The centroid moment tensor solution of the 23 June 2020 MW7.4 Mexico earthquake
-
-
图 1 矩心矩张量反演过程
(a) 矩心时间搜索;(b) 矩心搜索;(c) 矩心深度搜索;(d) PDE位置(灰色)和矩心位置(红色)反演得到的矩张量解
Figure 1. Inversion process of the centroid moment tensor
(a) Search for the centroid time;(b) Search for the centroid;(c) Search for the centroid depth; (d) The moment tensor solutions at the PDE (gray) and centroid (red) locations
图 4 主震震源机制解与余震分布
不同颜色的沙滩球和正方形代表不同机构确定的震源机制解及其矩心位置,小圆圈表示余震(来自USGS地震目录),大圆圈表示主震的PDE位置,圆圈和正方形的填充色显示了震源深度
Figure 4. The focal mechanism solutions of the mainshock and the aftershock distribution
Colored beach-balls and squares represent the focal mechanism solutions and centroid locations determined by the various institutions,the small circles refer to the aftershocks (from the USGS catalog),and the large circle indicates the PED locations of the mainshock. The colors filled in the circles and squares indicate the focal depths
表 1 不同机构所得墨西哥MW7.4地震矩心矩张量解的比较
Table 1 Comparison of the centroid moment tensor solutions for the MW7.4 Mexico earthquake obtained by different institutions
机构 矩张量/(1020 N·m) 矩心参数 Mrr Mtt Mpp Mrt Mrp Mtp τc/s 北纬/° 西经/° 矩心深度/km GCMT (2020) 0.729 −0.737 0.008 1.220 −0.712 0.200 7.0 16.04 96.06 20 USGS (2020)(W震相) 0.731 −0.752 0.020 1.104 −0.479 0.168 13.2 15.93 95.90 21.5 USGS (2020)(体波反演) 0.527 −0.544 0.017 0.504 −0.289 0.101 − 16.04 95.90 32 本文 0.700 −0.789 0.089 0.825 −0.491 0.218 8.0 15.96 95.89 22 表 2 不同机构所得墨西哥MW7.4地震的最佳双偶解
Table 2 The best double-couple solutions for the MW7.4 Mexico earthquake obtained by different institutes
机构 标量地震矩
/(1020 N·m)双力偶成分
占比节面Ⅰ 节面Ⅱ 走向/° 倾角/° 滑动角/° 走向/° 倾角/° 滑动角/° GCMT (2020) 1.600 100% 270 16 62 118 76 97 USGS (2020)(W震相) 1.423 96% 271 17 70 112 74 96 USGS (2020)(体波) 0.797 99% 266 24 63 114 69 101 本文 1.236 97% 266 22 60 118 71 101 -
张喆,许力生. 2020. 2013年南斯科舍海岭MW7.8地震的多点震源机制反演[J]. 地球物理学报,63(8):2978–2998. Zhang Z,Xu L S. 2020. 2013 MW7.8 South Scotia Ridge earthquake:Focal mechanism inversion of the multi-point source[J]. Chinese Journal of Geophysics,63(8):2978–2998.
Duputel Z,Rivera L,Kanamori H,Hayes G. 2012. W phase source inversion for moderate to large earthquakes (1990−2010)[J]. Geophys J Int,189(2):1125–1147. doi: 10.1111/j.1365-246X.2012.05419.x
Dziewonski A M,Chou T A,Woodhouse J H. 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity[J]. J Geophys Res,86(4):2825–2852.
Ekström G,Nettles M,Dziewoński A M. 2012. The global CMT project 2004−2010:Centroid-moment tensors for 13 017 earthquakes[J]. Phys Earth Planet Int,200/201:1–9. doi: 10.1016/j.pepi.2012.04.002
GCMT. 2020. Global CMT catalog[EB/OL]. [2020-06-24]. https://www.globalcmt.org/CMTsearch.html.
Kanamori H,Rivera L. 2008. Source inversion of W phase:Speeding up seismic tsunami warning[J]. Geophys J Int,175(1):222–238. doi: 10.1111/j.1365-246X.2008.03887.x
Wang R J. 1999. A simple orthonormalization method for stable and efficient computation of the Green’s function[J]. Bull Seismol Soc Am,89(3):733–741.
USGS. 2020. M7.4: 13 km ESE of Santa María Xadani, Mexico[EB/OL]. [2020-06-24]. https://earthquake.usgs.gov/earthquakes/eventpage/us6000ah9t/moment-tensor?source=us&code=us_6000ah9t_mww.
-
期刊类型引用(9)
1. 孟上九,秦艺峰,王淼,孙志远,穆海龙. 矿震机理及其次生灾害监测技术研究进展. 世界地震工程. 2024(03): 103-118 . 百度学术
2. 王忠忠,庄卓涵,胡飞跃,黄文龙. 广州北部丘陵区岩溶塌陷形成条件与易发性评价. 中国地质灾害与防治学报. 2024(04): 163-172 . 百度学术
3. 任涛,田国亮,宁志杰,周爱红,李宽,陈石. 基于地理探测器和随机森林的岩溶塌陷易发性评价. 灾害学. 2023(03): 227-234 . 百度学术
4. 徐玉聪,朱建,董建辉,周鲁. 三峡库区仙女山断裂周缘地震类型特征识别. 水利水电快报. 2022(02): 9-16 . 百度学术
5. 吴涛,庞聪,江勇,丁炜,廖成旺. 基于随机子空间和Ada Boost集成学习的地震事件性质辨识研究. 地球物理学进展. 2022(03): 981-988 . 百度学术
6. 尹欣欣,蔡润,陈文凯,彭立顺,李少华. 甘肃塌陷地震震相识别研究. 地震工程学报. 2021(02): 259-263 . 百度学术
7. 周少辉,蒋海昆,曲均浩,李健,郭宗斌,郑旭. 爆破、塌陷识别研究进展综述. 中国地震. 2021(02): 508-522 . 百度学术
8. 赵胤翔,赵金昌,马忠忠,常乐,李春明. 锚杆无损检测反射信号分形分析及其应用研究. 中国矿业. 2021(11): 101-108 . 百度学术
9. 梁飞,阎春恒,向巍,黄惠宁,原永东,李莎. 广西地区不同类型地震震源参数特征. 华北地震科学. 2020(S2): 33-38 . 百度学术
其他类型引用(3)