, 杨锦玲, 危自根. 2020: 中国东南沿海地区钻孔体应变对超强台风“利奇马” 的响应特征与机制. 地震学报, 42(3): 306-318. DOI: 10.11939/jass.20190156
Yang Xiaolin, Yang Jinling, Wei Zigen. 2020: Signature and physical mechanism of borehole dilatometers in response to super typhoon Lekima in southeastern coastal area of China. Acta Seismologica Sinica, 42(3): 306-318. DOI: 10.11939/jass.20190156
Citation: Yang Xiaolin, Yang Jinling, Wei Zigen. 2020: Signature and physical mechanism of borehole dilatometers in response to super typhoon Lekima in southeastern coastal area of China. Acta Seismologica Sinica, 42(3): 306-318. DOI: 10.11939/jass.20190156

中国东南沿海地区钻孔体应变对超强台风“利奇马” 的响应特征与机制

基金项目: 中国地震局2020年度震情跟踪项目(2020010217,2020010218)资助
详细信息
    通讯作者:

    杨小林: e-mail:yang-xiaolin123@163.com

  • 中图分类号: P315.72+7,P447

Signature and physical mechanism of borehole dilatometers in response to super typhoon Lekima in southeastern coastal area of China

  • 摘要: 依据超强台风 “利奇马” 的强度和时空演变特征,本文采用经验模态分解等方法系统地分析并揭示了该台风对我国东南沿海地区钻孔体应变影响的全貌,并在此基础上对台风扰动的机制进行了初步探讨。结果表明:① 台风演变过程中漏斗状的长周期气压波动,是造成钻孔体应变大幅张性变化的物理成因,且体应变对台风低压系统具有即时的线弹性响应特征,其变化形态与气压漏斗高度相似,弹性变形的持续时间与气压波动的历时较一致;② 在周期为103 h时,−18.2 hPa的气压变幅便可在地下62 m深处产生高达−112.1×10−9的体应变,该频点的气压影响系数为6.2×10−9/hPa;③ 在空间上,台风中心在980 km以外便能影响体应变观测,且随着台风的不断逼近或远离,其影响程度也相应地逐渐增强或减弱。
    Abstract: The aim of this study is to investigate how volumetric strain and super typhoon Lekima interact with each other. By combining the intensity and spatio-temporal evolution of Lekima, we systematically analyze the extracted volumetric deformation of shallow crust at five stations in the southeastern coastal area of China induced by Lekima using a decomposition analysis called the empirical mode decomposition (EMD). Furthermore, we discuss the physical mechanism of typhoon-induced volumetric strain. The results show that: ① The super typhoon’s signature consists in a ground dilatation due to barometric pressure drop drastically, generally followed by a ground compression due to the barometric pressure recovery. The dynamic patterns for the volumetric strain and the barometric pressure are both similar to the symme-trical funnel, and the response of volumetric strain to the barometric pressure is almost instant and linear. In addition, the durations are nearly equivalent for both of them. ② The maximum magnitude in volumetric strain induced by barometric pressure with fluctuation of −18.2 hPa can reach up to −112.1×10−9 in the 62 m deep borehole, and the corresponding coefficient of barometric pressure response is about 6.2×10−9/hPa at the 103-hour period. ③ Obviously, the dilatometer records can be remotely disturbed by super typhoon at a distance of approximately 980 km away from the borehole site. When the typhoon center approaches or moves away from the borehole site, the dilatational magnitude of borehole strain will increase or decrease correspondingly. The obtained results can be used not only for identifying and determining reasonably the physical mechanism of anomalous changes induced by typhoon in low-frequency range for southeastern coastal and inland areas in China, but also for contributing the reliably observational evidences to the theoretical model research for the volumetric strain in response to barometric pressure in the low-frequency range.
  • 图  1   超强台风 “利奇马” 的最佳路径和强度演变及东南沿海地区钻孔体应变台和气象站位置

    Figure  1.   The best track and intensity (colored circles) of super typhoon Lekima (from 14:00 BJT on 4 August 2019 to 11:00 BJT on 13 August 2019,equally spaced at 1 h or 3 h,respectively) marked with time as well as locations of borehole dilatometer stations (black triangles)and meteorological stations (green triangles) in southeastern coastal area of China

    图  2   5个钻孔体应变台记录的 “利奇马” 低频扰动曲线

    Figure  2.   The low-frequency signatures of super typhoon Lekima recorded by the borehole dilatometers at five stations during 1−17 August 2019

    Time series after linear curves are removed from the original one-minute-sampled volumetric strain data (black lines),and red lines show the trends of long-period changes in volumetric strain. The vertical left and right dashed lines mark the timing of Lekima's initiation and first landfall,respectively. The blue circle indicates the time when the typhoon was the nearest to the borehole dilatometer station.

    图  3   东阳台(a)、溧阳台(b)和杭州气象站在 “利奇马” 过境期间的观测数据

    图中第一行为钻孔体应变和气压记录及趋势,第二行为钻孔体应变和气压的变化率,第三行为日降水量

    Figure  3.   Records of the volumetric strain and barometric pressure at the stations Dongyang (a) and Liyang (b) as well as daily rainfall data at Hangzhou meteorological station under the passage of super typhoon Lekima during August 1−17,2019

    The upper panels show the traces of the volumetric strain (black) and barometric pressure (gray),where red and green lines show the trends,respectively;the middle panels represent the variation rates of the volumetric strain (red) and barometric pressure (green);the lower panels represent the daily rainfall

    图  5   青岛台和青岛气象站在 “利奇马” 过境期间的观测数据

    (a) 钻孔体应变和气压记录及趋势;(b) 钻孔体应变和气压的变化率;(c) 日降水量

    Figure  5.   Records of the volumetric strain and barometric pressure at Qingdao station and daily rainfall data at Qingdao meteorological station under the passage of super typhoon Lekima during August 1−17,2019

    (a) Traces of the volumetric strain (black) and barometric pressure (gray),red and green lines show the trends;(b) The variation rates of the volumetric strain (red) and barometric pressure (green);(c) The daily rainfall

    图  6   非台风情况下强降水事件对东阳台观测数据的影响

    (a) 钻孔体应变和气压记录及趋势;(b) 钻孔体应变和气压的变化速率;(c) 日降水量

    Figure  6.   Records of the volumetric strain and barometric pressure at Dongyang station and daily rainfall data at Hangzhou meteorological station under the heavy rainfall induced by non-typhoon weather during July 1−20,2019

    (a) Traces of the volumetric strain (black) and barometric pressure (gray),red and green lines show the trends;(b) The variation rates of the volumetric strain (red)and barometric pressure (green);(c) The daily rainfall

    图  4   常熟台(a),南通台(b)和上海气象站在 “利奇马” 过境期间的观测数据

    图中第一行为钻孔体应变和气压记录及趋势,第二行为钻孔体应变和气压的变化率,第三行为日降水量

    Figure  4.   Records of the volumetric strain and barometric pressure at the stations Changshu (a) and Nantong (b) as well as and daily rainfall data at Shanghai meteorological station under the passage of super typhoon Lekima during August 1−17,2019

    The upper panels show the traces of the volumetric strain (black) and barometric pressure (gray),where red and green lines show the trends,respectively;the middle panels represent the variation rates of the volumetric strain (red) and barometric pressure (green);the lower panels represent the daily rainfall

    表  1   5个钻孔体应变台站及其周邻地面气象站的概况

    Table  1   General information for the five borehole dilatometer sites and three neighboring meteorological stations

    台站钻孔深度/m钻孔围岩岩性距海岸线距离/km邻近的气象站距气象站距离/km
    东阳 67 泥质粉砂岩 120 杭州 110
    溧阳 60 安山岩 240 杭州 140
    常熟 62 石英砂岩 110 上海 80
    南通 94 石英砂岩 50 上海 85
    青岛 56 花岗岩 0.2 青岛 6
    下载: 导出CSV

    表  2   5个钻孔体应变台站对 “利奇马” 响应的特征参数

    Table  2   The response patterns and magnitudes to Lekima for the five borehole dilatometer stations

    台站响应距离/km台风
    临近时
    的强度


    /h
    气压
    最大变幅
    /hPa
    体应变
    最大变幅
    /10−9
    气压
    变化率
    /(hPa·min−1
    体应变
    变化率
    /(10−9 min−1
    累计
    降水量
    /mm
    气压影响
    系数
    /(10−9 hPa−1
    开始响应台风登陆台风临近结束响应
    东阳 770 150 35 900 强热带风暴 89 −20.1 −52.8 −0.016—0.014 −0.040—0.038 167 2.6
    溧阳 830 390 88 650 热带风暴 96 −17.2 −36.8 −0.012—0.009 −0.028—0.027 167 2.1
    常熟 760 380 30 640 热带风暴 103 −18.2 −112.1 −0.012—0.011 −0.069—0.076 141 6.2
    南通 780 410 27 - 热带风暴 120 −20.7 −76.7 −0.011—0.010 −0.037—0.034 142 3.7
    青岛 980 870 26 - 热带风暴 107 −22.8 −72.1 −0.017—0.009 −0.030—0.041 54 3.2
    注:“-”表示此时刻台风已停止编号,无法获取该时刻台风的具体位置。
    下载: 导出CSV

    表  3   各台站的台基岩石力学参数和气压波动幅值及相应的理论体应变

    Table  3   The modeled volumetric strain induced by observed atmospheric loading based on corresponding rock mechanical parameters for the five borehole dilatometer stations

    台站 钻孔围岩力学参数气压波动/hPa实测体应变/10−9理论体应变/10−9
    弹性模量/GPa泊松比
    东阳 20 0.25 −20.1 −52.8 −50.3
    溧阳 40 0.25 −17.2 −36.8 −21.5
    常熟 10 0.25 −18.2 −112.1 −91.0
    南通 15 0.25 −20.7 −76.7 −69.0
    青岛 50 0.25 −22.8 −72.1 −22.8
    下载: 导出CSV
  • 陈孔沫. 1981. 台风气压场和风场模式[J]. 海洋学报,<bold>3</bold>(1):44–56.

    Chen K M. 1981. The typhoon pressure field and wind field models[J]. <italic>Acta Oceanologica Sinica</italic>,<bold>3</bold>(1):44–56 (in Chinese).

    冯志军,赵金花,荆强,陈安范,殷海涛,李杰. 2009. 青岛钻孔体应变短时畸变分析[J]. 山西地震,(4):42–47.

    Feng Z J,Zhao J H ,Jing Q,Chen A F,Yin H T,Li J. 2009. Study on the short time distortion anomaly of borehole volume strain in Qingdao[J]. <italic>Earthquake Research in Shanxi</italic>,(4):42–47 (in Chinese).

    梁溯安. 2012. 东阳江(流域)水污染物总量控制研究[D]. 杭州: 浙江大学: 29.

    Liang S A. 2012. Total Amount Control of Water Pollution in Dongyangjiang River[D]. Hangzhou: Zhejiang University: 29 (in Chinese).

    彭剑文,曾飞涛,李长洪,苗胜军. 2017. 石英砂岩力学特性及各向异性试验研究[J]. 岩土力学,<bold>38</bold>(增刊1):103–112.

    Peng J W,Zeng F T,Li C H,Miao S J. 2017. Experimental study of anisotropy and mechanical property of quartz sandstone[J]. <italic>Rock and Soil Mechanics</italic>,<bold>38</bold>(S1):103–112 (in Chinese).

    邱泽华,唐磊,张宝红,宋茉. 2012. 用小波—超限率分析提取宁陕台汶川地震体应变异常[J]. 地球物理学报,<bold>55</bold>(2):538–546.

    Qiu Z H,Tang L,Zhang B H,Song M. 2012. Extracting anomaly of the Wenchuan earthquake from the dilatometer recording at NSH by means of wavelet-overrun rate analysis[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>55</bold>(2):538–546 (in Chinese).

    邱泽华. 2017. 钻孔应变观测理论与应用[M]. 北京: 地震出版社: 1–407.

    Qiu Z H. 2017. The Observations of Borehole Strainmeters: Theory and Applications[M]. Beijing: Seismological Press: 1–407 (in Chinese).

    苏恺之, 李秀环, 张钧, 马相波, 李海亮. 2002. TJ-2型体应变仪的研制[G]//地壳构造与地壳应力文集. 北京: 中国地震局地壳应力研究所: 113−121.

    Su K Z, Li X H, Zhang J, Ma X B, Li H L. 2002. Manufacture of TJ-2 volume strain meter[G]//Bulletin of the Institute of Crustal Dynamics. Beijing: Institute of Crustal Dynamics, China Earthquake Administration: 113−121 (in Chinese).

    袁金南,林爱兰,刘春霞. 2008. 60年来西北太平洋上不同强度热带气旋的变化特征[J]. 气象学报,<bold>66</bold>(2):213–223.

    Yuan J N,Lin A L,Liu C X. 2008. Change characters of tropical cyclones with different intensities over the western North Pacific during the last 60 years[J]. <italic>Acta Meteorologica Sinica</italic>,<bold>66</bold>(2):213–223 (in Chinese).

    袁媛,方国庆,尹京苑. 2017. 佘山台四分量钻孔应变仪记录的台风扰动特征分析[J]. 地震学报,<bold>39</bold>(5):725–737. doi: 10.11939/jass.2017.05.008

    Yuan Y,Fang G Q,Yin J Y. 2017. Signatures of typhoons on strain records of four component borehole strainmeter at Sheshan station[J]. <italic>Acta Seismologica Sinica</italic>,<bold>39</bold>(5):725–737 (in Chinese).

    张凌空,牛安福. 2008. 中国钻孔体应变仪同震变化观测结果[J]. 国际地震动态,(11):120. doi: 10.3969/j.issn.0253-4975.2008.11.121

    Zhang L K,Niu A F. 2008. Co-seismic strain changes recorded by dilatometers in China[J]. <italic>Recent Developments in World Seismology</italic>,(11):120 (in Chinese).

    张凌空,牛安福. 2019. 周期气压波对地壳岩石应变测量影响的理论解[J]. 地球物理学进展,<bold>34</bold>(4):1366–1370. doi: 10.6038/pg2019CC0244

    Zhang L K,Niu A F. 2019. Theoretical solution of periodic pressure wave effect on crustal strain[J]. <italic>Progress in Geophysics</italic>,<bold>34</bold>(4):1366–1370 (in Chinese).

    中央气象台台风网. 2019. 1909利奇马Lekima[EB/OL]. [2019−09−02]. http://typhoon.nmc.cn/web.html.

    Typhoon and Marine Weather Monitoring and Warning, National Meteorological Centre. 2019. Super typhoon Lekima (1909)[EB/OL]. [2019−09−02]. http://typhoon.nmc.cn/web.html (in Chinese).

    周龙寿,邱泽华. 2008. 地壳应变场对气压短周期变化的响应[J]. 地球物理学进展,<bold>23</bold>(6):1717–1726.

    Zhou L S,Qiu Z H. 2008. The response of crustal strain field to short-period atmospheric pressure variation[J]. <italic>Progress in Geophysics</italic>,<bold>23</bold>(6):1717–1726 (in Chinese).

    檜皮久義,佐藤馨,二瓶信一,福留篤男,竹内新,古屋逸夫. 1983. 埋込式体積歪計の気圧補正[J]. 験震時報,<bold>47</bold>:91–111.

    Hikawa H,Sato K,Nihei S,Fukudome A,Takeuchi H,Furuya I. 1983. Correction due to atmospheric pressure changes of data of the borehole volume strainmeter[J]. <italic>Quarterly Journal of Seismology</italic>,<bold>47</bold>:91–111 (in Japanese).

    木村一洋,露木貴裕,菅沼一成,長谷川浩,見須裕美,藤田健一. 2015. タンクモデルによる体積ひずみ計データの降水補正について[J]. 験震時報,<bold>78</bold>:93–158.

    Kimura K,Tsuyuki T,Suganuma I,Hasegawa H,Misu H,Fujita K. 2015. Rainfall correction of volumetric stainmeter data by tank models[J]. <italic>Quarterly Journal of Seismology</italic>,<bold>78</bold>:93–158 (in Japanese).

    上垣内修. 1987. 体積歪,傾斜データに対する気圧の影響の補正に関する物理的考察[J]. 験震時報,<bold>50</bold>:41–49.

    Kamigaichi O. 1987. Physical considerations on the correction methods of volumetric strain and tilt data for the effects of atmospheric pressure chang[J]. <italic>Quarterly Journal of Seismology</italic>,<bold>50</bold>:41–49 (in Japanese).

    Asai Y,Ishii H,Aoki H. 2009. Comparison of tidal strain changes observed at the borehole array observation system with in situ rock properties in the Tono region,central Japan[J]. <italic>J Geodyn</italic>,<bold>48</bold>(3/4/5):292–298. doi: 10.1016/j.jog.2009.09.024

    Barbour A J,Crowell B W. 2017. Dynamic strains for earthquake source characterization[J]. <italic>Seism Res Lett</italic>,<bold>88</bold>(2A):354–370. doi: 10.1785/0220160155

    Bonaccorso A,Linde A,Currenti G,Sacks S,Sicali A. 2016. The borehole dilatometer network of Mount Etna:A powerful tool to detect and infer volcano dynamics[J]. <italic>J Geophys Res</italic>:<italic>Solid Earth</italic>,<bold>121</bold>(6):4655–4669. doi: 10.1002/2016JB012914

    Evertson D W. 1977. Borehole Strainmeters for Seismology[R]. Austin, Texas: Applied Research Lab, University of Texas: No. ARL-TR-77-62.

    Hsu Y J,Chang Y S,Liu C C,Lee H M,Linde A T,Sacks S I,Kitagawa G,Chen Y G. 2015. Revisiting borehole strain,typhoons,and slow earthquakes using quantitative estimates of precipitation-induced strain changes[J]. <italic>J Geophys Res</italic>:<italic>Solid Earth</italic>,<bold>120</bold>:4556–4571. doi: 10.1002/2014JB011807

    Huang N E,Shen Z,Long S R,Wu M C,Shih H H,Zheng Q,Yen N C,Tung C C,Liu H H. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. <italic>Proc R Soc Lond A</italic>,<bold>454</bold>:903–995. doi: 10.1098/rspa.1998.0193

    Linde A T,Gladwin M T,Johnston M J S,Gwyther R L,Bilham R G. 1996. A slow earthquake sequence on the San Andreas fault[J]. <italic>Nature</italic>,<bold>383</bold>:65–68. doi: 10.1038/383065a0

    Liu C C,Linde A T,Sacks I S. 2009. Slow earthquakes triggered by typhoons[J]. <italic>Nature</italic>,<bold>459</bold>(7248):833–836. doi: 10.1038/nature08042

    Mouyen M,Canitano A,Chao B F,Hsu Y J,Steer P,Longuevergne L,Boy J P. 2017. Typhoon-induced ground deformation[J]. <italic>Geophys Res Lett</italic>,<bold>44</bold>(21):11004–11011. doi: 10.1002/2017GL075615

    Matsuura T,Yumoto M,Iizuka S. 2003. A mechanism of interdecadal variability of tropical cyclone activity over the western North Pacific[J]. <italic>Clim Dyn</italic>,<bold>21</bold>:105–117. doi: 10.1007/s00382-003-0327-3

    NOAA. 2019. National centers for environmental information[EB/OL]. [2019−09−02]. https://www.ncdc.noaa.gov/cdo-web/datatools/findstation.

    Peduzzi P,Chatenoux B,Dao H,Bono A D,Herold C,Kossin J,Mouton F,Nordbeck O. 2012. Global trends in tropical cyclone risk[J]. <italic>Nat Clim Change</italic>,<bold>2</bold>(2):289–294.

    Peng H,Kitagawa G,Takanami T,Matsumoto N. 2014. State-space modeling for seismic signal analysis[J]. <italic>Appl Math Model</italic>,<bold>38</bold>(2):738–746. doi: 10.1016/j.apm.2013.07.008

    Roeloffs E A. 2006. Evidence for aseismic deformation rate changes prior to earthquakes[J]. <italic>Annu Rev Earth Planet Sci</italic>,<bold>34</bold>:591–627. doi: 10.1146/annurev.earth.34.031405.124947

    Sacks I S,Suyehiro S,Evertson D W. 1971. Sacks-Evertson strainmeter,its installation in Japan and some preliminary results concerning strain steps[J]. <italic>Proc Jpn Acad</italic>,<bold>47</bold>(9):707–712. doi: 10.2183/pjab1945.47.707

    Sacks I S,Suyehiro S,Linde A T,Snoke J A. 1978. Slow earthquakes and stress redistribution[J]. <italic>Nature</italic>,<bold>275</bold>:599–602. doi: 10.1038/275599a0

    Takanami T,Linde A T,Sacks S I,Kitagawa G,Peng H. 2013. Modeling of the post-seismic slip of the 2003 Tokachi-Oki earthquake <italic>M</italic>8 off Hokkaido:Constraints from volumetric strain[J]. <italic>Earth Planets Space</italic>,<bold>65</bold>:731–738. doi: 10.5047/eps.2012.12.003

    Wu L G,Wang B,Geng S Q. 2005. Growing typhoon influence on east Asia[J]. <italic>Geophys Res Lett</italic>,<bold>32</bold>:L18703.

    Xu X D,Peng S Q,Yang X J,Xu H X,Tong D Q,Wang D X,Guo Y D,Chan J C L,Chen L S,Yu W,Li Y N,Lai Z J,Zhang S J. 2013. Does warmer China land attract more super typhoons?[J]. <italic>Sci Rep</italic>,<bold>3</bold>:1522. doi: 10.1038/srep01522

图(6)  /  表(3)
计量
  • 文章访问数:  881
  • HTML全文浏览量:  575
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-15
  • 修回日期:  2020-03-10
  • 网络出版日期:  2020-08-16
  • 发布日期:  2020-07-20

目录

    /

    返回文章
    返回