2017年漾濞MS4.8和MS5.1地震序列的微震检测及重定位

李姣, 姜金钟, 杨晶琼

李姣, 姜金钟, 杨晶琼. 2020: 2017年漾濞MS4.8和MS5.1地震序列的微震检测及重定位. 地震学报, 42(5): 527-542. DOI: 10.11939/jass.20190161
引用本文: 李姣, 姜金钟, 杨晶琼. 2020: 2017年漾濞MS4.8和MS5.1地震序列的微震检测及重定位. 地震学报, 42(5): 527-542. DOI: 10.11939/jass.20190161
Li Jiao, Jiang Jinzhong, Yang Jingqiong. 2020: Microseismic detection and relocation of the 2017 MS4.8 and MS5.1 Yangbi earthquake sequence,Yunnan. Acta Seismologica Sinica, 42(5): 527-542. DOI: 10.11939/jass.20190161
Citation: Li Jiao, Jiang Jinzhong, Yang Jingqiong. 2020: Microseismic detection and relocation of the 2017 MS4.8 and MS5.1 Yangbi earthquake sequence,Yunnan. Acta Seismologica Sinica, 42(5): 527-542. DOI: 10.11939/jass.20190161

2017年漾濞MS4.8和MS5.1地震序列的微震检测及重定位

基金项目: 云南省地震局科技专项基金(2018ZX01)和青年基金(2019K01)、云南省科技计划项目基础研究青年项目(2018FD158)及云南省地震局科技人员传帮带项目(C2-201703)共同资助
详细信息
    通讯作者:

    姜金钟: e-mail:jz_jiang@foxmail.com

  • 中图分类号: P315.3+1

Microseismic detection and relocation of the 2017 MS4.8 and MS5.1 Yangbi earthquake sequence,Yunnan

  • 摘要: 基于云南地震台网记录到的2017年漾濞MS4.8和MS5.1地震序列的地震目录和波形数据,采用结合波形互相关的双差定位方法得到了MS5.1主震前7天至主震后30天共258次地震事件更加准确的震源位置,然后利用匹配定位方法获得了更加丰富的地震目录,并对其余震活动的时空演化特征进行了初步分析。双差重定位获得了漾濞地震序列中193次地震的精确位置,水平方向和垂直方向的定位误差均值分别为1.3 km和1.9 km,重定位及震源机制解反演结果显示维西—乔后断裂中南段应为此次地震的发震断层。使用匹配定位方法检测得到了1 625次中小地震事件,事件数量是云南地震台网目录中的6倍,被检测事件主要为主震后早期余震及ML≤0微震事件。对比2016年云龙MS5.0地震序列的研究结果后初步分析认为,“震群(多震)型”和“主余型”地震序列的一个主要区别可能是“震群(多震)型”地震序列的余震数量相对更少、余震活动衰减得更快。
    Abstract: Based on the earthquake catalog and waveforms of 2017 MS4.8 and MS5.1 Yangbi earthquake sequence recorded by Yunnan Seismic Network, we relocate 258 earthquakes occurring one week before and one month after the Yangbi MS5.1 mainshock by simultaneously using P- and S-wave travel times and waveform cross-correlation data in the double-difference relocation. We then use the 258 earthquakes as template events and scan through the continuous waveforms to search for weak events by using the match and locate method. Using our new catalog, we preliminarily analyze the spatio-temporal evolution characteristics of Yangbi earthquake sequence. We obtain refined hypocenters of 193 earthquakes with location errors of about 1.3 km in the horizontal direction and 1.9 km in the depth, respectively. According to the double-difference relocation and focal mechanisms of the mainshock and early ML≥3.0 aftershocks, we preliminarily conclude that the middle-south segment of the Weixi-Qiaohou fault may account for the occurrence of the MS5.1 Yangbi earthquake. A total of 1 625 events are detected by 258 template events, which is about six times as many as the events of Yangbi earthquake sequence listed in the Yunnan Seismic Network catalog. And the detected events are mainly the early aftershocks and ML≤0 micro events. By comparison with the 2016 MS5.0 Yunlong earthquake, we conclude that less number and faster decay of aftershocks may be the main difference between the multiple mainshock type of sequence and the mainshock-aftershock type of sequence.
  • 图  1   研究区断裂、台站及2017年漾濞地震序列的震中分布图

    F1:澜沧江断裂;F2:维西—乔后断裂;F3:龙蟠—乔后断裂。断层数据引自邓起东等(2003)

    Figure  1.   Distribution of the faults,stations and epicenters of the 2017 Yangbi earthquake sequence in the study area

    F1:Lancangjiang fault;F2:Weixi-Qiaohou fault;F3:Longpan-Qiaohou fault. The faults are after Deng et al (2003)

    图  2   洱源台(EYA)记录的部分地震的P波(BHZ分量)和S波(BHN分量)震相波形互相关分析示意图

    底部黑色加粗波形为模板波形,红色和蓝色波段分别表示互相关分析用到的P波和S波,C表示各地震事件与模板事件的P波和S波的互相关系数

    Figure  2.   Cross-correlation analysis of P (BHZ) and S (BHN) waveforms for part seismic events recorded at the station EYA

    The bold black waveforms are template waveforms,the red and blue sections are P-wave and S-wave used in cross-correlation analysis,respectively. C values mark the corresponding cross-correlation coefficient

    图  3   双差定位前(a,c)、后(b,d)的震中及其深度分布对比

    图中绿色和紫色圆圈分别表示双差定位前(云南台网目录)和双差定位后(以云南台网目录位置为初始震源位置)的7次ML≥3.0事件,红色圆圈表示ML<3.0地震事件,图(d)中蓝色圆圈及对应的震源机制解沙滩球和旁边的断层倾角值是根据潘睿等(2019)的CAP反演结果绘制

    Figure  3.   Comparison of epicentral and depth distributions before (a,c) and after (b,d) the double-difference (DD) location

    The green and magenta circles indicate seven ML≥3.0 aftershocks before and after DD location,respectively. The red circles indicate ML<3.0 earthquakes. The blue circles with corresponding beach balls (their fault dip angles are listed) in Fig. (d) show the CAP inversion results from Pan et al (2019)

    图  4   使用bootstrapping 方法对双差定位不确定性分析的实例

    图中“理论地震”为发震时刻为2017年4月27日17时37分35.3秒(UTC)的ML0.5地震,图(a)为利用bootstrapping方法分别得到的东西向、南北向和垂直向的误差,右上角给出其2倍标准差2σ;图(b)左右子图分别为水平方向和垂直方向上置信度为95%的误差椭圆及其长短轴

    Figure  4.   A sample of uncertainty analysis of DD relocation using bootstrapping method

    The synthetic earthquake showed in this sample is a ML0.5 event occurred at 17:37:35.3 (UTC) on April 27,2017. Fig. (a) shows the twice of standard deviation (2σ) of DD location errors in east-west,south-north,and vertical directions,respectively,Fig. (b) shows the 95% confidence error ellipses and their major and minor axes estimated by bootstrapping method

    图  5   基于bootstrapping方法的双差定位不确定性分析

    (a) 水平方向的95%置信度的误差椭圆分布;(b) 水平误差的2倍标准差直方图;(c) 垂直误差的2倍标准差直方图

    Figure  5.   Uncertainty analysis of the DD location based on the bootstrapping method

    (a) Distribution of 95% confidence error ellipses in horizontal direction obtained by using bootstrapping method;(b) Histogram of twice the standard deviation of DD location errors in horizontal direction;(c) Histogram of twice the standard deviation of DD location errors in vertical direction

    图  6   匹配定位方法检测微小地震的实例

    (a) ML0.7模板事件波形,其中红色和蓝色波段分别为匹配定位检测中用到的P波和S波;(b) 包含ML0.3被检测事件(红色波段)的连续波形;(c) 匹配定位检测中的叠加波形互相关函数及互相关系数最大值Cmax;(d) 被检测事件波形(黑色)和模板波形P波(红色)、S波(蓝色)及其对应的互相关系数

    Figure  6.   A sample of M&L detection using template seismograms of a ML0.7 events

    (a) Template seismograms of a ML0.7 event,where the red and blue sections indicate the P and S waves used in M&L detection;(b) Continuous waveforms including the detected ML0.3 event (red sections);(c) The cross-correlation functions and maximum cross-correlation coefficient Cmax in M&L detection; (d) Waveforms of the detected event (black),the template P waves (red) and S waves (blue). Their C values are marked correspondingly

    图  7   利用匹配定位方法检测出的被云南地震台网遗漏的发生于MS5.1主震后150 s内的三次早期余震事件(红色波段为匹配定位检测事件放大后的波形)

    Figure  7.   The early aftershocks occurred during 150 s following the MS5.1 mainshock detected by M&L method but neglected by Yunnan Seismic Network (The red waveform sections are the amplified waveforms)

    图  8   MS5.1主震后云南台网目录与匹配定位检测结果的M-t分布对比图

    Figure  8.   The magnitude versus logarithmic times since the MS5.1 mainshock for Yunnan Seismic Network catalog (blue triangles) and M&L detection catalog (red circles)

    图  9   云南地震台网目录(a)与匹配定位检测目录(b)的震源位置对比

    Figure  9.   Comparison of hypocenters between the Yunnan Seismic Network catalog (a) and M&L catalog (b)

    图  10   两种地震目录的每天累积地震频次随时间(MS5.1主震前后天数)变化的统计直方图

    Figure  10.   Comparison of the daily number of events with time (days before and after the Yangbi mainshock) between the M&L catalog (blue) and YSN catalog (yellow)

  • 安晓文, 常祖峰, 陈宇军, 毛先进, 庄儒新. 2018. 云南第四纪活动断裂暨 《云南第四纪活动断裂分布图》 [M]. 北京: 地震出版社: 257–262.

    An X W, Chang Z F, Chen Y J, Mao X J, Zhuang R X. 2018. The Quaternary Active Faults in Yunnan Area and Distribution Map of the Quaternary Active Faults in Yunnan Area[M]. Beijing: Seismology Press: 257–262 (in Chinese).

    邓起东,张培震,冉勇康,杨晓平,闵伟,陈立春. 2003. 中国活动构造与地震活动[J]. 地学前缘,10(增刊1):66–73.

    Deng Q D,Zhang P Z,Ran Y K,Yang X P,Min W,Chen L C. 2003. Active tectonics and earthquake activities in China[J]. Earth Science Frontiers,10(S1):66–73 (in Chinese).

    胡鸿翔,陆涵行,王椿镛,何正勤,朱良保,颜其中,樊跃新,张国庆,邓英娥. 1986. 滇西地区地壳结构的爆破地震研究[J]. 地球物理学报,29(2):133–144. doi: 10.3321/j.issn:0001-5733.1986.02.004

    Hu H X,Lu H X,Wang C Y,He Z Q,Zhu L B,Yan Q Z,Fan Y X,Zhang G Q,Deng Y E. 1986. Explosion investigation of the crustal structure in western Yunnan Province[J]. Chinese Journal of Geophysics,29(2):133–144 (in Chinese).

    蒋海昆,曲延军,李永莉,郑建常,华爱军,代磊,侯海峰. 2006. 中国大陆中强地震余震序列的部分统计特征[J]. 地球物理学报,49(4):1110–1117. doi: 10.3321/j.issn:0001-5733.2006.04.024

    Jiang H K,Qu Y J,Li Y L,Zheng J C,Hua A J,Dai L,Hou H F. 2006. Some statistic features of aftershock sequences in Chinese mainland[J]. Chinese Journal of Geophysics,49(4):1110–1117 (in Chinese).

    姜金钟,付虹,陈棋福. 2016. 位于构造活跃区的小湾水库地震活动特征:基于地震精定位的分析[J]. 地球物理学报,59(7):2468–2485. doi: 10.6038/cjg20160713

    Jiang J Z,Fu H,Chen Q F. 2016. Characteristics of seismicity of the Xiaowan reservoir in an area of active tectonics from double-difference relocation analysis[J]. Chinese Journal of Geophysics,59(7):2468–2485 (in Chinese).

    姜金钟,陈棋福,李姣. 2019. 中国东北的深源地震波形匹配检测及定位[J]. 地球物理学报,62(8):2930–2945. doi: 10.6038/cjg2019M0210

    Jiang J Z,Chen Q F,Li J. 2019. Waveform detection and location of deep earthquakes in the subduction zone beneath Northeast China[J]. Chinese Journal of Geophysics,62(8):2930–2945 (in Chinese).

    李涛,付虹,姜金钟,徐兴倩. 2018. 2013年云南洱源MS5.5地震序列不同地震观测台网地震定位结果对比分析[J]. 地震研究,41(1):55–63. doi: 10.3969/j.issn.1000-0666.2018.01.007

    Li T,Fu H,Jiang J Z,Xu X Q. 2018. Comparison of locations results for the 2013 Yunnan Eryuan MS5.5 earthquake sequence from different seismic networks[J]. Journal of Seismological Research,41(1):55–63 (in Chinese).

    林中洋,胡鸿翔,张文彬,章惠芬,何正勤,林真明,邱陶兴. 1993. 滇西地区地壳上地幔速度结构特征的研究[J]. 地震学报,15(4):427–440.

    Lin Z Y,Hu H X,Zhang W B,Zhang H F,He Z Q,Lin Z M,Qiu T X. 1993. Investigation of the crustal and upper mantle structure in western Yunnan Province[J]. Acta Seismologica Sinica,15(4):427–440 (in Chinese).

    刘双庆,梁建宏,朱元清,于俊谊,谢静. 2018. 几种常用地方震相对天然地震震源深度测定的误差解析分析及数值对比[J]. 地震学报,40(2):143–159.

    Liu S Q,Liang J H,Zhu Y Q,Yu J Y,Xie J. 2018. Natural hypocentral depth error calculated from some conventional local seismic phases by analytic method and numerical simulation[J]. Acta Seismologica Sinica,40(2):143–159 (in Chinese).

    潘睿,姜金钟,付虹,李姣. 2019. 2017年云南漾濞MS5.1及MS4.8地震震源机制解和震源深度测定[J]. 地震研究,42(3):338–348. doi: 10.3969/j.issn.1000-0666.2019.03.005

    Pan R,Jiang J Z,Fu H,Li J. 2019. Focal mechanism and focal depth determination of Yunnan Yangbi MS5.1 and MS4.8 earthquakes in 2017[J]. Journal of Seismological Research,42(3):338–348 (in Chinese).

    盛书中,万永革,蒋长胜,卜玉菲. 2015. 2015年尼泊尔MS8.1强震对中国大陆静态应力触发影响的初探[J]. 地球物理学报,58(5):1834–1842. doi: 10.6038/cjg20150534

    Sheng S Z,Wan Y G,Jiang C S,Bu Y F. 2015. Preliminary study on the static stress triggering effects on China mainland with the 2015 Nepal MS8.1 earthquake[J]. Chinese Journal of Geophysics,58(5):1834–1842 (in Chinese).

    王光明,刘自凤,赵小艳,樊文杰,李永莉,彭关灵,孙楠. 2018a. 2018年云南通海MS5.0地震序列重定位及发震构造讨论[J]. 地震研究,41(4):503–510. doi: 10.3969/j.issn.1000-0666.2018.04.003

    Wang G M,Liu Z F,Zhao X Y,Fan W J,Li Y L,Peng G L,Sun N. 2018a. Relocation of Tonghai MS5.0 earthquake sequence in 2018 and discussion of it’s seismogenic fault[J]. Journal of Seismological Research,41(4):503–510 (in Chinese).

    王光明,赵小艳,付虹,刘自凤,王清东. 2018b. 2014年鲁甸MS6.5地震及其强余震序列重定位[J]. 地震学报,40(5):582–594. doi: 10.11939/jass.20170180

    Wang G M,Zhao X Y,Fu H,Liu Z F,Wang Q D. 2018b. Relocation of the 2014 Ludian MS6.5 earthquake and its large aftershock sequence[J]. Acta Seismologica Sinica,40(5):582–594 (in Chinese).

    杨晶琼,杨周胜,蔡明军,许亚吉,梁勇. 2013. 云南地区近震震级与面波震级转换关系研究[J]. 中国地震,29(4):513–521. doi: 10.3969/j.issn.1001-4683.2013.04.011

    Yang J Q,Yang Z S,Cai M J,Xu Y J,Liang Y. 2013. Study on the ML and MS of conversion in the Yunnan regional digital networks[J]. Earthquake Research in China,29(4):513–521 (in Chinese).

    赵小艳,付虹. 2014. 2013年洱源MS5.5和MS5.0地震发震构造识别[J]. 地震学报,36(4):640–650. doi: 10.3969/j.issn.0253-3782.2014.04.010

    Zhao X Y,Fu H. 2014. Seismogenic structure identification of the 2013 Eryuan MS5.5 and MS5.0 earthquake sequence[J]. Acta Seismologica Sinica,36(4):640–650 (in Chinese).

    Aki K. 1969. Analysis of the seismic coda of local earthquakes as scattered waves[J]. J Geophys Res,74(2):615–631. doi: 10.1029/JB074i002p00615

    Chang Z F,Zhang Y F,Chang H. 2018. New discovery of Holocene activity along the Weixi-Qiaohou fault in southeastern margin of the Tibetan Plateau and its Neotectonic significance[J]. Acta Geologica Sinica,92(6):2464–2465.

    Gibbons S J,Ringdal F. 2006. The detection of low magnitude seismic events using array-based waveform correlation[J]. Geophys J Int,165(1):149–166. doi: 10.1111/j.1365-246X.2006.02865.x

    Hardebeck J L. 2013. Geometry and earthquake potential of the Shoreline fault,central California[J]. Bull Seismol Soc Am,103(1):447–462. doi: 10.1785/0120120175

    Harris R A. 1998. Introduction to special section:Stress triggers,stress shadows,and implications for seismic hazard[J]. J Geophys Res:Solid Earth,103(B10):24347–24358. doi: 10.1029/98JB01576

    Jia K,Zhou S Y,Zhuang J C,Jiang C S,Guo Y C,Gao Z H,Gao S S. 2018. Did the 2008 MW7.9 Wenchuan earthquake trigger the occurrence of the 2017 MW6.5 Jiuzhaigou earthquake in Sichuan,China?[J]. J Geophys Res:Solid Earth,123(4):2965–2983. doi: 10.1002/2017JB015165

    Jiang J Z,Li J,Fu H. 2019a. Seismicity analysis of the 2016 MS5.0 Yunlong earthquake,Yunnan,China and its tectonic implications[J]. Pure Appl Geophys,176(3):1225–1241. doi: 10.1007/s00024-018-2067-7

    Jiang J Z,Yang Y H,Wang B,Xiang Y,Pang W D,Yang J,Li X B,Ye B. 2019b. Assessing short-term clock errors and drifts of temporary seismic networks using the active airgun source in Binchuan,Yunnan[J]. Seismol Res Lett,90(6):2165–2174. doi: 10.1785/0220190098

    King G C P,Stein R S,Lin J. 1994. Static stress changes and the triggering of earthquakes[J]. Bull Seismol Soc Am,84(3):935–953.

    Kisslinger C. 1996. Aftershocks and fault-zone properties[J]. Advances in Geophysics,38:1–36. doi: 10.1016/S0065-2687(08)60019-9

    Li L,Yao D D,Meng X F,Peng Z G,Wang B S. 2017. Increasing seismicity in southern Tibet following the 2015 MW7.8 Gorkha, Nepal earthquake[J]. Tectonophysics,714/715(7):62–70.

    Meng X F,Peng Z G,Hardebeck J L. 2013. Seismicity around Parkfield correlates with static shear stress changes following the 2003 MW6.5 San Simeon earthquake[J]. J Geophys Res:Solid Earth,118(7):3576–3591. doi: 10.1002/jgrb.50271

    Mogi K. 1967. Earthquakes and fractures[J]. Tectonophysics,5(1):35–55. doi: 10.1016/0040-1951(67)90043-1

    Ogata Y. 1988. Statistical models for earthquake occurrences and residual analysis for point processes[J]. J Am Stat Assoc,83(401):9–27. doi: 10.1080/01621459.1988.10478560

    Ogata Y. 1992. Detection of precursory relative quiescence before great earthquakes through a statistical model[J]. J Geophys Res:Solid Earth,97(B13):19845–19871. doi: 10.1029/92JB00708

    Peng Z G,Zhao P. 2009. Migration of early aftershocks following the 2004 Parkfield earthquake[J]. Nat Geosci,2(12):877–881. doi: 10.1038/ngeo697

    Ross Z E,Trugman D T,Hauksson E,Shearer P M. 2019. Searching for hidden earthquakes in southern California[J]. Science,364(6442):767–771. doi: 10.1126/science.aaw6888

    Schaff D P,Richards P G. 2004. Lg-wave cross correlation and double-difference location:Application to the 1999 Xiuyan,China,sequence[J]. Bull Seismol Soc Am,94(3):867–879. doi: 10.1785/0120030136

    Shelly D R,Beroza G C,Ide S,Nakamula S. 2006. Low-frequency earthquakes in Shikoku,Japan,and their relationship to episodic tremor and slip[J]. Nature,442(7099):188–191. doi: 10.1038/nature04931

    Utsu T,Ogata Y,Matsu’ura R S. 1995. The centenary of the Omori formula for a decay law of aftershock activity[J]. J Phys Earth,43(1):1–33. doi: 10.4294/jpe1952.43.1

    Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,96(6):1353–1368.

    Waldhauser F,Schaff D P. 2008. Large‐scale relocation of two decades of northern California seismicity using cross‐correlation and double‐difference methods[J]. J Geophys Res:Solid Earth,113(B8):B08311.

    Wang X,Wei S J,Wu W B. 2017. Double-ramp on the Main Himalayan Thrust revealed by broadband waveform modeling of the 2015 Gorkha earthquake sequence[J]. Earth Planet Sci Lett,473:83–93. doi: 10.1016/j.jpgl.2017.05.032

    Wu J,Yao D D,Meng X F,Peng Z G,Su J R,Long F. 2017. Spatial‐temporal evolutions of early aftershocks following the 2013 MW6.6 Lushan earthquake in Sichuan,China[J]. J Geophys Res:Solid Earth,122(4):2873–2889. doi: 10.1002/2016JB013706

    Zhang M,Wen L X. 2013. High‐precision location and yield of North Korea’s 2013 nuclear test[J]. Geophys Res Lett,40(12):2941–2946. doi: 10.1002/grl.50607

    Zhang M,Wen L X. 2015. An effective method for small event detection:Match and locate (M&L)[J]. Geophys J Int,200(3):1523–1537. doi: 10.1093/gji/ggu466

    Zhao L S,Helmberger D V. 1994. Source estimation from broad-band regional seismograms[J]. Bull Seismol Soc Am,84(1):91–104.

    Zhu L P,Helmberger D V. 1996. Advancement in source estimation techniques using broadband regional seismograms[J]. Bull Seismol Soc Am,86(5):1634–1641.

  • 期刊类型引用(4)

    1. 周浩,朱景宝,宋晋东,李山有. 基于MEMS和无线通信的余震流动监测预警系统. 世界地震工程. 2025(01): 133-144 . 百度学术
    2. 彭朝勇,程振鹏,郑钰,徐志强. 考虑P波预警参数的震源破裂特征实时持续估测方法. 地球科学. 2024(02): 391-402 . 百度学术
    3. 宝音图,王鹏翔,徐茂臣,川濑博. 日本地震预警系统研究综述. 世界地震工程. 2024(03): 72-82 . 百度学术
    4. 李同林,江鹏,马康熙,程思智,李萍萍,韦永祥,曾维祖,晋云霞,王竞,苏金蓉. 2022年6月1日芦山6.1级地震预警处理能力及效能分析. 中国地震. 2024(03): 586-601 . 百度学术

    其他类型引用(2)

图(11)
计量
  • 文章访问数:  1380
  • HTML全文浏览量:  576
  • PDF下载量:  125
  • 被引次数: 6
出版历程
  • 收稿日期:  2019-10-31
  • 修回日期:  2020-05-19
  • 网络出版日期:  2020-12-20
  • 发布日期:  2020-09-14

目录

    /

    返回文章
    返回