中国大陆西部强震前超低频磁场时空变化特征

冯丽丽, 冯志生, 樊文杰, 管贻亮, 贺曼秋, 李霞, 何畅, 廖晓峰, 艾萨・伊斯马伊力, 袁文秀, 李莎

冯丽丽,冯志生,樊文杰,管贻亮,贺曼秋,李霞,何畅,廖晓峰,艾萨・伊斯马伊力,袁文秀,李莎. 2021. 中国大陆西部强震前超低频磁场时空变化特征. 地震学报,43(3):359−375. DOI: 10.11939/jass.20200093
引用本文: 冯丽丽,冯志生,樊文杰,管贻亮,贺曼秋,李霞,何畅,廖晓峰,艾萨・伊斯马伊力,袁文秀,李莎. 2021. 中国大陆西部强震前超低频磁场时空变化特征. 地震学报,43(3):359−375. DOI: 10.11939/jass.20200093
Feng L L,Feng Z S,Fan W J,Guan Y L,He M Q,Li X,He C,Liao X F,Aisa Y,Yuan W X,Li S. 2021. Spatio-temporal variation characteristic of the ultra-low frequency magnetic field prior to strong earthquakes of western Chinese mainland. Acta Seismologica Sinica43(3):359−375. DOI: 10.11939/jass.20200093
Citation: Feng L L,Feng Z S,Fan W J,Guan Y L,He M Q,Li X,He C,Liao X F,Aisa Y,Yuan W X,Li S. 2021. Spatio-temporal variation characteristic of the ultra-low frequency magnetic field prior to strong earthquakes of western Chinese mainland. Acta Seismologica Sinica43(3):359−375. DOI: 10.11939/jass.20200093

中国大陆西部强震前超低频磁场时空变化特征

基金项目: 地震科技星火计划(XH20062)、中国地震局青海格尔木青藏高原内部地球动力学野外科学观测研究站专项课题“青藏高原岩石圈磁场特征分析”和中国地震局监测预报司震情跟踪定向工作任务(2020020401)联合资助
详细信息
    通讯作者:

    冯志生: e-mail:fengzs2001@sohu.com

  • 中图分类号: P318.5

Spatio-temporal variation characteristic of the ultra-low frequency magnetic field prior to strong earthquakes of western Chinese mainland

  • 摘要: 对2015年至2019年期间中国大陆西部的磁通门磁力仪秒采样观测资料开展了5—100 s频段的地磁垂直强度极化分析,并运用一些数学方法对分析结果进行了处理。结果显示,极化高值在经向和纬向均无明显的形态和幅值变化,且极化高值与地磁外源场扰动无关。在此基础上筛选出18次极化高值异常事件,利用插值方法得到了极化高值异常的空间分布图,并分析了18次高值异常与中国大陆西部及周边15次强震的时空关系。分析结果表明:地磁场出现多台同步极化高值现象后的半年内,高值区可能发生M6.0以上强震;高值现象出现后,多个高值区均有可能发生强震;后续强震的震级与高值区面积呈正相关。
    Abstract: Based on the one second sampling data from fluxgate magnetometers in western Chinese mainland from 2015 to 2019, this paper carried out the vertical component polarization analysis of the frequency band between 5 s to 100 s, and then processed the analysis results by some mathematical methods. The results show that the high polarization value has no obvious shape and amplitude change in both meridional and zonal directions, and the high polarization value has nothing to do with geomagnetic field disturbance. On this basis, 18 high-value anomalies were screened out, and their spatial distribution map was obtained by interpolation method. The results show that within half a year after the synchronous appearance of multiple high-value anomalies of the vertical component polarization of geomagnetic field, the high-value region may have a strong earthquake with magnitude over M6.0. After the appearance of high value phenomenon, several high value regions are likely to have strong earthquakes; furthermore the magnitude of subsequent strong earthquake seems to be positively correlated with the area of the high-value zone.
  • 图  1   2011年至2019年国家地磁台网中心磁通门磁力仪数量

    Figure  1.   The number of fluxgate magnetometers in National Geomagnetic Networks Center of China from 2011 to 2019

    图  2   2019年中国西部磁通门磁力仪(秒采样)分布

    Figure  2.   Distribution of fluxgate magnetometers (second sampling) in western Chinese mainland in 2019

    图  3   喀什台2017年YZH1YZH2的对比

    Figure  3.   Comparison of YZH1 with YZH2 results of Kashi station in 2017

    图  4   沿经线和纬线分布的部分台站及其YZHYZH1 2017年结果

    Figure  4.   Location of some stations and their YZH and YZH1 results in 2017

    图  5   喀什台2017年YZH1序列与Kp (a)和Dst (b)指数曲线的对比

    Figure  5.   Comparison of YZH1 series with Kp (a) and Dst (b) curves in Kashgar station in 2017

    图  6   YZH1高值异常在12个月中的频次分布

    Figure  6.   The frequency distribution of YZH1 high value anomalies in 12 months

    图  7   YZH1高值异常频次与地震频次图

    Figure  7.   The frequency of YZH1 high value anomalies and earthquake frequency

    图  8   2015年至2019年部分台站YZH1时序曲线(图中数字序号与表2中的异常序号相对应)

    Figure  8.   YZH1 time series curves of some stations from 2015 to 2017 (The numbers correspond with the series numbers of the anomalies in Table 2

    图  9   2015年至2016年磁场高值日YZH2的空间分布图

    Figure  9.   Spatial distribution of YZH2 on the magnetic field high value day from 2015 to 2016

    图  10   2017年至2019年磁场高值日YZH2的空间分布图

    Figure  10.   Spatial distribution of YZH2 on the magnetic field high value day from 2017 to 2019

    图  11   喀什台、静海台和高邮台的空间分布(a)以及2017年极化YZH1时序曲线对比图(b)

    图中红色竖线标示中国大陆西部YZH1出现高值异常的时间

    Figure  11.   The locations of the stations Kashi,Jinghai and Gaoyou (a) and YZH1 time series curves in 2017 (b)

    The red vertical line indicates the time when the YZH1 high value anomaly appeared in western Chinese mainland

    图  12   2015—2019年6组高值异常叠加前、后的YZH2与后续6个月内地震的空间关系

    Figure  12.   Spatial relationship of six groups of high YZH2 anomalies before and after superposition as well as the distribution of earthquakes in the following six months from 2015 to 2019

    图  12   2015—2019年6组高值异常叠加前、后的YZH2与后续6个月内地震的空间关系

    Figure  12.   Spatial relationship of six groups of high YZH2 anomalies before and after superposition as well as the distribution of earthquakes in the following six months from 2015 to 2019

    图  13   叠加后的YZH2高值区面积与后续6个月内地震震级的关系

    Figure  13.   The relationship between YZH2 high-value areas of the superposition of several high-value anomalies and the magnitude of strong earthquakes in six months

    表  1   2015年至2020年1月中国大陆西部及周边M≥6.0强震信息

    Table  1   Information of strong earthquakes (M≥6.0) during the period from 2015 to January of 2020 in western Chinese mainland and its surrounding areas

    发震时刻
     年-月-日 时:分:秒
    M北纬/°东经/°震源深度/km参考位置
    2020-01-19 21:27:55 6.4 39.83 77.21 16 新疆伽师县
    2019-11-21 07:50:45 6.0 19.50 101.35 10 老挝
    2019-06-17 22:55:43 6.0 28.34 104.9 16 四川长宁县
    2019-04-24 04:15:48 6.3 28.40 94.61 10 西藏墨脱县
    2017-11-18 06:34:19 6.9 29.75 95.02 10 西藏米林县
    2017-08-09 07:27:52 6.6 44.27 82.89 11 新疆精河县
    2017-08-08 21:19:46 7.0 33.2 103.82 20 四川九寨沟县
    2016-12-08 13:15:03 6.2 43.83 86.35 6 新疆呼图壁县
    2016-11-25 22:24:30 6.7 39.27 74.04 10 新疆阿克陶县
    2016-10-17 15:14:49 6.2 32.81 94.93 9 青海杂多县
    2016-06-26 19:17:11 6.7 39.43 73.4 10 吉尔吉斯斯坦
    2016-01-21 01:13:13 6.4 37.68 101.62 10 青海门源县
    2015-12-07 15:50:03 7.4 38.2 72.9 30 塔吉克斯坦
    2015-07-03 09:07:46 6.5 37.6 78.2 10 新疆皮山县
    2015-04-25 14:11:26 8.1 28.2 84.7 20 尼泊尔
    下载: 导出CSV

    表  2   2015年至2019年中国大陆西部$Y_{ZH2}$高值异常信息

    Table  2   Information of high YZH2 value anomalies in western Chinese mainland from 2015 to 2019

    序号异常出现时间
     年-月-日
    异常持续时间/d异常台站最多日(异常日)
     年-月-日
    异常台站数总台数YZH2
    12015-01-1662015-01-1828360.73
    22015-02-0992015-02-1314360.39
    32015-07-1752015-07-188360.29
    42015-09-2652015-09-2913270.47
    52015-11-18112015-11-2321270.92
    62016-01-2782016-01-3017410.75
    72016-08-1492016-08-1715330.92
    82016-09-1192016-09-1514330.88
    92016-12-0162016-12-0214370.75
    102017-01-1352017-01-158380.41
    112017-02-1352017-02-1410370.49
    122017-03-1192017-03-1814340.66
    132017-08-2462017-08-2822400.65
    142017-10-2962017-10-3014400.70
    152018-04-1632018-04-1711430.62
    162018-06-1062018-06-1217430.44
    172019-09-2232019-09-2413541.15
    182019-11-1252019-11-1226560.85
    下载: 导出CSV

    表  3   单次高值异常及短期内多次高值异常叠加后发生强震的高值区面积

    Table  3   The high value areas of single high-value anomalies and the superposition of several high-value anomalies in a short period which followed with strong earthquakes

    序号出现高值日期
    年-月-日
    震后出现高值区的
    地震(提前的天数)
    半年内高值区强震高值区面积
    /(104 km2
    高值区总面积
    /(104 km2
    1 2015-01-18     无 2015-07-03皮山M6.5 251.6 313
    2 2015-02-13 2015-04-25尼泊尔M8.1
    3 2015-07-18 2015-07-03皮山M6.5
    (15)
    2015-12-07塔吉克斯坦M7.4 13 20.6
    4 2015-09-29     无 2016-01-21门源M6.4 20 144
    5 2015-11-23 2015-12-07塔吉克斯坦M7.4 123.7
    6 2016-01-30 2016-01-21门源M6.4 (9) 2016-06-26吉尔吉斯斯坦M6.7 17.5 84.7
    7 2016-08-17     无 2016-12-08呼图壁M6.2 24.1 82.2
    8 2016-09-15 2016-10-17杂多M6.2 58
    9 2016-12-02     无 2016-12-08呼图壁M6.2 18.2 80.8
    10 2017-01-13 2016-12-08呼图壁M6.2 (37)     无 47.2 47.2
    11 2017-02-14     无 2017-08-08九寨沟M7.0 41.6 84.4
    12 2017-03-18 2017-08-09精河M6.6 30.5
    13 2017-08-28 2017-08-08九寨沟M7.0 (19)
    2017-08-09精河M6.6 (20)
        无 39.5
    14 2017-10-31     无 16.1
    15 2018-04-17     无     无 32.4
    16 2018-06-12
    17 2019-09-24     无 2019-11-21老挝M6.0 19.2 72.3
    18 2019-11-12
    注:① 指地震震中所在高值区的面积;② 指一次高值现象出现的多个高值区面积之和。
    下载: 导出CSV
  • 杜爱民,周志坚,徐文耀,杨少峰. 2004. 新疆和田ML7.1地震前ULF电磁辐射的激发机理[J]. 地球物理学报,47(5):832–837. doi: 10.3321/j.issn:0001-5733.2004.05.014

    Du A M,Zhou Z J,Xu W Y,Yang S F. 2004. Generation mechanisms of ULF electromagnetic emissions before the ML=7.1 earthquake at Hotan of Xinjiang[J]. Chinese Journal of Geophysics,47(5):832–837 (in Chinese). doi: 10.3321/j.issn:0001-5733.2004.05.014(inChinese)

    冯志生,李琪,卢军,李鸿宇,居海华,孙海军,杨福喜,张翼. 2010. 基于磁通门秒值数据的地震ULF磁场可靠信息提取研究[J]. 华南地震,30(2):1–7. doi: 10.3969/j.issn.1001-8662.2010.02.001

    Feng Z S,Li Q,Lu J,Li H Y,Ju H H,Sun H J,Yang F X,Zhang Y. 2010. The seismic ULF geomagnetic reliable information exaction based on fluxgate magnetometer data of second value[J]. South China Journal of Seismology,30(2):1–7 (in Chinese).

    何畅,冯志生. 2017. 极化方法在成都地磁台的应用研究[J]. 地震学报,39(4):558–564. doi: 10.11939/jass.2017.04.010

    He C,Feng Z S. 2017. Application of polarization method to geomagnetic data from the station Chengdu[J]. Acta Seismologica Sinica,39(4):558–564 (in Chinese).

    李琪,杨星,蔡绍平. 2015. 极化方法应用于地磁台阵的震例分析[J]. 震灾防御技术,10(2):412–417. doi: 10.11899/zzfy20150222

    Li Q,Yang X,Cai S P. 2015. Case study of applying polarization method to geomagnetic array data[J]. Technology for Earthquake Disaster Prevention,10(2):412–417 (in Chinese).

    马宗晋. 1980. 华北地壳的多(应力集中)点场与地震[J]. 地震地质,2(1):39–47.

    Ma Z J. 1980. Multipoints (concentrated) stress field and earthquakes in North China crust[J]. Seismology and Geology,2(1):39–47 (in Chinese).

    梅世蓉. 1996. 地震前兆场物理模式与前兆时空分布机制研究(二):强震孕育时应力、应变场的演化与地震活动、地震前兆的关系[J]. 地震学报,18(1):1–10.

    Mei S R. 1996. Study on physical model of seismic precursors and time-space distribution mechanism of precursors(2)[J]. Acta Seismologica Sinica,18(1):1–10 (in Chinese).

    潘晖,张建国,杨冬梅,李美. 2014. 地震地磁低点位移成因的一种可能机制[J]. 大地测量与地球动力学,34(4):83–87. doi: 10.14075/j.jgg.2014.04.029

    Pan H,Zhang J G,Yang D M,Li M. 2014. A possible mechanism of the contributing factor of geomagnetic lowest shift[J]. Journal of Geodesy and Geodynamics,34(4):83–87 (in Chinese).

    汤吉,詹艳,王立凤,徐建郎,赵国泽,陈小斌,董泽义,肖骑彬,王继军,蔡军涛,徐光晶. 2008. 5月12日汶川8.0级地震强余震观测的电磁同震效应[J]. 地震地质,30(3):739–745. doi: 10.3969/j.issn.0253-4967.2008.03.012

    Tang J,Zhan Y,Wang L F,Xu J L,Zhao G Z,Chen X B,Dong Z Y,Xiao Q B,Wang J J,Cai J T,Xu G J. 2008. Coseismic signal associated with aftershock of the MS8.0 Wenchuan earthquake[J]. Seismology and Geology,30(3):739–745 (in Chinese). doi: 10.3969/j.issn.0253-4967.2008.03.012(inChinese)

    汤吉,詹艳,王立凤,董泽义,赵国泽,徐建郎. 2010. 汶川地震强余震的电磁同震效应[J]. 地球物理学报,53(3):526–534. doi: 10.3969/j.issn.0001-5733.2010.03.006

    Tang J,Zhan Y,Wang L F,Dong Z Y,Zhao G Z,Xu J L. 2010. Electromagnetic coseismic effect associated with aftershock of Wenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics,53(3):526–534 (in Chinese). doi: 10.3969/j.issn.0001-5733.2010.03.006(inChinese)

    姚休义,滕云田. 2017. 2010年元谋MS5.2地震前地磁极化异常研究[J]. 地震研究,40(3):444–448. doi: 10.3969/j.issn.1000-0666.2017.03.021

    Yao X Y,Teng Y T. 2017. Variation of geomagnetic polarization value associated with the 2010 Yuanmou MS5.2 earthquake[J]. Journal of Seismological Research,40(3):444–448 (in Chinese).

    姚休义,冯志生. 2018. 地震磁扰动分析方法研究进展[J]. 地球物理学进展,33(2):511–520. doi: 10.6038/pg2018BB0063

    Yao X Y,Feng Z S. 2018. Review on the recent development of analysis methods on magnetic disturbance associated with earthquakes[J]. Progress in Geophysics,33(2):511–520 (in Chinese).

    袁桂平,张学民,吴迎燕,赵旭东. 2015. 汶川8.0级地震前地磁低点位移与内外源Sq等效电流体系关系的研究[J]. 地震,35(3):102–112. doi: 10.3969/j.issn.1000-3274.2015.03.011

    Yuan G P,Zhang X M,Wu Y Y,Zhao X D. 2015. Minimum point shift of the geomagnetic vertical component in diurnal variation and the internal-external equivalent current system Sq before the 2008 Wenchuan MS8.0 earthquake[J]. Earthquake,35(3):102–112 (in Chinese).

    Chang X T,Zou B,Guo J Y,Zhu G B,Li W,Li W D. 2017. One sliding PCA method to detect ionospheric anomalies before strong earthquakes:Cases study of Qinghai,Honshu,Hotan and Nepal earthquakes[J]. Adv Space Res,59(8):2058–2070. doi: 10.1016/j.asr.2017.02.007

    Cianchini G,De Santis A,Barraclough D R,Wu L X,Qin K. 2012. Magnetic transfer function entropy and the 2009 MW=6.3 L’Aquila earthquake (Central Italy)[J]. Nonlinear Proc Geophys,19(4):401–409. doi: 10.5194/npg-19-401-2012

    Currie J L,Waters C L. 2014. On the use of geomagnetic indices and ULF waves for earthquake precursor signatures[J]. J Geophys Res,119(2):992–1003. doi: 10.1002/2013JA019530

    Gladychev V,Baransky L,Schekotov A,Fedorov E,Pokhotelov O,Andreevsky S,Rozhnoi A,Khabazin Y,Belyaev G,Gorbatikov A,Gordeev E,Chebrov V,Sinitsin V,Lutikov A,Yunga S,Kosarev G,Surkov V,Molchanov O,Hayakawa M,Uyeda S,Nagao T,Hattori K,Noda Y. 2001. Study of electromagnetic emissions associated with seismic activity in Kamchatka region[J]. Nat Hazards Earth Syst Sci,1(3):127–136. doi: 10.5194/nhess-1-127-2001

    Han P,Hattori K,Xu G J,Ashida R,Chen C H,Febriani F,Yamaguchi H. 2015. Further investigations of geomagnetic diurnal variations associated with the 2011 off the Pacific coast of Tohoku earthquake (MW9.0)[J]. J Asian Earth Sci,114:321–326. doi: 10.1016/j.jseaes.2015.02.022

    Hattori K. 2004. ULF geomagnetic changes associated with large earthquakes[J]. Terr Atmos Ocean Sci,15(3):329–360. doi: 10.3319/TAO.2004.15.3.329(EP)

    Hattori K,Han P,Yoshino C,Febriani F,Yamaguchi H,Chen C H. 2013. Investigation of ULF seismo-magnetic phenomena in Kanto,Japan during 2000−2010:Case studies and statistical studies[J]. Surv Geophys,34(3):293–316. doi: 10.1007/s10712-012-9215-x

    Hayakawa M,Kawate R,Molchanov O A,Yumoto K. 1996. Results of ultra-low-frequency magnetic field measurements during the Guam earthquake of 8 August 1993[J]. Geophys Res Lett,23(3):241–244. doi: 10.1029/95GL02863

    Hayakawa M,Itoh T,Hattori K,Yumoto K. 2000. ULF electromagnetic precursors for an earthquake at Biak,Indonesia on February 17,1996[J]. Geophys Res Lett,27(10):1531–1534. doi: 10.1029/1999GL005432

    Huang Q H,Ikeya M. 1998. Seismic electromagnetic signals (SEMS) explained by a simulation experiment using electromagnetic waves[J]. Phys Earth Planet Inter,109(3/4):107–114. doi: 10.1016/S0031-9201(98)00135-6

    Ismaguilov V S,Kopytenko Y A,Hattori K,Voronov P M,Molchanov O A,Hayakawa M. 2001. ULF magnetic emissions connected with under sea bottom earthquakes[J]. Nat Hazards Earth Syst Sci,1(1/2):23–31. doi: 10.5194/nhess-1-23-2001

    Karakelian D,Klemperer S L,Fraser-Smith A C,Thompson G A. 2002. Ultra-low frequency electromagnetic measurements associated with the 1998 MW5.1 San Juan Bautista,California earthquake and implications for mechanisms of electromagnetic earthquake precursors[J]. Tectonophysics,359(1/2):65–79.

    Li Q,Zhu P Y,Mamatemin A,Xu X G. 2011. Detection of ULF electromagnetic emissions as a precursor to two earthquakes in China[J]. Earthquake Science,24(6):601–607. doi: 10.1007/s11589-011-0822-2

    Masci F. 2011. On the seismogenic increase of the ratio of the ULF geomagnetic field components[J]. Phys Earth Planet Inter,187(1/2):19–32. doi: 10.1016/j.pepi.2011.05.001

    Matsushima M,Honkura Y,Oshiman N,Bariş Ş,Tunçer M K,Tank S B,Çelik C,Takahashi F,Nakanishi M,Yoshimura R,Pektaş R,Komut T,Tolak E,Ito A,Iio Y,Işikara A M. 2002. Seismoelectromagnetic effect associated with the Izmit earthquake and its aftershocks[J]. Bull Seismol Soc Am,92(1):350–360. doi: 10.1785/0120000807

    Molchanov O A,Kopytenko Y A,Voronov P M,Kopytenko E A,Matiashvili T G,Fraser-Smith A C,Bernardi A. 1992. Results of ULF magnetic field measurements near the epicenters of the Spitak (MS=6.9) and Loma Prieta (MS=7.1) earthquakes:Comparative analysis[J]. Geophys Res Lett,19(14):1495–1498. doi: 10.1029/92GL01152

    Molchanov O A,Schekotov A,Fedorov E,Belyaev G,Gordeev E. 2003. Presismic ULF electromagnetic effect from observation at Kamchatka[J]. Nat Hazards Earth Syst Sci,3(3/4):203–209. doi: 10.5194/nhess-3-203-2003

    Nagao T,Enomoto Y,Fujinawa Y,Hata M,Hayakawa M,Huang Q,Izutsu J,Kushida Y,Maeda K,Oike K,Uyeda S,Yoshino T. 2002. Electromagnetic anomalies associated with 1995 Kobe earthquake[J]. J Geodynam,33(4/5):401–411.

    Prattes G,Schwingenschuh K,Eichelberger H U,Magnes W,Boudjada M,Stachel M,Vellante M,Wesztergom V,Nenovski P. 2008. Multi-point ground-based ULF magnetic field observations in Europe during seismic active periods in 2004 and 2005[J]. Nat Hazard Earth Syst Sci,8(3):501–507. doi: 10.5194/nhess-8-501-2008

    Thomas J N,Love J J,Johnston M J S,Yumoto K. 2009. On the reported magnetic precursor of the 1993 Guam earthquake[J]. Geophys Res Lett,36(16):L16301. doi: 10.1029/2009GL039020

    Uyeda S,Hayakawa M,Nagao T,Molchanov O,Hattori K,Orihara Y,Gotoh K,Akinaga Y,Tanaka H. 2002. Electric and magnetic phenomena observed before the volcano seismic activity in 2000 in the Izu island region,Japan[J]. Proc Natl Acad Sci USA,99(11):7352–7355. doi: 10.1073/pnas.072208499

    Wang Z D,Chen B,Yuan J H,Yang F X,Jia L,Wang C. 2018. Localized geomagnetic field anomalies in an underground gas storage[J]. Phys Earth Planet Inter,283:92–97. doi: 10.1016/j.pepi.2018.08.009

    Wessel P,Smith W H F. 1995. New version of the generic mapping tools[J]. Eos Trans AGU,76(33):329.

图(14)  /  表(3)
计量
  • 文章访问数:  818
  • HTML全文浏览量:  474
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-04
  • 修回日期:  2021-03-01
  • 网络出版日期:  2021-07-06
  • 发布日期:  2021-05-14

目录

    /

    返回文章
    返回