基于Swarm卫星数据的一次地震电离层现象辨识

何宇飞, 杨冬梅, 赵旭东

何宇飞, 杨冬梅, 赵旭东. 2020: 基于Swarm卫星数据的一次地震电离层现象辨识. 地震学报, 42(6): 745-759. DOI: 10.11939/jass.20200010
引用本文: 何宇飞, 杨冬梅, 赵旭东. 2020: 基于Swarm卫星数据的一次地震电离层现象辨识. 地震学报, 42(6): 745-759. DOI: 10.11939/jass.20200010
He Yufei, Yang Dongmei, Zhao Xudong. 2020: The identification of a seismo-ionospheric phenomenon based on Swarm satellite data. Acta Seismologica Sinica, 42(6): 745-759. DOI: 10.11939/jass.20200010
Citation: He Yufei, Yang Dongmei, Zhao Xudong. 2020: The identification of a seismo-ionospheric phenomenon based on Swarm satellite data. Acta Seismologica Sinica, 42(6): 745-759. DOI: 10.11939/jass.20200010

基于Swarm卫星数据的一次地震电离层现象辨识

基金项目: 中国地震局地球物理研究所基本科研业务费专项(DQJB19B11)、“十三五”国家重点研发计划“重大自然灾害监测预警与防范”重点专项(2018YFC1503505)和国家自然科学基金面上项目(41774085)共同资助
详细信息
    通讯作者:

    杨冬梅: e-mail:yangdm@cea-igp.ac.cn

  • 中图分类号: P315.72+1

The identification of a seismo-ionospheric phenomenon based on Swarm satellite data

  • 摘要: 为进一步探索基于多颗卫星观测数据的地震电离层现象识别,利用Swarm星座三颗卫星观测的电子密度数据和磁场数据,对已报道的2017年11月12日伊朗MW7.3地震震前第9天震中附近的一次地震电离层扰动现象进行辨识。通过分析三颗卫星相邻轨道的电离层扰动特征,获得了异常扰动存在的空间范围;利用Swarm星座三颗卫星轨道的时间和空间差异,计算出异常扰动在空间中可能的传播特征;使用同步观测的磁场数据判断其电磁辐射特性。最终根据现有对地震电离层耦合的认知,并结合分析的结果,认为该扰动为非震源发出的声重波扰动,非沿纬向传播的电离层行波扰动,非同步电磁辐射引发扰动,而是与伊朗MW7.3地震孕育活动无关的一次高纬度强烈电离层活动所引起的扰动变化。
    Abstract: In order to explore the identification of the seismo-ionospheric phenomena based on the data from several satellites, the electron density data and magnetic field data observed by three satellites in the Swarm constellation were used to analyse the ionospheric disturbances 9 days before the Iran MW7.3 earthquake occurred on November 12, 2017. The spatial range of the abnormal disturbance was judged by analysis of the adjacent orbits data. The possible spatial propagation characteristics of the disturbances were calculated through the time and space difference of three satellites orbits of Swarm constellation. The electromagnetic radiation characteristics are determined by using synchronous magnetic field observation data. Finally, according to the current knowledge of seismo-ionospheric coupling and combining with the analysis results, we can come to this conclusion that the ionospheric disturbance was neither acoustic gravity wave (AGW) caused by seismic activity, nor the traveling ionospheric disturbance (TID) of the ionosphere, nor the disturbance caused by electromagnetic radiation, but a disturbance caused by strong high latitude ionospheric activity which is unrelated to the seismic activity.
  • 图  1   Swarm星座三颗卫星地方时t与世界时(年份)的对应关系

    Figure  1.   The correspondence between local time t and universal time (year) of the three satellites in Swarm constellation

    图  2   伊朗地震震前第9天三颗卫星的轨道及观测数据随纬度的变化

    图中不同颜色表示不同卫星轨道或数据,红色为Swarm A星,绿色为Swarm B星,蓝色为Swarm C星,黑色竖虚线为震中所对应的纬度,下同(a) 三颗卫星震区轨道的空间分布;(b) 经过震区的三颗卫星轨道的观测数据;(c,d) 震区升轨道和降轨道观测数据;(e,f) 震区升轨道和降轨道的扰动数据

    Figure  2.   The orbits position and ionospheric observation data with latitude of the three satellites on the 9th day before the Iran earthquake

    The different colors represent the orbits or data of different satellites,the red is Swarm A,the green is Swarm B,the blue is Swarm C. The black vertical dotted line is the latitude corresponding to the epicenter. The same below (a) The orbits spatial distribution of three satellites; (b) The orbital observation data of three satellites passing through the seismic region; (c,d) The observation data respectively refer to the ascending orbit and descending orbit in the seismic region; (e,f) The disturbance data respectively refer to the ascending orbit and descending orbit in the seismic region

    图  3   伊朗地震前后震区内Swarm三颗卫星轨道位置及其观测数据的扰动变化

    红色椭圆表示震中附近观测到的扰动。图(a)和 (b)、(c)和 (d)、(e)和 (f)分别为震前第20天、震前第7天和震后第5天震区轨道的空间分布和观测数据的扰动变化

    Figure  3.   The orbital positions of the three satellites in Swarm constellation and the disturbance changes of their observed data in the quake zone before and after the Iran earthquake

    The red ellipses represents the disturbances observed around the epicenter. Figs.(a) and (b),(c) and (d),(e) and (f) arethe orbit position and disturbances respect to the 20th and the 7th day before and the 5th day after the Iran earthquake,respectively

    图  4   震区及其左右相邻区域三颗卫星轨道的空间分布

    Figure  4.   The orbits spatial distribution of three satellites in the seismic region and its left and right adjacent regions

    图  5   震区(a)及其左(b)、右(c)相邻区域三颗卫星升轨道的扰动数据

    红色矩形表示三个相近区域纬度位置的扰动

    Figure  5.   The ascending orbital disturbance data of three satellites in the seismic region (a) and its left (b) and right (c) adjacent regions

    The red rectangle represents the disturbances at similar latitudes in the three regions

    图  6   伊朗地震前后20天内所有扰动的空间分布

    红色实线是地磁赤道,红色虚线是地磁纬度±45°,红色圆点是震中位置

    Figure  6.   The spatial distribution of all disturbances 20 days before and after the Iran earthquake

    The solid red line is the geomagnetic equator,the two dotted red lines are the geomagneticlatitude ±45° and the red dot is the epicenter

    图  7   Swarm A和Swarm C卫星观测到的电离层扰动与震中相对位置的空间分布

    红色和蓝色圆点分别对应Swarm A和Swarm C星的扰动数值,浅蓝色正方形标记出与两次扰动时间对应的卫星位置

    Figure  7.   The spatial distribution of the ionospheric disturbances relative to the epicenter observed by satellites Swarm A and Swarm C

    The red and blue dots correspond to the disturbance values of Swarm A and Swarm C respectively,and the light blue squares mark the satellite positions corresponding to the two disturbance time

    图  8   Swarm三颗卫星观测的地磁场X (a)、Y (b)和Z (c)三分量的扰动变化

    Figure  8.   The disturbances of the X (a),Y (b) and Z (c) of the geomagnetic fieldobserved by three satellites in Swarm constellation

  • 蔡军涛,陈小斌,赵国泽,詹艳,汤吉. 2007. 地震前兆:电离层F2层异常[J]. 地球物理学进展,22(3):720–728. doi: 10.3969/j.issn.1004-2903.2007.03.010

    Cai J T,Chen X B,Zhao G Z,Zhan Y,Tang J. 2007. Earthquake precursor:The anomalies in the ionospheric F2 region[J]. Progress in Geophysics,22(3):720–728 (in Chinese).

    丁鉴海,申旭辉,潘威炎,张晶,余素荣,李纲,关华平. 2006. 地震电磁前兆研究进展[J]. 电波科学学报,21(5):791–801. doi: 10.3969/j.issn.1005-0388.2006.05.031

    Ding J H,Shen X H,Pan W Y,Zhang J,Yu S R,Li G,Guan H P. 2006. Seismo-electromagnetism precursor research progress[J]. Chinese Journal of Radio Science,21(5):791–801 (in Chinese).

    韩鸣,张永志,程冬,尹鹏. 2019. 多视角InSAR数据解算2017两伊地震三维同震形变场[J]. 测绘通报,(4):75–78.

    Han M,Zhang Y Z,Cheng D,Yin P. 2019. Calculation three-dimensional coseismic deformation of the 2017 Iran-Iraq earthquake by multi-angle InSAR data[J]. Bulletin of Surveying and Mapping,(4):75–78 (in Chinese).

    何建辉,张学民,林剑,王敏,申旭辉. 2017. 汶川地震同震电离层扰动研究[J]. 地震,37(2):126–134. doi: 10.3969/j.issn.1000-3274.2017.02.012

    He J H,Zhang X M,Lin J,Wang M,Shen X H. 2017. Coseismic ionosphere disturbances of the 2008 Wenchuan earthquake[J]. Earthquake,37(2):126–134 (in Chinese).

    黄建平,刘静,欧阳新艳,李文静. 2010. 智利8.8级地震前后高能粒子数据变化分析[J]. 地震地质,32(3):417–423. doi: 10.3969/j.issn.0253-4967.2010.03.008

    Huang J P,Liu J,Ouyang X Y,Li W J. 2010. Analysis to the energetic particles around the M8.8 Chili earthquake[J]. Seismology and Geology,32(3):417–423 (in Chinese).

    焦其松,颜蕊,张景发. 2011. Demeter卫星监测到的海地地震前电离层扰动[J]. 地震,31(2):68–78. doi: 10.3969/j.issn.1000-3274.2011.02.008

    Jiao Q S,Yan R,Zhang J F. 2011. Ionospheric disturbances observed on DEMETER satellite prior to the 2010 MS7.1 Haiti earthquake[J]. Earthquake,31(2):68–78 (in Chinese).

    刘静,张学民,申旭辉,欧阳新艳,黄建平. 2009. 九江地震前DEMETER卫星观测到的电离层异常[J]. 地震,29(增刊):60–66.

    Liu J,Zhang X M,Shen X H,Ouyang X Y,Huang J P. 2009. Ionospheric anomalies before the Jiujiang earthquake observed by the DEMETER satellite[J]. Earthquake,29(S1):60–66 (in Chinese).

    刘静,万卫星,黄建平,张学民,赵庶凡,欧阳新艳,泽仁志玛. 2011. 智利8.8级地震的震前电子浓度扰动[J]. 地球物理学报,54(11):2717–2725.

    Liu J,Wan W X,Huang J P,Zhang X M,Zhao S F,Ouyang X Y,Zeren Z M. 2011. Electron density perturbation before Chile M8.8 earthquake[J]. Chinese Journal of Geophysics,54(11):2717–2725 (in Chinese).

    刘静,黄建平,张学民,申旭辉. 2013. 基于DEMETER卫星原位等离子体参量的震前异常提取方法研究及震例分析[J]. 地震学报,35(1):72–83. doi: 10.3969/j.issn.0253-3782.2013.01.008

    Liu J,Huang J P,Zhang X M,Shen X H. 2013. Anomaly extraction method study and earthquake case analysis based on in-situ plasma parameters of DEMETER satellite[J]. Acta Seismologica Sinica,35(1):72–83 (in Chinese).

    欧阳新艳,张学民,申旭辉,刘静,钱家栋,蔡晋安,赵庶凡. 2008. 普洱地震前电离层电子密度扰动变化研究[J]. 地震学报,30(4):424–436. doi: 10.3321/j.issn:0253-3782.2008.04.010

    Ouyang X Y,Zhang X M,Shen X H,Liu J,Qian J D,Cai J A,Zhao S F. 2008. Study on ionospheric Ne disturbances before 2007 Pu'er,Yunnan of China,earthquake[J]. Acta Seismologica Sinica,30(4):424–436 (in Chinese).

    欧阳新艳,张学民,申旭辉,黄建平,刘静,泽仁志玛,赵庶凡. 2011. DEMETER卫星探测到的强震前O+浓度变化[J]. 空间科学学报,31(5):607–617. doi: 10.11728/cjss2011.05.607

    Ouyang X Y,Zhang X M,Shen X H,Huang J P,Liu J,Zeren Z M,Zhao S F. 2011. Disturbance of O+ density before major earthquake detected by DEMETER satellite[J]. Chinese Journal of Space Science,31(5):607–617 (in Chinese).

    钱庚,泽仁志玛,张学民,申旭辉. 2016. 强震前后空间电磁场时空演化特征[J]. 地震学报,38(2):259–271. doi: 10.11939/jass.2016.02.010

    Qian G,Zeren Z M,Zhang X M,Shen X H. 2016. Spatio-temporal evolution of electromagnetic field pre- and post-earthquakes[J]. Acta Seismologica Sinica,38(2):259–271 (in Chinese).

    王泽民,孙伟,安家春. 2016. 2015−04−25尼泊尔MS8.1地震前后电离层VTEC异常变化分析[J]. 大地测量与地球动力学,36(2):133–137.

    Wang Z M,Sun W,An J C. 2016. Anomaly variation analysis of the ionospheric VTEC before and after the 25 April 2015 MS8.1 Nepal earthquake[J]. Journal of Geodesy and Geodynamics,36(2):133–137 (in Chinese).

    吴云,付宁波,林剑,周义炎,祝芙英,杨剑,熊晶. 2011. 用卡尔曼滤波法分析汶川MS8.0地震TEC异常[J]. 大地测量与地球动力学,31(2):23–27.

    Wu Y,Fu N B,Lin J,Zhou Y Y,Zhu F Y,Yang J,Xiong J. 2011. Research on TEC anomalies before MS8.0 Wenchuan earthquake by using Kalman filtering[J]. Journal of Geodesy and Geodynamics,31(2):23–27 (in Chinese).

    熊晶,吴云,祝芙英,林剑,周义炎,杨剑. 2008. 汶川地震前电离层NmF2异常扰动[J]. 大地测量与地球动力学,28(6):22–26.

    Xiong J,Wu Y,Zhu F Y,Lin J,Zhou Y Y,Yang J. 2008. Anomalous disturbance of ionospheric NmF2 during Wenchuan earthquake[J]. Journal of Geodesy and Geodynamics,28(6):22–26 (in Chinese).

    熊晶,周义炎,吴云. 2010. 玉树MS7.1地震前电离层VTEC异常[J]. 大地测量与地球动力学,30(5):24–27.

    Xiong J,Zhou Y Y,Wu Y. 2010. Ionospheric VTEC anomaly detected by ground-based GNSS before MS7.1 Yushu earthquake[J]. Journal of Geodesy and Geodynamics,30(5):24–27 (in Chinese).

    余素荣,丁鉴海,索玉成. 2004. 玛尼7.5级地震前磁场与电离层异常特征研究[J]. 地震,24(增刊):77–83.

    Yu S R,Ding J H,Suo Y C. 2004. Research on anomaly characteristics of geomagnetic field and ionosphere before Mani MS7.5 earthquake[J]. Earthquake,24(S1):77–83 (in Chinese).

    泽仁志玛,张学民,刘静,欧阳新艳,熊攀,申旭辉. 2010. 利用DEMETER卫星LANGMIUR探针观测数据研究强震前的电离层扰动[J]. 地震地质,32(3):424–433. doi: 10.3969/j.issn.0253-4967.2010.03.009

    Zeren Z M,Zhang X M,Liu J,Ouyang X Y,Xiong P,Shen X H. 2010. Ionospheric disturbances associated with strong earthquakes-results from LANGMUIR probe onboard DEMETER satellite[J]. Seismology and Geology,32(3):424–433 (in Chinese).

    泽仁志玛,申旭辉,曹晋滨,张学民,黄建平,刘静,欧阳新艳,赵庶凡. 2012. 强震前ELF/VLF磁场的扰动特征统计研究[J]. 地球物理学报,55(11):3699–3708. doi: 10.6038/j.issn.0001-5733.2012.11.017

    Zeren Z M,Shen X H,Cao J B,Zhang X M,Huang J P,Liu J,Ouyang X Y,Zhao S F. 2012. Statistical analysis of ELF/VLF magnetic field disturbances before major earthquakes[J]. Chinese Journal of Geophysics,55(11):3699–3708 (in Chinese).

    张明敏,刘智敏,刘盼,从建锋. 2018. 九寨沟7.0级地震前电离层TEC异常分析[J]. 测绘工程,27(12):24–30.

    Zhang M M,Liu Z M,Liu P,Cong J F. 2018. Analysis of ionospheric TEC anomalies before the Jiuzhaigou MS7.0 earthquake[J]. Engineering of Surveying and Mapping,27(12):24–30 (in Chinese).

    张学民,钱家栋,欧阳新艳,申旭辉,蔡晋安,赵庶凡. 2009a. DEMETER卫星观测到的智利7.9级地震前的电离层电磁扰动[J]. 地球物理学进展,24(4):1196–1203.

    Zhang X M,Qian J D,Ouyang X Y,Shen X H,Cai J A,Zhao S F. 2009a. Ionospheric electromagnetic disturbances observed on DEMETER satellite before an earthquake of M7.9 in Chili[J]. Progress in Geophysics,24(4):1196–1203 (in Chinese).

    张学民,钱家栋,欧阳新艳,蔡晋安,刘静,申旭辉,赵庶凡. 2009b. 新疆于田7.2级地震前的电离层电磁扰动[J]. 空间科学学报,29(2):213–221.

    Zhang X M,Qian J D,Ouyang X Y,Cai J A,Liu J,Shen X H,Zhao S F. 2009b. Ionospheric electro-magnetic disturbances prior to Yutian 7.2 earthquake in Xinjiang[J]. Chinese Journal of Space Science,29(2):213–221 (in Chinese).

    张学民,泽仁志玛,申旭辉,蔡军涛,赵庶凡,熊攀,陈化然,欧阳新艳. 2011. 地震前后电离层截止频率处电场频谱强度变化分析:以2006年汤加MW8.0地震为例[J]. 地震学报,33(4):451–460. doi: 10.3969/j.issn.0253-3782.2011.04.005

    Zhang X M,Zeren Z M,Shen X H,Cai J T,Zhao S F,Xiong P,Chen H R,Ouyang X Y. 2011. Analysis on variation of electric field spectrum at cut-off frequency before strong earthquakes:Taking 2006 Tonga MW8.0 earthquake as an example[J]. Acta Seismologica Sinica,33(4):451–460 (in Chinese).

    张学民,刘静,赵必强,徐彤,申旭辉,姚璐. 2014. 玉树地震前的电离层异常现象分析[J]. 空间科学学报,34(6):822–829. doi: 10.11728/cjss2014.06.822

    Zhang X M,Liu J,Zhao B Q,Xu T,Shen X H,Yao L. 2014. Analysis on ionospheric perturbations before Yushu earthquake[J]. Chinese Journal of Space Science,34(6):822–829 (in Chinese).

    张学民,申旭辉,赵庶凡,刘静,欧阳新艳,娄文宇,泽仁志玛,何建辉,钱庚. 2016. 地震电离层探测技术及其应用研究进展[J]. 地震学报,38(3):356–375. doi: 10.11939/jass.2016.03.004

    Zhang X M,Shen X H,Zhao S F,Liu J,Ouyang X Y,Lou W Y,Zeren Z M,He J H,Qian G. 2016. The seismo-ionospheric monitoring technologies and their application research development[J]. Acta Seismologica Sinica,38(3):356–375 (in Chinese).

    朱荣,杨冬梅,荆凤,杨俊英,欧阳新艳. 2008. Demeter卫星观测到的云南普洱地震前的电离层扰动[J]. 地震学报,30(1):76–81. doi: 10.3321/j.issn:0253-3782.2008.01.008

    Zhu R,Yang D M,Jing F,Yang J Y,Ouyang X Y. 2008. Ionospheric perturbations before Pu’er earthquake observed by the satellite DEMETER[J]. Acta Seismologica Sinica,30(1):76–81 (in Chinese).

    Akhoondzadeh M,De Santis A,Marchetti D,Piscini A,Jin S. 2019. Anomalous seismo-LAI variations potentially associated with the 2017 MW7.3 Sarpol-e Zahab(Iran)earthquake from Swarm satellites,GPS-TEC and climatological data[J]. Adv Space Res,64(1):143–158. doi: 10.1016/j.asr.2019.03.020

    Aleksandrin S Y,Galper A M,Grishantzeva L A,Koldashov S V,Maslennikov L V,Murashov A M,Picozza P,Sgrigna V,Voronov S A. 2003. High-energy charged particle bursts in the near-Earth space as earthquake precursors[J]. Ann Geophys,21(2):597–602. doi: 10.5194/angeo-21-597-2003

    Astafyeva E,Heki K,Kiryushkin V,Afraimovich E,Shalimov S. 2009. Two-mode long-distance propagation of coseismic ionosphere disturbances[J]. J Geophys Res:Space Phys,114(A10):A10307.

    Bagiya M S,Sunil P S,Sunil A S,Ramesh D S. 2018. Coseismic contortion and coupled nocturnal ionospheric perturbations during 2016 Kaikoura,MW7.8 New Zealand earthquake[J]. J Geophys Res:Space Phys,123(2):1477–1487. doi: 10.1002/2017JA024584

    Cahyadi M N,Heki K. 2013. Ionospheric disturbances of the 2007 Bengkulu and the 2005 Nias earthquakes,Sumatra,observed with a regional GPS network[J]. J Geophys Res:Space Phys,118(4):1777–1787. doi: 10.1002/jgra.50208

    Calais E,Minster J B. 1995. GPS detection of ionospheric perturbations following the January 17,1994,Northridge earthquake[J]. Geophys Res Lett,22(9):1045–1048. doi: 10.1029/95GL00168

    Chmyrev V M,Isaev N V,Bilichenko S V,Stanev G. 1989. Observation by space-borne detectors of electric fields and hydromagnetic waves in the ionosphere over an earthquake centre[J]. Phys Earth Planet Int,57(1/2):110–114.

    Chuo Y J,Chen Y I,Liu J Y,Pulinets S A. 2001. Ionospheric foF2 variations prior to strong earthquakes in Taiwan area[J]. Adv Space Res,27(6/7):1305–1310.

    Davies K,Baker D M. 1965. Ionospheric effects observed around the time of the Alaskan earthquake of March 28,1964[J]. J Geophys Res,70(4):1251–1253.

    De Santis A,Balasis G,Pavón-Carrasco F J,Cianchini G,Mandea M. 2017. Potential earthquake precursory pattern from space:The 2015 Nepal event as seen by magnetic swarm satellites[J]. Earth Planet Sci Lett,461:119–126. doi: 10.1016/j.jpgl.2016.12.037

    Dobrovolsky I P,Zubkov S I,Miachkin V I. 1979. Estimation of the size of earthquake preparation zones[J]. Pure Appl Geophys,117(5):1025–1044. doi: 10.1007/BF00876083

    European Space Agency. 2020. Swarm Data Access [EB/OL]. [2020−07−23]. https://swarm-diss.eo.esa.int.

    Fidani C,Battiston R,Burger W J. 2010. A study of the correlation between earthquakes and NOAA satellite energetic particle bursts[J]. Remote Sens,2(9):2170–2184. doi: 10.3390/rs2092170

    Freund F T,Takeuchi A,Lau B W S,Post R,Keefner J,Mellon J,Al-Manaseer A. 2004. Stress-induced changes in the electrical conductivity of igneous rocks and the generation of ground currents[J]. Terrestr Atmos Ocean Sci,15(3):437–468. doi: 10.3319/TAO.2004.15.3.437(EP)

    Friis-Christensen E,Lühr H,Hulot G. 2006. Swarm:A constellation to study the Earth’s magnetic field[J]. Earth Planets Space,58(4):351–358. doi: 10.1186/BF03351933

    Harrison R G,Aplin K L,Rycroft M J. 2010. Atmospheric electricity coupling between earthquake regions and the ionosphere[J]. J Atmos Sol Terr Phys,728(5/6):376–381.

    Hayakawa M,Molchanov O A,Kodama T,Afonin V V,Akentieva O A. 2000. Plasma density variations observed on a satellite possibly related to seismicity[J]. Adv Space Res,26(8):1277–1280. doi: 10.1016/S0273-1177(99)01224-7

    Hayakawa M, Molchanov O A, Nickolaenko A P. 2002. Model variation in atmospheric radio noise caused by pre-seismic modifications of tropospheric conductivity profile[C]//Seismo-Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling. Tokyo: Terra Scientific Publishing Company: 477.

    Hayakawa M. 2004. Electromagnetic phenomena associated with earthquakes:A frontier in terrestrial electromagnetic noise environment[J]. Recent Res Devel Geophys,6:81–112.

    Heki K,Ping J S. 2005. Directivity and apparent velocity of the coseismic ionospheric disturbances observed with a dense GPS array[J]. Earth Planet Sci Lett,236(3/4):845–855.

    Heki K. 2011. Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake[J]. Geophys Res Lett,38(17):L17312.

    Kim V P, Hegai V V. 1999. A possible presage of strong earthquake in the night-time mid-latitude F2 region ionosphere[C]//Atmospheric and Ionospheric Electromagnetic Phenomaena Associated with Earthquakes. Tokyo: Terra Scientific Publishing Company: 619–627.

    Larkina V I,Nalivayko A V,Gershenzon N I,Gokhberg M B,Liperovsky V A,Shalimov S L. 1989. Observations of VLF emission related with seismic activity on the Intercosmos-19 satellite[J]. Geomagn Aeron,23:684–687.

    Liperovsky V A,Meister C V,Liperovskaya E V,Vasil’Eva N E,Alimov O. 2005. On spread-Es effects in the ionosphere before earthquakes[J]. Nat Hazards Earth Syst Sci,5(1):59–62. doi: 10.5194/nhess-5-59-2005

    Liu J Y,Chou Y J,Shan S J,Tsai Y B,Chen Y I,Pulinets S A,Yu S B. 2004. Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements[J]. Ann Geophys,22(5):1585–1593. doi: 10.5194/angeo-22-1585-2004

    Liu J Y,Tsai H F,Lin C H,Kamogawa M,Chen Y I,Lin C H,Huang B S,Yu S B,Yeh Y H. 2010. Coseismic ionospheric disturbances triggered by the Chi-Chi earthquake[J]. J Geophys Res,115(A8):A08303.

    Liu J Y,Le H,Chen Y I,Chen C H,Liu L,Wan W,Su Y Z,Sun Y Y,Lin C H,Chen M Q. 2011. Observations and simulations of seismoionospheric GPS total electron content anomalies before the 12 January 2010 M7 Haiti earthquake[J]. J Geophys Res,116(A4):A04302. doi: 10.1029/2010JA015704

    Liu H T,Ding F,Zhao B Q,Li J Y,Hu L H,Wan W X,Ning B Q. 2017. Ionospheric response following the MW7.8 Gorkha earthquake on 25 April 2015[J]. J Geophys Res,122(6):6495–6507. doi: 10.1002/2016JA023079

    Ma Z T,Masters G. 2015. Effect of earthquake locations on Rayleigh wave azimuthal anisotropy models[J]. Geophys J Int,203(2):1319–1333. doi: 10.1093/gji/ggv369

    Maruyama T,Tsugawa T,Kato H,Ishii M,Nishioka M. 2012. Rayleigh wave signature in ionograms induced by strong earthquakes[J]. J Geophys Res,117(A8):A08306.

    Molchanov O A, Hayakawa V V, Afonin O A, Akentieva O A, Mareev E A, Yu T V. 2002. Possible influence of seismicity by gravity waves on ionospheric equatorial anomaly from data of IK-24 satellite 2. Equatorial anomaly and small-scale ionospheric turbulence[C]//Seismo Electromagnetic: Lithosphere Atmosphere Ionosphere Coupling.Tokyo: Terra Scientific Publishing Company: 287–296.

    Moore G W. 1964. Magnetic disturbances preceding the 1964 Alaska earthquake[J]. Nature,203(4944):508–509.

    Natural Resources Canada. 2020. Solar radio flux: Solar Monitoring Program[EB/OL]. [2020−07−23]. https://www.spaceweather.gc.ca/solarflux/sx-en.php.

    Olsen N,Friis-Christensen E,Floberghagen R,Alken P,Beggan C D,Chulliat A,Doornbos E,Da Encarnação J T,Hamilton B,Hulot G,Van Den IJssel,Kuvshinov A,Lesur V,Lühr H,Macmillan S,Maus S,Noja M,Olsen P E H,Park J,Plank G,Püthe C,Rauberg J,Ritter P,Rother M,Sabaka T J,Schachtschneider R,Sirol O,Stolle C,Thébault E,Thomson A W P,Tøffner-Clausen L,Velímský J,Vigneron P,Visser P N. 2013. The Swarm satellite constellation application and research facility (SCARF) and Swarm data products[J]. Earth Planets Space,65(11):1189–1200. doi: 10.5047/eps.2013.07.001

    Ondoh T, Hayakawa M. 1999. Anomalous occurrence of sporadic E-layers before the Hyogoken-Nanbu earthquake, M7.2 of January 17, 1995[C]//Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes. Tokyo: Terra Scientific Publishing Company: 629–640.

    Ondoh T, Hayakawa M. 2002. Seismo discharge model of anomalous sporadic E ionization before great earthquakes[C]//Seismo Electromagnetic: Lithosphere Atmosphere Ionosphere Coupling. Tokyo: Terra Scientific Publishing Company: 385–390.

    Ondoh T. 2009. Investigation of precursory phenomena in the ionosphere,atmosphere and groundwater before large earthquakes of M>6.5[J]. Adv Space Res,43(2):214–223. doi: 10.1016/j.asr.2008.04.003

    Parrot M,Benoist D,Berthelier J J,Błęcki J,Chapuis Y,Colin F,Elie F,Fergeau P,Lagoutte D,Lefeuvre F,Legendre C,Lévêque M,Pinçon J L,Poirier B,Seran H C,Zamora P. 2006a. The magnetic field experiment IMSC and its data processing onboard DEMETER:Scientific objectives,description and first results[J]. Planet Space Sci,54(5):441–455. doi: 10.1016/j.pss.2005.10.015

    Parrot M,Berthelier J J,Lebreton J P,Sauvaud J A,Santolik O,Blecki J. 2006b. Examples of unusual ionospheric observations made by the DEMETER satellite over seismic regions[J]. Phys Chem Earth,31(4/9):486–495.

    Parrot M,Li M. 2017. Demeter results related to seismic activity[J]. Ursi Rad Sci Bull,88(4):18–25.

    Pulinets S A,Legen′ Ka A D. 2003. Spatial-temporal characteristics of large scale disturbances of electron density observed in the ionospheric f-region before strong earthquakes[J]. Cosmic Res,41(3):221–230. doi: 10.1023/A:1024046814173

    Pulinets S, Boyarchuk K. 2004. Ionospheric Precursors of Earthquakes[M]. Berlin Heidelberg: Springer-Verlag: 75–81.

    Pulinets S A, Ouzounov D, Karelin A, Davidenko D. 2018. Lithosphere-Atmosphere-Ionosphere-Magnetosphere Coupling: A Concept for Pre-Earthquake Signals Generation[M]. Hoboken: John Wiley & Sons, Inc: 79–98.

    Sarkar S,Gwal A K,Parrot M. 2007. Ionospheric variations observed by the DEMETER satellite in the mid-latitude region during strong earthquakes[J]. J Atmos Solar-Terr Phys,69(13):1524–1540. doi: 10.1016/j.jastp.2007.06.006

    Sgrigna V,Carota L,Conti L,Corsi M,Galper A M,Koldashov S V,Murashov A M,Picozza P,Scrimaglio R,Stagni L. 2005. Correlations between earthquakes and anomalous particle bursts from SAMPEX/PET satellite observations[J]. J Atmos Sol-Terr Phys,67(15):1448–1462. doi: 10.1016/j.jastp.2005.07.008

    Tao D,Cao J B,Battiston R,Li L Y,Ma Y D,Liu W L,Zhima Z,Wang L W,Dunlop M W. 2017. Seismo-ionospheric anomalies in ionospheric TEC and plasma density before the 17 July 2006 M7.7 south of Java earthquake[J]. Ann Geophys,35(3):589–598. doi: 10.5194/angeo-35-589-2017

    World Data Center for Geomagnetism. 2020. Geomagnetic Data Service[EB/OL]. [2020−07−23]. http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html.

    Yoshida M,Yamauchi T,Horie T,Hayakawa M. 2008. On the generation mechanism of terminator times in subionospheric VLF/LF propagation and its possible application to seismogenic effects[J]. Nat Hazards Earth Syst Sci,8(1):129–134. doi: 10.5194/nhess-8-129-2008

    Zaslavski Y,Parrot M,Blanc E. 1998. Analysis of TEC measurements above active seismic regions[J]. Phys Earth Planet Inter,105(3/4):220–228.

  • 期刊类型引用(13)

    1. 王秋宁,李媛媛. 陕西区域流体台网记录玛多7.4级、门源6.9级地震远场同震响应特征对比. 高原地震. 2022(02): 9-15 . 百度学术
    2. 苏鹤军,曹玲玲,张慧,李晨桦,周慧玲. 近场水位、水温同震响应特征及对地震的预测. 地震工程学报. 2020(01): 98-106 . 百度学术
    3. 谢庆,李发,裴红云,李罡风. 安徽区域数字化水位和水温远场大震同震响应分析. 高原地震. 2019(01): 8-14 . 百度学术
    4. 王喜龙,贾晓东,王博,王熠熙,王俊,向阳,靳浩,付聪. 利用概率密度分布提取地下流体数字化观测资料中的高频异常信息——以2014年鲁甸6.5级地震为例. 地震. 2018(01): 35-48 . 百度学术
    5. 马援,刘甜甜,贾浩东. 宝昌地震台VP型垂直摆倾斜仪常见干扰. 地震地磁观测与研究. 2018(04): 183-188 . 百度学术
    6. 孙小龙,王广才,晏锐. 利用概率密度分布提取流体观测资料中的高频异常信息——以2008年汶川8.0级地震为例. 地球物理学报. 2016(05): 1673-1684 . 百度学术
    7. 史继平,田野,张远富. 平凉C11井水位观测资料影响因素分析. 高原地震. 2016(04): 27-32+54 . 百度学术
    8. 史继平,田野. 采用相关分析法研究泾河流量对平凉C11井水位和水温的影响. 山西地震. 2016(03): 6-9 . 百度学术
    9. 尹宏伟,梁丽环,韩文英,李凤,刘静. 河北省地下流体水位对远场大震的响应特征研究. 防灾科技学院学报. 2015(03): 37-44 . 百度学术
    10. 汪成国,赵刚,高守权,邹广,陈大柱,张新成,常想德. 新30井不同深度下的水温观测试验及其结果. 地震. 2012(03): 37-46 . 百度学术
    11. 刘保华,魏汝庆,陈其锋,李月强,冯恩国,连凯旋. 聊城水化站地下水温资料的简单统计分析. 华北地震科学. 2012(04): 34-39 . 百度学术
    12. 周晓成,杜建国,陈志,崔月菊,刘雷. 地震地球化学研究进展. 矿物岩石地球化学通报. 2012(04): 340-346 . 百度学术
    13. 汪成国,赵刚,高守权,邹广,陈大柱,张新成,常想德. 新30井数字化水位、水温远场大震同震响应初析. 内陆地震. 2011(04): 354-359 . 百度学术

    其他类型引用(4)

图(8)
计量
  • 文章访问数:  1159
  • HTML全文浏览量:  871
  • PDF下载量:  53
  • 被引次数: 17
出版历程
  • 收稿日期:  2020-01-16
  • 修回日期:  2020-05-26
  • 网络出版日期:  2020-12-08
  • 发布日期:  2020-11-14

目录

    /

    返回文章
    返回