利用虚震源反射成像法研究江南造山带东段上地壳结构

肖尧, 唐启家, 王林松

肖尧, 唐启家, 王林松. 2020: 利用虚震源反射成像法研究江南造山带东段上地壳结构. 地震学报, 42(5): 567-579. DOI: 10.11939/jass.20190193
引用本文: 肖尧, 唐启家, 王林松. 2020: 利用虚震源反射成像法研究江南造山带东段上地壳结构. 地震学报, 42(5): 567-579. DOI: 10.11939/jass.20190193
Xiao Yao, Tang Qijia, Wang Linsong. 2020: Crustal structure across the Jiangnan orogen from teleseismic virtual-source reflection method. Acta Seismologica Sinica, 42(5): 567-579. DOI: 10.11939/jass.20190193
Citation: Xiao Yao, Tang Qijia, Wang Linsong. 2020: Crustal structure across the Jiangnan orogen from teleseismic virtual-source reflection method. Acta Seismologica Sinica, 42(5): 567-579. DOI: 10.11939/jass.20190193

利用虚震源反射成像法研究江南造山带东段上地壳结构

基金项目: 中央高校基本科研业务费专项(CUGCJ1707)和中国地质大学(武汉)地质过程与矿产资源国家重点实验室专项(MSFGPMR01-5)联合资助
详细信息
    通讯作者:

    唐启家: e-mail:iori89724@hotmail.com

  • 中图分类号: P315.2

Crustal structure across the Jiangnan orogen from teleseismic virtual-source reflection method

  • 摘要: 江南造山带是华南地区扬子地块与华夏地块碰撞的产物,其地壳构造记录了两地块的碰撞过程,研究江南造山带的地壳构造有助于重建扬子地块与华夏地块的碰撞过程。本研究在江南造山带上布设了两条流动地震台阵,利用虚震源反射法提取其所记录的远震事件初至P波在地表的反射波(PPdp)波形,重构了研究区内两条测线下方的上地壳结构。结果显示:江绍断裂两侧上地壳沉积层的厚度变化明显,推断该断裂是扬子地块与华夏地块的东边界;相较华夏地块,江南造山带与扬子地块的层位连续性更强,符合江南造山带先与扬子地块合为整体后再与华夏地块碰撞的多期构造过程及其对应产生的亲扬子地块属性;江绍断裂西北侧的地层不整合以及赣东北断裂区域的断陷构造,可为了解古华夏洋向扬子陆块俯冲及碰撞和随后的构造运动过程提供参考依据。
    Abstract: The Jiangnan orogen belt (JOB) was formed by the collision between the Yangtze block (YB) and the Cathaysia block (CB). The crustal structure of the JOB recorded the collisional process between the two blocks. Hence, studying crust of the JOB can illuminate the process between the YB and the CB, and thus better understand the tectonic evolution of the South China Plate (SCP). In this study, we applied the teleseismic virtual reflection method to derive the phase of the reflection waves (PPdp) of large teleseismic earthquakes recorded by two temporary seismic arrays that were deployed around the JOB and obtained the upper crust structures. The results suggest that the thickness of the upper crust sediments on two sides of the Jiangshao fault changes obviously. It is also inferred that the Jiangshao fault is the eastern boundary between the Yangtze block and the Cathaysia block. The JOB and the YB have more apparent stratigraphic continuity than that of the CB. This result agrees with a multi-stage tectonic model which suggests that the JOB first bounded the YB and then collided with the CB. Hence the characteristics of the JOB are closer to that of the YB. The stratigraphic unconformities in the northwest of the Jiangshao fault and the fault structure in the northeast Jiangxi region provides a basic profile for understanding the subducting and colliding processes between the ancient Cathaysian ocean and the YB as well.
  • 图  1   江南造山带及其邻近地区地质图

    Figure  1.   Geological map of the Jiangnan orogen and its surrounding region

    图  2   远震地震射线PPdp与PPmp传播示意图

    Figure  2.   A diagrammatic view of the ray path of the teleseismic PPdp and PPmp phases

    图  3   正演模型与反演结果

    (a) 正演使用的两层水平模型;(b) 运用虚震源反射方法反演得到的时间-距离剖面

    Figure  3.   Forward model and inversion results

    (a) The two-layer horizontal model;(b) Time-distance profile obtained by the teleseismic virtual-source reflection (TVR) inversion

    图  4   事件②波形在AA′剖面台站的处理结果

    (a) 去仪器响应并通过0.1—2 Hz的带通滤波后的波形,右图为平均各道所得到的震源子波,背景中细灰色线代表用于叠加的各道波形,倒三角形标出了用于图6的台站位置;(b) 事件②虚震源反射成像剖面;(c) 事件①,②,③的虚震源反射叠加剖面;(d) 叠加后对各道进行三道圆滑的结果

    Figure  4.   Waveform processing results of event ② along the AA′ profile

    (a) Waveform data after removing the instrument response from the raw data and it was filtered by a 0.1−2 Hz band-pass filter。The averaged seismic trace is shown on the right,and the gray background curves are the overlapped traces of all channels。The inverse triangle marks the location where the station is taken for Fig. 6;(b) The original TVR profile from event ②;(c) The stacked TVR profile for teleseismic events ①,② and ③;(d) The smoothed TVR profile

    图  5   事件⑤波形在BB′剖面台站的处理结果

    (a) 去仪器响应并通过0.1—2 Hz的带通滤波后的波形,右图为平均各道所得到的震源子波,背景中细灰色线代表用于叠加的各道波形,倒三角形标出了用于图6的台站位置;(b) 事件⑤虚震源反射成像剖面;(c) 叠加事件④—⑧的虚震源反射剖面;(d) 叠加后对各道进行三道圆滑的结果

    Figure  5.   Waveform processing results of event ⑤ at the BB′ profile

    (a) Waveform data after removing the instrument response from the raw data, it was filtered by a 0.1−2 Hz band-pass filter. The averaged seismic trace is shown on the right,and the gray background curves are the overlapped traces of all channels. The inverse triangle marks the locations where the station is taken for Fig. 6;(b) The original TVR profile from event ⑤;(c) The stacked TVR profile for teleseismic events ④−⑧;(d) The smoothed TVR profile

    图  6   远震虚源反射法与传统接收函数结果对比

    (a) 事件②在台站 (图4a中倒三角形)处的虚源反射剖面(上图)与合成信号(下图)的对比,箭头代表识别的震相,合成信号所用参数为vP为5.2 km/s,vS为3.1 km/s,反射层深度为6.5 km;(b) 事件②在台站(图4a中倒三角形)处Ps转换波接收函数(箭头)(上图)与人工合成信号(下图)的对比,合成信号所用参数与图(a)相同;(c) 与图(a)相似,事件⑤在台站(图5a中倒三角形)处的对比,合成信号所用参数为vP为5.2 km/s,vS为3.1 km/s,反射层深度为5 km;(d) 与图(b)相似,事件⑤在台站(图5a中倒三角形)处的对比,合成信号所用参数与图(c)相同

    Figure  6.   Example of TVR profile (top) for events ② and ⑤ at the marked station (inverse triangle in Figs. 4a and 5a) versus synthetic seismogram (bottom)

    (a) Example of TVR profile (top) for the event ② at the marked station (inverse triangle in Fig. 4a) versus synthetic seismogram (bottom). The arrow represents the recognized seismic phase. The synthetics were calculated to fit the data using vP of 5.2 km/s and vS of 3.1 km/s and the depth of the seismic layer generating reflection phase is 6.5 km. (b) Example of conventional Ps receiver function (top) at the marked station (inverse triangle in Fig. 4a) compared with the synthetic seismogram (bottom). The parameters used to synthesize the signal are the same as those in Fig. (a). (c) Example of TVR profile (top) for the event ⑤ at the marked station (inverse triangle in Fig. 5aversus synthetic seismogram (bottom). The arrow represents the recognized seismic phase. The synthetics were calculated to fit the data using vP of 5.2 km/s and vS of 3.1 km/s and the depth of the seismic layer generating reflection phase is 5 km. (d) Example of conventional Ps receiver function (top) at the marked station (inverse triangle in Fig. 5a) compared with the synthetic seismogram (bottom). The parameters used to synthesize the signal are the same as those in Fig. (c)

    图  7   结合已知的地层信息与断层对成像剖面AA′ (a)和 BB′ (b)的解释

    两剖面以纵波速度5.2 km/s进行时深转换结果。绿色线表示沉积层,蓝色和红色线代表上地壳内两段反射面

    Figure  7.   Interpretation of profiles AA′ (a) and BB′ (b) from the interfaces and known faults

    The two profiles are converted using average P-wave velocity of 5.2 km/s. The green lines represent sedimentary layers,and the blue and red lines represent two reflections in the shallow crust

    表  1   本研究所用地震事件的参数

    事件
    编号
    发震日期 MS 地理位置 震源深度
    /km
    震中距
     年-月-日 时:分:秒
    2019-04-03 05:35:33 6.4 (52.25°N,178.00°E) 20 50.711
    2019-04-07 05:55:00 6.1 (6.90°S,125.07°E) 540 36.746
    2019-04-12 22:51:32 5.8 (6.43°S,148.57°E) 20 47.157
    2019-06-03 14:04:36 5.5 (0.35°N,97.72°E) 20 35.244
    2019-06-15 04:10:52 5.6 (5.86°S,130.75°E) 120 37.696
    2019-06-16 06:55:00 7.2 (30.80°S,178.10°W) 20 85.704
    2019-06-16 13:17:15 6.2 (30.97°S,178.06°W) 30 85.836
    2019-06-17 14:02:04 5.9 (30.85°S,177.60°W) 20 86.071
    注:震源参数引自中国地震台网中心
    下载: 导出CSV
  • 黄汲清,任纪舜,姜春发,张之孟,徐志琴. 1977. 中国大地构造基本轮廓[J]. 地质学报,51(2):117–135.

    Huang J Q,Ren J S,Jiang C F,Zhang Z M,Xu Z Q. 1977. An outline of the characteristics of China[J]. Acta Geology Sinica,51(2):117–135 (in Chinese).

    李吉均,张林源,邓养鑫,周尚哲. 1983. 庐山第四纪环境演变和地貌发育问题[J]. 中国科学:B辑,13(8):734–745.

    Li J J,Zhang L Y,Deng Y X,Zhou S Z. 1983. Problems on Quaternary environmental evolution and geomorphic development in the Lushan Mountain[J]. Science in China:Series B,13(8):734–745 (in Chinese).

    梁锋,吕庆田,严加永,刘振东. 2014. 长江中下游宁芜火山岩盆地深部结构特征:来自反射地震的认识[J]. 岩石学报,30(4):941–956.

    Liang F,Lü Q T,Yan J Y,Liu Z D. 2014. Deep structure of Ningwu volcanic basin in the middle and lower reaches of Yangtze River:Insights from reflection seismic data[J]. Acta Petrologica Sinica,30(4):941–956 (in Chinese).

    梁兴,叶舟,吴根耀,郑华平,徐克定,张廷山,刘家铎. 2006. 鄱阳盆地构造-沉积特征及其演化史[J]. 地质科学,41(3):404–429.

    Liang X,Ye Z,Wu G Y,Zheng H P,Xu K D,Zhang T S,Liu J D. 2006. Sedimento-tectonic features and geological evolution of the Poyang basin[J]. Chinese Journal of Geology,41(3):404–429 (in Chinese).

    舒良树,周新民,邓平,余心起. 2006. 南岭构造带的基本地质特征[J]. 地质论评,52(2):251–265.

    Shu L S,Zhou X M,Deng P,Yu X Q. 2006. Principal geological features of Nanling tectonic belt,South China[J]. Geological Review,52(2):251–265 (in Chinese).

    舒良树. 2012. 华南构造演化的基本特征[J]. 地质通报,31(7):1035–1053.

    Shu L S. 2012. An analysis of principal features of tectonic evolution in South China block[J]. Geological Bulletin of China,31(7):1035–1053 (in Chinese).

    王孝磊,周金城,陈昕,张凤凤,孙梓铭. 2017. 江南造山带的形成与演化[J]. 矿物岩石地球化学通报,36(5):714–735.

    Wang X L,Zhou J C,Chen X,Zhang F F,Sun Z M. 2017. Formation and evolution of the Jiangnan Orogen[J]. Bulletin of Mineralogy,Petrology and Geochemistry,36(5):714–735 (in Chinese).

    徐涛,张忠杰,田小波,刘宝峰,白志明,吕庆田,滕吉文. 2014. 长江中下游成矿带及邻区地壳速度结构:来自利辛—宜兴宽角地震资料的约束[J]. 岩石学报,30(4):918–930.

    Xu T,Zhang Z J,Tian X B,Liu B F,Bai Z M,Lü Q T,Teng J W. 2014. Crustal structure beneath the middle-lower Yangtze metallogenic belt and its surrounding areas:Constraints from active source seismic experiment along the Lixin to Yixing profile in East China[J]. Acta Petrologica Sinica,30(4):918–930 (in Chinese).

    杨晓东,吴中海,张海军. 2016. 鄱阳湖盆地的地质演化、新构造运动及其成因机制探讨[J]. 地质力学学报,22(3):667–684.

    Yang X D,Wu Z H,Zhang H J. 2016. Geological evolution,neotectonics and genetic mechanism of the Poyang lake basin[J]. Journal of Geomechanics,22(3):667–684 (in Chinese).

    张培震,邓起东,张国民,马瑾,甘卫军,闵伟,毛凤英,王琪. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学:D辑,33(增刊1):12–20.

    Zhang P Z,Deng Q D,Zhang G M,Ma J,Gan W J,Min W,Mao F Y,Wang Q. 2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China:Series D,46(2):13–24.

    周新民,朱云鹤. 1992. 江绍断裂带的岩浆混合作用及其两侧的前寒武纪地质[J]. 中国科学:B辑,22(3):296–303.

    Zhou X M,Zhu Y H. 1992. Magma mixing in the Jiang-Shao fault zone and the Precambrian geology of both side of the Jiang-Shao zone[J]. Science in China:Series B,22(3):296–303 (in Chinese).

    Chen M,Niu F L,Liu Q Y,Tromp J,Zheng X F. 2015. Multiparameter adjoint tomography of the crust and upper mantle beneath East Asia:1. Model construction and comparisons[J]. J Geophys Res:Solid Earth,120(3):1762–1786. doi: 10.1002/2014JB011638

    Guo L H,Gao R,Shi L,Huang Z R,Ma Y W. 2019. Crustal thickness and Poisson’s ratios of South China revealed from joint inversion of receiver function and gravity data[J]. Earth Planet Sci Lett,510:142–152. doi: 10.1016/j.jpgl.2018.12.039

    Guo L Z,Shi Y S,Lu H F,Ma R S,Dong H G,Yang S F. 1989. The pre-Devonian tectonic patterns and evolution of South China[J]. J Southeast Asian Earth Sci,3(1/2/3/4):87–93.

    Guo Z,Gao X,Li T,Wang W. 2018. Crustal and uppermost mantle structures of the South China from joint analysis of receiver functions and Rayleigh wave dispersions[J]. Phys Earth Planet Inter,278:16–25. doi: 10.1016/j.pepi.2018.03.001

    Hsü K J,Li J L,Chen H H,Wang Q C,Sun S,Şengör A M C. 1990. Tectonics of South China:Key to understanding West Pacific geology[J]. Tectonophysics,183(1/2/3/4):9–39.

    Huang J L,Zhao D P. 2006. High-resolution mantle tomography of China and surrounding regions[J]. J Geophys Res,111(B9):B09305.

    Huang R,Xu Y X,Zhu L P,He K. 2015. Detailed Moho geometry beneath southeastern China and its implications on thinning of continental crust[J]. J Asian Earth Sci,112:42–48. doi: 10.1016/j.jseaes.2015.09.002

    Lü Q T,Yan J Y,Shi D N,Dong S W,Tang J T,Wu M G,Chang Y F. 2013. Reflection seismic imaging of the Lujiang-Zongyang volcanic basin,Yangtze Metallogenic Belt:An insight into the crustal structure and geodynamics of an ore district[J]. Tectonophysics,606:60–77. doi: 10.1016/j.tecto.2013.04.006

    Li H Y,Song X D,Lü Q T,Yang X Y,Deng Y F,Ouyang L B,Li J P,Li X F,Jiang G M. 2018. Seismic imaging of lithosphere structure and upper mantle deformation beneath east-central China and their tectonic implications[J]. J Geophys Res,123(4):2856–2870. doi: 10.1002/2017JB014992

    Li X Q,Nábĕlek J L. 1999. Deconvolution of teleseismic body waves for enhancing structure beneath a seismometer array[J]. Bull Seismol Soc Am,89(1):190–201.

    Ligorría J P,Ammon C J. 1999. Iterative deconvolution and receiver-function estimation[J]. Bull Seismol Soc Am,89(5):1395–1400.

    Lin S F,Xing G F,Davis D W,Yin C Q,Wu M L,Li L M,Jiang Y,Chen Z H. 2018. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China[J]. Geology,46(4):319–322. doi: 10.1130/G39806.1

    Luo S,Yao H J,Li Q S,Wang W T,Wan K S,Meng Y F,Liu B. 2019. High-resolution 3D crustal S-wave velocity structure of the Middle-Lower Yangtze River Metallogenic Belt and implications for its deep geodynamic setting[J]. Science China Earth Sciences,62(9):1361–1378. doi: 10.1007/s11430-018-9352-9

    Luo Y H,Xu Y X,Yang Y J. 2012. Crustal structure beneath the Dabie orogenic belt from ambient noise tomography[J]. Earth Planet Sci Lett,313/314:12–22. doi: 10.1016/j.jpgl.2011.11.004

    Shen W S,Ritzwoller M H,Kang D,Kim Y H,Lin F C,Ning J Y,Wang W T,Zheng Y,Zhou L Q. 2016. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophys J Int,206(2):954–979. doi: 10.1093/gji/ggw175

    Shu L S,Faure M,Yu J H,Jahn B M. 2011. Geochronological and geochemical features of the Cathaysia block (South China):New evidence for the Neoproterozoic breakup of Rodinia[J]. Precambrian Res,187(3/4):263–276.

    Tong P,Chen C W,Komatitsch D,Basini P,Liu Q Y. 2014. High-resolution seismic array imaging based on an SEM-FK hybrid method[J]. Geophys J Int,197(1):369–395. doi: 10.1093/gji/ggt508

    Tseng T L,Chen W P. 2006. Probing the southern Indian shield with P-wave receiver-function profiles[J]. Bull Seismol Soc Am,96(1):328–333. doi: 10.1785/0120050074

    Tseng T L,Chen W P,Nowack R L. 2009. Northward thinning of Tibetan crust revealed by virtual seismic profiles[J]. Geophys Res Lett,36(24):L24304. doi: 10.1029/2009GL040457

    Wang D Z,Shu L S. 2012. Late Mesozoic basin and range tectonics and related magmatism in Southeast China[J]. Geosci Front,3(2):109–124. doi: 10.1016/j.gsf.2011.11.007

    Yang Z H,Sheehan A F,Yeck W L,Miller K C,Erslev E A,Worthington L L,Harder S H. 2012. Imaging basin structure with teleseismic virtual source reflection profiles[J]. Geophys Res Lett,39(2):L02303.

    Yu J H, Schuster G T. 2001. Crosscorrelogram migration of IVSPWD Data[C]//2001 SEG Annual International Meeting. San Antonio, Texas: Society of Exploration Geophysicists: 456–459.

    Zhao G C. 2015. Jiangnan Orogen in South China:Developing from divergent double subduction[J]. Gondwana Res,27(3):1173–1180. doi: 10.1016/j.gr.2014.09.004

    Zhou X M,Li W X. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China:Implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics,326(3/4):269–287.

    Zou Z H,Zhou H W,Gurrola H. 2014. Teleseismic virtual‐source imaging of the basin structures in the Three Gorges region,China[J]. Bull Seismol Soc Am,104(4):2142–2147. doi: 10.1785/0120130110

图(7)  /  表(1)
计量
  • 文章访问数:  995
  • HTML全文浏览量:  551
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-01
  • 修回日期:  2020-06-07
  • 网络出版日期:  2020-12-07
  • 发布日期:  2020-09-14

目录

    /

    返回文章
    返回