深井水位对地震波、固体潮和气压的水力响应—以范县井为例

孙小龙, 向阳, 李源

孙小龙, 向阳, 李源. 2020: 深井水位对地震波、固体潮和气压的水力响应—以范县井为例. 地震学报, 42(6): 719-731. DOI: 10.11939/jass.20200036
引用本文: 孙小龙, 向阳, 李源. 2020: 深井水位对地震波、固体潮和气压的水力响应—以范县井为例. 地震学报, 42(6): 719-731. DOI: 10.11939/jass.20200036
Sun Xiaolong, Xiang Yang, Li Yuan. 2020: Hydraulic response of water level to seismic wave, earth tide and barometric pressure in deep well:A case study of the Fanxian well in Henan Province. Acta Seismologica Sinica, 42(6): 719-731. DOI: 10.11939/jass.20200036
Citation: Sun Xiaolong, Xiang Yang, Li Yuan. 2020: Hydraulic response of water level to seismic wave, earth tide and barometric pressure in deep well:A case study of the Fanxian well in Henan Province. Acta Seismologica Sinica, 42(6): 719-731. DOI: 10.11939/jass.20200036

深井水位对地震波、固体潮和气压的水力响应—以范县井为例

基金项目: 国家自然科学基金(41972253)和应急管理部国家自然灾害防治研究院基本科研业务费专项(DZJ2019-06)共同资助
详细信息
    通讯作者:

    孙小龙: e-mail:xlsun04@163.com

  • 中图分类号:  

Hydraulic response of water level to seismic wave, earth tide and barometric pressure in deep well:A case study of the Fanxian well in Henan Province

  • 摘要: 以河南范县井为例,利用不同的水力响应模型分析了井水位对地震波、固体潮和气压的响应特征,并基于相关水力响应模型反演估算了含水层的水力参数。结果显示:在高频加载作用过程中,井-含水层系统中的水流模式以水平向为主,而在低频加载作用过程中,则为水平向和垂直向共存的混合模式;利用周期为10—102 s的高频段的地震波响应模型估算的含水层导水系数值较大,为7.20×10−3 m2/s,利用周期为3.75×104 s的低频段的固体潮响应模型估算的含水层导水系数值较小,为2.02×10−6 m2/s,而利用周期为102—104 s的中等频率段的气压响应模型得到的估算值介于二者之间,为3.44×10−5 m2/s。由此分析认为,在周期性加载作用过程中,井-含水层系统内的水流模式与加载频率有关,基于不同水力响应模型反演估算的含水层水力参数存在尺度效应。本研究取得的认识,既可为井水位动态响应的机理解释提供理论基础,也可为目标含水层水力参数的原位测量提供技术支撑。
    Abstract: The dynamic response of water level in a deep well to periodic loading provides natural experimental data for studying the response mechanism of deep well-aquifer system. Taking the Fanxian well in Henan Province, China, as an example, the hydraulic response characteristics of well water level induced by seismic wave, solid tide and barometric pressure was analyzed by using different hydraulic response models. The hydraulic parameters of the Fanxian well-aquifer were estimated based on the relevant hydraulic response models. The results show that in the process of high-frequency loading, the water flow in the well-aquifer system is mainly horizontal; while in the process of low-frequency loading, it is combined with horizontal and vertical water flow. The transmissivity estimated by the seismic response model with high frequency by period of 10—102 s is 7.20×10−3 m2/s, which is larger than the value 2.02×10−6 m2/s estimated using tidal response model with low frequency of period of 3.75×104 s, and the estimation using barometric response model with the medium frequency of period of 102—104 s is between them, as 3.44×10−5 m2/s. Based on those results, we conclude that the pattern of water flow in the well-aquifer system is related to the frequency of periodic loading, and the scale effect exists while estimating the hydraulic parameters of the aquifer based on different hydraulic response models. The understanding obtained in this study can not only provide theoretical mechanism explanation for dynamic response of well water level, but also provide technical support for in-situ hydraulic parameters measurement in target aquifer.
  • 图  1   范县水位观测井的井孔结构及岩层

    Figure  1.   Borehole structure and stratum of the Fanxian well

    图  2   2017年9月范县井水位、气压和理论体应变曲线及其相应的频谱图

    (a) 原始水位和气压校正水位;(b) 气压;(c) 理论体应变;(d) 水位频谱;(e) 气压频谱;(f) 体应变频谱

    Figure  2.   The water level,barometric pressure and theoretical volume strain curves of Fanxian well in September 2017 and their corresponding spectra

    (a) Original and barometric correction water levels;(b) Barometric pressure;(c) Theoretical volume strain;(d) Spectrum of water level;(e) Spectrum of barometric pressure;(f) Spectrum of volume strain

    图  3   范县井水位对2017年全球MS≥6.0地震的同震响应统计(h表示井水位波动幅度)

    Figure  3.   Statistics of water level coseismic response in Fanxian well to global MS≥6.0 earthquakes in 2017,where h represents the fluctuation amplitude of well water level

    图  4   2017年9月8日墨西哥MS8.2地震引起的井水位和地表垂向位移波动

    (a) 井水位;(b) 垂向位移;(c) 井水位频谱;(d) 垂向位移频谱

    Figure  4.   Fluctuations of well water level and surface vertical displacement caused by the MS8.2 earthquake in Mexico on September 8,2017

    (a) Well water level;(b) Vertical displacement;(c) Spectrum of well water level;(d) Spectrum of vertical displacement

    图  5   2017年9月8日墨西哥MS8.2地震引起的范县井水位和地表垂向位移的功率谱密度(a)和幅度比(b)

    Figure  5.   Power spectrum density (a) and amplitude ratio (b) of the water level and surface vertical displacement in the Fanxian well caused by the MS8.2 earthquake on September 8,2017 in Mexico

    图  6   范县井水位M2波潮汐响应参数(a)和含水层水力参数估算(b)

    Figure  6.   Tidal response parameters of M2 wave for water level in the Fanxian well (a) and estimated hydraulic parameters of aquifer (b)

    图  7   范县井水位与气压的响应幅度比(a)和相位差(b)

    Figure  7.   Amplitude ratio (a) and phase shift (b) of well water level response to barometric pressure in Fanxian well

    表  1   利用不同水力响应模型估算的含水层水力参数

    Table  1   Hydraulic parameters of aquifer estimated by different hydraulic response models

    加载方式水流模式周期/s导水系数/(m2·s−1越流系数/s−1
    固体潮水平-垂直混合流3.75×1042.02×10−63.58×10−7
    气压水平-垂直混合流102—1043.44×10−5 7.22×10−13
    地震波单一水平流10—1027.20×10−3
    下载: 导出CSV
  • 李海龙,宋金颖,万力,柳富田. 2013. 承压含水层井孔储存效应对气压波动引起的井孔水位波动的影响[J]. 水文地质工程地质,40(4):1–6.

    Li H L,Song J Y,Wan L,Liu F T. 2013. The response of well-aquifer systems to barometric loading[J]. Hydrogeology &Engineering Geology,40(4):1–6 (in Chinese).

    廖欣,刘春平,杨贤和,田育萍,石云,唐彦东. 2013. 承压井水位对含水层潮汐应力响应是否满足不排水条件的检验[J]. 地震学报,33(2):234–242.

    Liao X,Liu C P,Yang X H,Tian Y P,Shi Y,Tang Y D. 2013. Undrained examination of tidal response of water-level in confined wells[J]. Acta Seismologica Sinica,33(2):234–242 (in Chinese).

    石云,刘春平,廖欣,唐彦东,万飞. 2013. 潮汐水位振幅和位相变化研究及其在地下水异常分析中的应用[J]. 地震学报,35(3):421–429. doi: 10.3969/j.issn.0253-3782.2013.03.013

    Shi Y,Liu C P,Liao X,Tang Y D,Wan F. 2013. Research of tidal water level amplitude and phase and application to causation analysis of well water level changes[J]. Acta Seismologica Sinica,35(3):421–429 (in Chinese).

    张艳,符力耘,陈学忠,曹呈浩,赵连锋,马玉川. 2019. 相邻两井对大地震的不同水力响应模型研究:页岩影响分析[J]. 地球物理学报,62(1):143–158. doi: 10.6038/cjg2019L0612

    Zhang Y,Fu L Y,Chen X Z,Cao C H,Zhao L F,Ma Y C. 2019. Study of different hydraulic response models to large earthquakes in two adjacent wells:The effect of shales[J]. Chinese Journal of Geophysics,62(1):143–158 (in Chinese).

    张昭栋,郑金涵,张广城. 1988. 水井含水层系统与水位观测系统对固体潮与地震波的响应[J]. 地震学报,10(2):171–182.

    Zhang Z D,Zheng J H,Zhang G C. 1988. Response of well-aquifer system and water level observation system to Earth tides and seismic waves[J]. Acta Seismologica Sinica,10(2):171–182 (in Chinese).

    张昭栋,郑金涵,张广城,靖继才. 1989. 承压井水位对气压动态过程的响应[J]. 地球物理学报,32(5):539–549. doi: 10.3321/j.issn:0001-5733.1989.05.006

    Zhang Z D,Zheng J H,Zhang G C,Jing J C. 1989. Response of water level of confined well to dynamic process of barometric pressure[J]. Chinese Journal of Geophysics,32(5):539–549 (in Chinese).

    张昭栋,王昌文,高玉斌. 1991. 水井(鲁07井)的管径变化和对固体潮的响应[J]. 地球物理学报,34(2):203–209. doi: 10.3321/j.issn:0001-5733.1991.02.009

    Zhang Z D,Wang C W,Gao Y B. 1991. The relationship between variation of radius in the well Shandong Province No.7 and response to Earth tide[J]. Chinese Journal of Geophysics,34(2):203–209 (in Chinese).

    郑香媛,刘澜波. 1990. 深井水位固体潮的调和分析结果[J]. 地球物理学报,33(5):556–565. doi: 10.3321/j.issn:0001-5733.1990.05.008

    Zheng X Y,Liu L B. 1990. The harmonic analysis results of the well tides in deep boreholes[J]. Chinese Journal of Geophysics,33(5):556–565 (in Chinese).

    Acworth R I,Brain T. 2008. Calculation of barometric efficiency in shallow piezometers using water levels,atmospheric & Earth tide data[J]. Hydrogeol J,16(8):1469–1481. doi: 10.1007/s10040-008-0333-y

    Bower D R,Heaton K C. 1978. Response of an aquifer near Ottawa to tidal forcing and the Alaskan earthquake of 1964[J]. Canad J Earth Sci,15(3):331–340. doi: 10.1139/e78-039

    Bradbury K R, Muldoon M A. 1990. Hydraulic Conductivity Determinations in Unlithified Glacial and Fluvial Materials[M]. Philadelphia: ASTM: 138–151.

    Brodsky E E,Roeloffs E,Woodcock D,Gall I,Manga M. 2003. A mechanism for sustained groundwater pressure changes induced by distant earthquakes[J]. J Geophys Res,108(B8):2390. doi: 10.1029/2002JB002321

    Cooper H H Jr,Bredehoeft J D,Papadopu I S,Bennett R R. 1965. The response of well-aquifer systems to seismic waves[J]. J Geophys Res,70(16):3915–3926. doi: 10.1029/JZ070i016p03915

    Elkhoury J E,Brodsky E E,Agnew D C. 2006. Seismic waves increase permeability[J]. Nature,441(7097):1135–1138. doi: 10.1038/nature04798

    Elkhoury J E,Niemeijer A,Brodsky E E,Marone C. 2011. Laboratory observations of permeability enhancement by fluid pressure oscillation of in situ fractured rock[J]. J Geophys Res,116(B2):B02311.

    Evans K,Beavan J,Simpson D,Mousa S. 1991. Estimating aquifer parameters from analysis of forced fluctuations in well level:An example from the Nubian formation near Aswan,Egypt:3. Diffusivity estimates for saturated and unsaturated zones[J]. J Geophys Res,96(B7):12161–12191. doi: 10.1029/91JB00957

    Hsieh P A,Bredehoeft J D,Farr J M. 1987. Determination of aquifer transmissivity from Earth tide analysis[J]. Water Resour Res,23(10):1824–1832. doi: 10.1029/WR023i010p01824

    Hussein M E A,Odling N E,Clark R A. 2013. Borehole water level response to barometric pressure as an indicator of aquifer vulnerability[J]. Water Resour Res,49(10):7102–7119. doi: 10.1002/2013WR014134

    Jacob C E. 1940. On the flow of water in an elastic artesian aquifer[J]. Eos,Trans Am Geophys Union,21(2):574–586. doi: 10.1029/TR021i002p00574

    Liao X,Wang C Y,Liu C P. 2015. Disruption of groundwater systems by earthquakes[J]. Geophys Res Lett,42(22):9758–9763. doi: 10.1002/2015GL066394

    Manga M,Beresnev I,Brodsky E E,Elkhoury J E,Elsworth D,Ingebritsen S E,Mays D C,Wang C Y. 2012. Changes in permeability caused by transient stresses:Field observations,experiments,and mechanisms[J]. Rev Geophys,50(2):RG2004.

    Rasmussen T C,Crawford L A. 1997. Identifying and removing barometric pressure effects in confined and unconfined aquifers[J]. Groundwater,35(3):502–511. doi: 10.1111/j.1745-6584.1997.tb00111.x

    Roeloffs E. 1996. Poroelastic techniques in the study of earthquake-related hydrologic phenomena[J]. Adv Geophys,37:135–195. doi: 10.1016/S0065-2687(08)60270-8

    Rojstaczer S. 1988. Determination of fluid flow properties from the response of water levels in wells to atmospheric loading[J]. Water Resour Res,24(11):1927–1938. doi: 10.1029/WR024i011p01927

    Rojstaczer S,Riley F S. 1990. Response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions[J]. Water Resour Res,26(8):1803–1817. doi: 10.1029/WR026i008p01803

    Rovey II C W,Cherkauer D S. 1995. Scale dependency of hydraulic conductivity measurements[J]. Groundwater,33(5):769–780. doi: 10.1111/j.1745-6584.1995.tb00023.x

    Shi Z M,Wang G C,Wang C Y,Manga M,Liu C L. 2014. Comparison of hydrological responses to the Wenchuan and Lushan earthquakes[J]. Earth Planet Sci Lett,391:193–200. doi: 10.1016/j.jpgl.2014.01.048

    Shi Z M,Wang G C. 2016. Aquifers switched from confined to semiconfined by earthquakes[J]. Geophys Res Lett,43(21):11166–11172. doi: 10.1002/2016GL070937

    Shi Z M,Zhang S C,Yan R,Wang G C. 2018. Fault zone permeability decrease following large earthquakes in a hydrothermal system[J]. Geophys Res Lett,45(3):1387–1394. doi: 10.1002/2017GL075821

    Shi Y,Liao X,Zhang D,Liu C P. 2019. Seismic waves could decrease the permeability of the shallow crust[J]. Geophys Res Lett,46(12):6371–6377. doi: 10.1029/2019GL081974

    Sun X L,Wang G C,Yang X H. 2015. Coseismic response of water level in Changping well,China,to the MW9.0 Tohoku earthquake[J]. J Hydrol,531:1028–1039. doi: 10.1016/j.jhydrol.2015.11.005

    Sun X L,Xiang Y,Shi Z M. 2018. Estimating the hydraulic parameters of a confined aquifer based on the response of groundwater levels to seismic Rayleigh waves[J]. Geophys J Int,213(2):919–930. doi: 10.1093/gji/ggy036

    Sun X L,Xiang Y,Shi Z M,Hu X J,Zhang H. 2019. Sensitivity of the response of well-aquifer systems to different periodic loadings:A comparison of two wells in Huize,China[J]. J Hydrol,572:121–130. doi: 10.1016/j.jhydrol.2019.02.029

    Tamura Y,Sato T,Ooe M,Ishiguro M. 1991. A procedure for tidal analysis with a Bayesian information criterion[J]. Geophys J Int,104(3):507–516.

    Venedikov A P,Arnoso J,Vieira R. 2003. VAV:A program for tidal data processing[J]. Comput Geosci,29(4):487–502. doi: 10.1016/S0098-3004(03)00019-0

    Wang C Y. 2007. Liquefaction beyond the near field[J]. Seismol Res Lett,78(5):512–517. doi: 10.1785/gssrl.78.5.512

    Wang C Y,Liao X,Wang L P,Wang C H,Manga M. 2016. Large earthquakes create vertical permeability by breaching aquitards[J]. Water Resour Res,52(8):5923–5937. doi: 10.1002/2016WR018893

    Wang C Y,Doan M L,Xue L,Barbour A J. 2018. Tidal response of groundwater in a leaky aquifer:Application to Oklahoma[J]. Water Resour Res,54(10):8019–8033. doi: 10.1029/2018WR022793

    Wang C Y,Zhu A Y,Liao X,Manga M,Wang L P. 2019. Capillary effects on groundwater response to Earth tides[J]. Water Resour Res,55(8):6886–6895. doi: 10.1029/2019WR025166

    Xue L,Li H B,Brodsky E E,Xu Z Q,Kano Y,Wang H,Mori J J,Si J L,Pei J L,Zhang W,Yang G,Sun Z M,Huang Y. 2013. Continuous permeability measurements record healing inside the Wenchuan earthquake fault zone[J]. Science,340(6140):1555–1559. doi: 10.1126/science.1237237

    Yan R,Wang G C,Shi Z M. 2016. Sensitivity of hydraulic properties to dynamic strain within a fault damage zone[J]. J Hydrol,543:721–728. doi: 10.1016/j.jhydrol.2016.10.043

    Zhang Y,Fu L Y,Ma Y C,Hu J H. 2016. Different hydraulic responses to the 2008 Wenchuan and 2011 Tohoku earthquakes in two adjacent far-field wells:The effect of shales on aquifer lithology[J]. Earth Planets Space,68:178. doi: 10.1186/s40623-016-0555-5

    Zhang H,Shi Z,Wang G,Sun X,Yan R,Liu C. 2019a. Large earthquake reshapes the groundwater flow system:Insight from the water‐level response to earth tides and atmospheric pressure in a deep well[J]. Water Resour Res,55(5):4207–4219. doi: 10.1029/2018WR024608

    Zhang Y,Wang C Y,Fu L Y,Zhao B,Ma Y C. 2019b. Unexpected far-field hydrological response to a great earthquake[J]. Earth Planet Sci Lett,519:202–212. doi: 10.1016/j.jpgl.2019.05.007

    Zhu A Y,Wang C Y. 2020. Response of leaky aquifers to Earth tides:Interpreted with numerical simulation[J]. J Hydrol,581:124458. doi: 10.1016/j.jhydrol.2019.124458

图(7)  /  表(1)
计量
  • 文章访问数:  852
  • HTML全文浏览量:  461
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-15
  • 修回日期:  2020-04-20
  • 网络出版日期:  2021-01-18
  • 发布日期:  2020-11-14

目录

    /

    返回文章
    返回