鄂尔多斯及周边区域噪声层析成像研究

刘靖, 吴建平, 王未来, 蔡光耀, 王薇

刘靖,吴建平,王未来,蔡光耀,王薇. 2021. 鄂尔多斯及周边区域噪声层析成像研究. 地震学报,43(2):152−167. DOI: 10.11939/jass.20200099
引用本文: 刘靖,吴建平,王未来,蔡光耀,王薇. 2021. 鄂尔多斯及周边区域噪声层析成像研究. 地震学报,43(2):152−167. DOI: 10.11939/jass.20200099
Liu J,Wu J P,Wang W L,Cai G Y,Wang W. 2021. Ambient noise tomography in the Ordos block and its surrounding areas. Acta Seismologica Sinica43(2):152−167. DOI: 10.11939/jass.20200099
Citation: Liu J,Wu J P,Wang W L,Cai G Y,Wang W. 2021. Ambient noise tomography in the Ordos block and its surrounding areas. Acta Seismologica Sinica43(2):152−167. DOI: 10.11939/jass.20200099

鄂尔多斯及周边区域噪声层析成像研究

基金项目: 国家自然科学基金(41774102,41974058,41804057,41704064,41774067)、国家重点研发计划(2017YFC0404901)和中国地震局地球物理研究所基本科研业务费专项(DQJB20K41,DQJB16A03,DQJB17A01)共同资助
详细信息
    通讯作者:

    吴建平: e-mail:wjpwu@cea-igp.ac.cn

  • 中图分类号: P315.63

Ambient noise tomography in the Ordos block and its surrounding areas

  • 摘要: 基于中国地震科学探测台阵在鄂尔多斯及周边地区布设的461个地震台为期2年的地震观测资料,采用背景噪声层析成像方法,研究获得了鄂尔多斯及周边地区5—46 s周期、分辨率高达0.3°×0.3°的瑞雷面波相速度分布图像。与基于程函方程的地震面波成像结果对比看出,噪声层析成像在较短周期具有明显的优势(5—16 s),可以获得更高分辨率的成像结果。短周期(5—10 s)的相速度分布揭示,河套盆地、太原盆地和运城盆地等均表现为显著的低速异常,表明这些盆地的新生代沉积较厚,临汾盆地为弱低速异常,推测其沉积层相对较薄;鄂尔多斯地块内部浅层速度较低,与该地区中生代具有较厚的沉积相一致;大同火山区为高速异常,可能是由该地区分布的新生代玄武岩引起的。鄂尔多斯内部中上地壳存在明显的北东向高速异常带,推测很可能与鄂尔多斯地块的基底拼合有关。中长周期(20—44 s)的相速度成像结果显示,鄂尔多斯地块表现为明显的高速异常,该异常在灵石隆起和临汾盆地一带可向东延伸至太行山造山带,推测这一地区在华北克拉通破坏过程中属于破坏较轻的地区,保留了部分高速的岩石圈根。大同火山区及河套盆地地区具有明显的低速异常,随着周期的增加低速异常逐渐集中分布在大同火山区附近,推测河套盆地深部热作用可能源自其东部大同火山区附近的深部地幔。
    Abstract: Based on the 2-year seismic observation data of 461 seismic stations deployed in the Ordos and surrounding areas by the ChinArray, we use the ambient noise tomography method to obtain the Rayleigh surface wave phase velocity (5−46 s) images whose resolution is up to 0.3×0.3 degree. Compared with the seismic surface wave imaging results based on the Eikonal equation, we find that ambient noise tomography has a clear advantage in shorter periods (5−16 s) and higher resolution imaging. The short-period (5−10 s) phase velocity distribution reveals that the Hetao basin, Taiyuan basin and Yuncheng basin all exhibit significant low-velocity anomalies, indicating that these basins have thicker Cenozoic deposits. And in the Linfen basin, there is a weak low-velocity anomaly and a relatively thin sediment layer. Also, the Ordos block has a low-velocity anomaly, consistent with the Mesozoic thick deposit in this area; the Datong volcanic area shows a high-velocity anomaly, which may be caused by the distribution of Cenozoic basalt in this area. The mid-long period (20−44 s) phase velocity imaging results show that the Ordos block exhibits an obvious high-velocity anomaly. The anomaly can extend eastward to the Taihang mountain through the Lingshi uplift and Linfen basin. We suspect that the area is with less damage in the evolution process of the North China Craton and retains part high-velocity lithosphere roots. The Datong volcanic area and Hetao basin area have low-velocity anomalies. As the period increases, the low-velocity anomalies are gradually concentrated near the Datong volcanic area. We speculate that the deep thermal effect in the Hetao basin may originate from the deep mantle near the Datong volcanic area in the east.
  • 图  1   鄂尔多斯及其周边区域构造简图

    Figure  1.   Tectonic map of Ordos block and its surrounding regions

    图  2   14804地震台与其它台站的互相关函数

    Figure  2.   The cross-correlation functions between station 14804 and other stations

    图  3   提取相速度频散曲线的例子

    (a) 面波信号的提取;(b) 频散曲线图

    Figure  3.   Examples of phase velocity dispersion measurement

    (a) Surface wave signal extraction;(b) Dispersion curve

    图  4   L曲线法选择最佳平滑系数和阻尼系数

    (a) 阻尼系数设为70,得到反演后平滑系数最佳值为120;(b) 平滑系数设为120,得到反演后阻尼系数最佳值为80;(c) 阻尼系数设为80,得到反演后平滑系数最佳值为120

    Figure  4.   L-curve of damping and smoothing weight parameters

    (a) Given the damping coefficient of 70,the optimal value of the smoothing coefficient after inversion is 120;(b) Given the smoothing coefficient of 120,the best value of the damping coefficient after inversion is 80;(c) Given the damping coefficient of 80,the optimal value of the smoothing coefficient after inversion is 120

    图  5   对8 s,10 s,20 s和35 s周期相速度的检测板测试

    Figure  5.   Checkboard tests at the periods of 8 s,10 s,20 s and 35 s

    图  5   对8 s,10 s,20 s和35 s周期相速度的检测板测试

    Figure  5.   Checkboard tests at the periods of 8 s,10 s,20 s and 35 s

    图  6   不同周期的相速度成像结果

    Figure  6.   Phase velocity tomography map in different periods

    图  7   不同周期的相速度敏感程度

    图(a)为计算频散灵敏度系数所用的参考模型;图(b)—(d)分别表示不同周期范围的基阶瑞雷面波相速度在不同深度对横波速度的敏感程度分布

    Figure  7.   Sensitive kernels of phase velocities in different periods

    Fig.(a) denotes reference model used in dispersion sensitivity coefficient calculation;Figs.(b)−(d) Represent the sensitivity of phase velocities of fundamental Rayleigh wave in different periods with respect to the shear wave velocity at different depths,respectively

    图  8   背景噪声层析成像与地震面波层析成像结果对比

    Figure  8.   Comparison of phase velocity map between ambient noise tomography and surface wave tomography with earthquake

    图  10   三条相速度的剖面在不同周期的分布情况,剖面位置分布如图9所示

    Figure  10.   Phase velocity along three profiles at different periods. The locations of three profiles are plotted in the Fig. 9

    图  9   三条剖面的位置

    Figure  9.   Green lines are three profiles

  • 陈刚,孙建博,周立发,章辉若,李向平,李向东. 2007. 鄂尔多斯盆地西南缘中生代构造事件的裂变径迹年龄记录[J]. 中国科学:地球科学,37(增刊):110–118.

    Chen G,Sun J B,Zhou L F,Zhang H R,Li X P,Li X D. 2007. Fission-track-age records of the Mesozoic tectonic-events in the southwest margin of the Ordos Basin,China[J]. Science in China:Earth Sciences,50(S2):133–143.

    何静,吴庆举,张瑞青,雷建设. 2018. 利用接收函数研究兴蒙造山带阿巴嘎地区的地壳结构[J]. 地球物理学报,61(9):3676–3688. doi: 10.6038/cjg2018M0013

    He J,Wu Q J,Zhang R Q,Lei J S. 2018. Crustal structure beneath the Abaga area of Xing’an-Mongolia Orogenic Belt using teleseismic receiver functions[J]. Chinese Journal of Geophysics,61(9):3676–3688 (in Chinese).

    国家地震局《鄂尔多斯周缘活动断裂系》课题组. 1988. 鄂尔多斯周缘活动断裂系[M]. 北京: 地震出版社: 335.

    The Research Group on Active Fault System around Ordos Massif, State Seismological Bureau . 1988. Active Fault System Around the Ordos[M]. Beijing: Seismological Press: 335 (in Chinese).

    李清河, 郭守年, 吕德徽. 1999. 鄂尔多斯西缘与西南缘深部结构与构造[M]. 北京: 地震出版社: 153–183.

    Li Q H, Guo S N, Lü D H. 1999. Deep Structure in the Western and Southwestern Margins of the Ordos Block[M]. Beijing: Seismological Press: 153–183 (in Chinese).

    李松林,赖晓玲,刘宝峰,王志铄,何加勇,孙译. 2011. 由诸城—宜川人工地震剖面反演结果看太行山两侧岩石圈结构的差异[J]. 中国科学:地球科学,41(5):668–677.

    Li S L,Lai X L,Liu B F,Wang Z S,He J Y,Sun Y. 2011. Differences in lithospheric structures between two sides of Taihang mountain obtained from the Zhucheng-Yichuan deep seismic sounding profile[J]. Science China Earth Sciences,54(6):871–880. doi: 10.1007/s11430-011-4191-4

    阮小敏,滕吉文,安玉林,闫雅芬,王谦身. 2011. 阴山造山带和鄂尔多斯盆地北部磁异常场与结晶基底特征研究[J]. 地球物理学报,54(9):2272–2282. doi: 10.3969/j.issn.0001-5733.2011.09.010

    Ruan X M,Teng J W,An Y L,Yan Y F,Wang Q S. 2011. Analysis of magnetic anomaly and crystalline basement of the Yinshan orogen and the northern Ordos basin regions[J]. Chinese Journal of Geophysics,54(9):2272–2282 (in Chinese).

    滕吉文,王夫运,赵文智,张永谦,张先康,闫雅芬,赵金仁,李明,杨辉,张洪双,阮小敏. 2010. 阴山造山带—鄂尔多斯盆地岩石圈层、块速度结构与深层动力过程[J]. 地球物理学报,53(1):67–85. doi: 10.3969/j.issn.0001-5733.2010.01.008

    Teng J W,Wang F Y,Zhao W Z,Zhang Y Q,Zhang X K,Yan Y F,Zhao J R,Li M,Yang H,Zhang H S,Ruan X M. 2010. Velocity structure of layered block and deep dynamic process in the lithosphere beneath the Yinshan orogenic belt and Ordos Basin[J]. Chinese Journal of Geophysics,53(1):67–85 (in Chinese).

    王涛,徐鸣洁,王良书,刘绍文,胡旭芝. 2007. 鄂尔多斯及邻区航磁异常特征及其大地构造意义[J]. 地球物理学报,50(1):163–170. doi: 10.3321/j.issn:0001-5733.2007.01.023

    Wang T,Xu M J,Wang L S,Liu S W,Hu X Z. 2007. Aeromagnetic anomaly analysis of Ordos and adjacent regions and its tectonic implications[J]. Chinese Journal of Geophysics,50(1):163–170 (in Chinese).

    中国地震科学探测台阵数据中心. 2011. 中国地震科学探测台阵波形数据: 喜马拉雅计划[DB/OL]. [2020-06-12]. http://www.chinarraydmc.cn/map/station/distribution.

    China Seismic Array Data Management Center. 2011. China seismic array waveform data of Himalaya project[DB/OL]. [2020-06-12]. http://www.chinarraydmc.cn/map/station/distribution (in Chinese).

    许林斌,魏文博,金胜,叶高峰,梁宏达,贾常秀,龚旭,于洋. 2017. 鄂尔多斯地块北部至阴山造山带深部电性结构特征研究[J]. 地球物理学报,60(2):575–584. doi: 10.6038/cjg20170212

    Xu L B,Wei W B,Jin S,Ye G F,Liang H D,Jia C X,Gong X,Yu Y. 2017. Study of deep electrical structure along a profile from northern Ordos block to Yinshan orogenic belt[J]. Chinese Journal of Geophysics,60(2):575–584 (in Chinese).

    徐义贤,罗银河. 2015. 噪声地震学方法及其应用[J]. 地球物理学报,58(8):2618–2636. doi: 10.6038/cjg20150803

    Xu Y X,Luo Y H. 2015. Methods of ambient noise-based seismology and their applications[J]. Chinese Journal of Geophysics,58(8):2618–2636 (in Chinese).

    张永谦,滕吉文,王夫运,赵文智,李明,王谦身. 2011. 阴山造山带及鄂尔多斯盆地北部地区上地壳的地震波属性结构及岩性推断[J]. 地球物理学报,54(1):87–97. doi: 10.3969/j.issn.0001-5733.2011.01.010

    Zhang Y Q,Teng J W,Wang F Y,Zhao W Z,Li M,Wang Q S. 2011. Structure of the seismic wave property and lithologydeduction of the upper crust beneath the Yinshan orogenic belt and the northern Ordos block[J]. Chinese Journal of Geophysics,54(1):87–97 (in Chinese).

    赵金仁,张先康,张成科,张建狮,刘宝峰,潘素珍. 2006. 山西五台山地区地壳深部结构特征研究[J]. 地球物理学报,49(1):123–129. doi: 10.3321/j.issn:0001-5733.2006.01.017

    Zhao J R,Zhang X K,Zhang C K,Zhang J S,Liu B F,Pan S Z. 2006. Features of deep crustal structure beneath the Wutai mountain area of Shanxi Province[J]. Chinese Journal of Geophysics,49(1):123–129 (in Chinese). doi: 10.1002/cjg2.819

    钟世军,吴建平,房立华,王未来,范莉苹,王怀富. 2017. 青藏高原东北缘及周边地区基于程函方程的面波层析成像[J]. 地球物理学报,60(6):2304–2314. doi: 10.6038/cjg20170622

    Zhong S J,Wu J P,Fang L H,Wang W L,Fan L P,Wang H F. 2017. Surface wave Eikonal tomography in and around the northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics,60(6):2304–2314 (in Chinese).

    Ai S X,Zheng Y,Riaz M S,Song M Q,Zeng S J,Xie Z J. 2019a. Seismic evidence on different rifting mechanisms in southern and northern segments of the Fenhe-Weihe rift zone[J]. J Geophys Res:Solid Earth,124(1):609–630. doi: 10.1029/2018JB016476

    Ai S X,Zheng Y,He L P,Song M Q. 2019b. Joint inversion of ambient noise and earthquake data in the Trans-North China Orogen:On-going lithospheric modification and its impact on the Cenozoic continental rifting[J]. Tectonophysics,763:73–85. doi: 10.1016/j.tecto.2019.05.003

    Bao X W,Song X D,Xu M J,Wang L S,Sun X X,Mi N,Yu D Y,Li H. 2013. Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications[J]. Earth Planet Sci Lett,369-370:129–137. doi: 10.1016/j.jpgl.2013.03.015

    Bensen G D,Ritzwoller M H,Barmin M P,Levshin A L,Lin F,Moschetti M P,Shapiro N M,Yang Y. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophys J Int,169(3):1239–1260. doi: 10.1111/j.1365-246X.2007.03374.x

    Chen L,Cheng C,Wei Z G. 2009. Seismic evidence for significant lateral variations in lithospheric thickness beneath the central and western North China Craton[J]. Earth Planet Sci Lett,286(1/2):171–183.

    Dziewonski A,Bloch S,Landisman M. 1969. A technique for the analysis of transient seismic signals[J]. Bull Seismol Soc Am,59(1):427–444.

    Ekström G. 2011. A global model of Love and Rayleigh surface wave dispersion and anisotropy,25–250 s[J]. Geophys J Int,187(3):1668–1686. doi: 10.1111/j.1365-246X.2011.05225.x

    Guo Z,Chen Y J. 2017. Mountain building at northeastern boundary of Tibetan Plateau and craton reworking at Ordos block from joint inversion of ambient noise tomography and receiver functions[J]. Earth Planet Sci Lett,463:232–242. doi: 10.1016/j.jpgl.2017.01.026

    He J,Li Y H,Sandvol E,Wu Q J,Du G B,Zhang R Q,Yu D X,Liu H L,Lei J S,Huang J P. 2019. Tomographic Pn velocity and anisotropy structure in Mongolia and the adjacent regions[J]. J Geophys Res:Solid Earth,124(4):3662–3679. doi: 10.1029/2018JB016440

    Jia S X,Wang F Y,Tian X F,Duan Y H,Zhang J S,Liu B F,Lin J Y. 2014. Crustal structure and tectonic study of North China Craton from a long deep seismic sounding profile[J]. Tectonophysics,627:48–56. doi: 10.1016/j.tecto.2014.04.013

    Jin G,Gaherty J B. 2015. Surface wave phase-velocity tomography based on multichannel cross-correlation[J]. Geophys J Int,201(3):1383–1398. doi: 10.1093/gji/ggv079

    Kennett B L N,Sambridge M S,Williamson P R. 1988. Subspace methods for large inverse problems with multiple parameter classes[J]. Geophys J Int,94(2):237–247. doi: 10.1111/j.1365-246X.1988.tb05898.x

    Levshin A L,Ritzwoller M H. 2001. Automated detection,extraction,and measurement of regional surface waves[J]. Pure Appl Geophys,158:1531–1545.

    Li S L,Guo Z,Chen Y J,Yang Y J,Huang Q H. 2018. Lithospheric structure of the northern Ordos from ambient noise and teleseismic surface wave tomography[J]. J Geophys Res:Solid Earth,123(8):6940–6957.

    Li Y H,Wu Q J,Pan J T,Sun L. 2012. S-wave velocity structure of northeastern China from joint inversion of Rayleigh wave phase and group velocities[J]. Geophys J Int,190(1):105–115. doi: 10.1111/j.1365-246X.2012.05503.x

    Lin F C,Ritzwoller M H. 2011. Helmholtz surface wave tomography for isotropic and azimuthally anisotropic structure[J]. Geophys J Int,186(3):1104–1120. doi: 10.1111/j.1365-246X.2011.05070.x

    Luo Y H,Yang Y J,Xu Y X,Xu H R,Zhao K F,Wang K. 2015. On the limitations of interstation distances in ambient noise tomography[J]. Geophys J Int,201(2):652–661. doi: 10.1093/gji/ggv043

    Meng Q R,Hu J R,Jin J Q,Zhang Y,Xu D F. 2003. Tectonics of the late Mesozoic wide extensional basin system in the China–Mongolia border region[J]. Basin Res,15(3):397–415. doi: 10.1046/j.1365-2117.2003.00209.x

    Rawlinson N,Sambridge M. 2005. The fast marching method:An effective tool for tomographic imaging and tracking multiple phases in complex layered media[J]. Explor Geophys,36(4):341–350. doi: 10.1071/EG05341

    Schimmel M,Stutzmann E,Gallart J. 2011. Using instantaneous phase coherence for signal extraction from ambient noise data at a local to a global scale[J]. Geophys J Int,184(1):494–506. doi: 10.1111/j.1365-246X.2010.04861.x

    Sun X L,Song X D,Zheng S H,Yang Y J,Ritzwoller M H. 2010. Three dimensional shear wave velocity structure of the crust and upper mantle beneath China from ambient noise surface wave tomography[J]. Earthquake Science,23(5):449–463. doi: 10.1007/s11589-010-0744-4

    Tang Y C,Chen Y J,Zhou S Y,Ning J Y,Ding Z F. 2013. Lithosphere structure and thickness beneath the North China Craton from joint inversion of ambient noise and surface wave tomography[J]. J Geophys Res:Solid Earth,118(5):2333–2346. doi: 10.1002/jgrb.50191

    Tian X B,Teng J W,Zhang H S,Zhang Z J,Zhang Y Q,Yang H,Zhang K K. 2011. Structure of crust and upper mantlebeneath the Ordos block and the Yinshan mountains revealed by receiver function analysis[J]. Phys Earth Planet Inter,184(3/4):186–193.

    Tian Y,Zhao D P. 2011. Destruction mechanism of the North China Craton:Insight from P and S wave mantle tomography[J]. J Asian Earth Sci,42(6):1132–1145. doi: 10.1016/j.jseaes.2011.06.010

    Wang S J,Wang F Y,Song X H,Liu B F,Bao X M,Gao Z Y. 2019. Upper mantle anisotropy and tectonic deformationbeneath the Ordos Block in the western North China Craton:Constraints from wide-angle seismic data[J]. J Asian Earth Sci:X,1:100008.

    Wang W L,Wu J P,Fang L H,Lai G J,Cai Y. 2017. Sedimentary and crustal thicknesses and Poisson’s ratios for the NE Tibetan Plateau and its adjacent regions based on dense seismic arrays[J]. Earth Planet Sci Lett,462:76–85. doi: 10.1016/j.jpgl.2016.12.040

    Wang Z T,Zhou H R,Wang X L,Jing X C. 2015. Characteristics of the crystalline basement beneath the Ordos Basin:Constraint from aeromagnetic data[J]. Geosci Front,6(3):465–475. doi: 10.1016/j.gsf.2014.02.004

    Yin Y T,Jin S,Wei W B,Ye G F,Jing J E,Zhang L T,Dong H,Xie C L,Liang H D. 2017. Lithospheric rheological heterogeneity across an intraplate rift basin(Linfen Basin,North China)constrained from magnetotelluric data:Implications for seismicity and rift evolution[J]. Tectonophysics,717:1–15. doi: 10.1016/j.tecto.2017.07.014

    Zhao G C,Sun M,Wilde S A,Li S Z. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited[J]. Precambrian Res,136(2):177–202. doi: 10.1016/j.precamres.2004.10.002

    Zhao L,Allen R M,Zheng T Y,Hung S H. 2009. Reactivation of an Archean craton:Constraints from P- and S-wave tomography in North China[J]. Geophys Res Lett,36(17):L17306. doi: 10.1029/2009GL039781

  • 期刊类型引用(1)

    1. 夏文鹤,谢万洋,唐印东,李皋,韩玉娇. 砂样岩屑图像特征的岩性智能高效识别. 石油地球物理勘探. 2023(03): 495-506 . 百度学术

    其他类型引用(1)

图(11)
计量
  • 文章访问数:  1220
  • HTML全文浏览量:  604
  • PDF下载量:  176
  • 被引次数: 2
出版历程
  • 收稿日期:  2020-06-11
  • 修回日期:  2020-07-14
  • 网络出版日期:  2021-04-25
  • 发布日期:  2021-03-14

目录

    /

    返回文章
    返回