地震动峰值特征参数对土坡地震响应的规律研究

杜陆荣, 张江伟, 迟明杰, 陈苏

杜陆荣,张江伟,迟明杰,陈苏. 2021. 地震动峰值特征参数对土坡地震响应的规律研究. 地震学报,43(4):498−507. DOI: 10.11939/jass.20200149
引用本文: 杜陆荣,张江伟,迟明杰,陈苏. 2021. 地震动峰值特征参数对土坡地震响应的规律研究. 地震学报,43(4):498−507. DOI: 10.11939/jass.20200149
Du L R,Zhang J W,Chi M J,Chen S. 2021. Regularity research on the seismic response of characteristic parameters for ground motion peak to soil slope. Acta Seismologica Sinica43(4):498−507. DOI: 10.11939/jass.20200149
Citation: Du L R,Zhang J W,Chi M J,Chen S. 2021. Regularity research on the seismic response of characteristic parameters for ground motion peak to soil slope. Acta Seismologica Sinica43(4):498−507. DOI: 10.11939/jass.20200149

地震动峰值特征参数对土坡地震响应的规律研究

基金项目: 国家自然科学基金项目(51908176,51639006)、河北省自然科学基金项目(E2019403153)和河北省气象与生态环境重点实验室科研开放课题(Z-1502)共同资助
详细信息
    通讯作者:

    张江伟: e-mail:zjwok1988@sina.com

  • 中图分类号: P315.9

Regularity research on the seismic response of characteristic parameters for ground motion peak to soil slope

  • 摘要: 本文随机选取了100条具有不同地震动峰值特征参数的地震动记录,通过基线校正、积分等方法获取每条地震动的峰值加速度(PGA)、峰值速度(PGV)和峰值位移(PGD)三个参数,进而基于有限元数值模拟,通过对比同一个观测点不同峰值特征参数的特性与不同观测点同一峰值特征参数的特性来研究土坡的地震响应规律,分析各地震动峰值特征参数与土坡地震响应的相关性。计算结果表明:PGA,PGV和PGD与土坡地震响应都具有良好的正相关性,其相关性系数平均值分别为0.868,0.981,0.926;PGV的相关性优于PGA和PGD,而PGD的相关性要稍好于PGA。因此在关于土坡稳定性评价中,建议采用PGV作为参数指标。
    Abstract: We randomly selects 100 ground motion records with different ground motion peak characteristic parameters, and obtains the peak ground acceleration (PGA), peak ground velocity (PGV) and peak ground displacement (PGD) of each ground motion through baseline correction and integration. Based on finite element numerical simulation, the seismic response law of soil slopes is studied by comparing the characteristics of different peak characteristic parameters of the same observation point with the characteristics of the same peak characteristic parameters of different observation points, and the analysis of the characteristics of seismic peak characteristic parameters and the seismic response of soil slope correlation. The calculation results show that PGA, PGV and PGD have a good positive correlation with the seismic response of the soil slope, and the average correlation coefficients are 0.868, 0.981, 0.926, respectively. The correlation of PGV is better than that of PGA and PGD, while the correlation of PGD is slightly better than PGA. Therefore, it is recommended to use PGV as a parameter index in the evaluation of soil slope stability.
  • 图  1   地震动M1的加速度 (a)、速度 (b)、位移 (c) 时程曲线

    Figure  1.   Acceleration (a),velocity (b),displacement (c) time history curves of ground motion M1

    图  2   地震动M2的加速度 (a)、速度 (b)、位移 (c) 时程曲线

    Figure  2.   Acceleration (a),velocity (b),displacement (c) time history curves of ground motion M2

    图  3   地震动M3的加速度 (a)、速度 (b)、位移 (c) 时程曲线

    Figure  3.   Acceleration (a),velocity (b),displacement (c) time history curves of ground motion M3

    图  4   边坡模型示意图

    Figure  4.   Schematic diagram of slope model

    图  5   土坡在地震动M1 (a),M2 (b),M3 (c)作用下的变形云图

    Figure  5.   Deformation nephograms of soil slope under ground motion of M1 (a),M2 (b),M3 (c)

    图  6   P1点变形位移随PGA (a),PGV (b),PGD (c)的变化

    Figure  6.   Variation of P1 displacement with PGA (a),PGV (b),PGD (c)

    图  7   P2点变形位移随PGA (a),PGV (b),PGD (c)的变化

    Figure  7.   Variation of P2 displacement with PGA (a),PGV (b),PGD (c)

    图  8   P3点变形位移随PGA (a),PGV (b),PGD (c)的变化

    Figure  8.   Variation of P3 displacement with PGA (a),PGV (b),PGD (c)

    图  9   P4点变形位移随PGA (a),PGV (b),PGD (c)的变化

    Figure  9.   Variation of P4 displacement with PGA (a),PGV (b),PGD (c)

    图  10   P5点变形位移随PGA (a),PGV (b),PGD (c)的变化

    Figure  10.   Variation of P5 displacement with PGA (a),PGV (b),PGD (c)

    表  1   边坡土体参数

    Table  1   Parameters for soil slop

    参数密度
    /(kg·m−3
    弹性模量
    /MPa
    泊松比黏聚力
    /kPa
    内摩擦角
    数值 2070 90.8 0.3 13.99 25
    下载: 导出CSV

    表  2   地震动峰值特征参数和边坡地震响应的相关系数

    Table  2   The correlation coefficients between peak ground motion characteristic parameters and slope seismic responses

    监测点位移相关系数 ρ
    PGAPGVPGD
    P1位移0.8730.9840.925
    P2位移0.8740.9780.922
    P3位移0.8630.9820.926
    P4位移0.8610.9800.928
    P5位移0.8690.9820.931
    下载: 导出CSV
  • 陈冲,张宜虎,周火明,张科. 2017. 地震峰值加速度作用下含水边坡稳定性分析[J]. 地下空间与工程学报,13(2):545–550.

    Chen C,Zhang Y H,Zhou H M,Zhang K. 2017. Stability analysis of hydrous slope under peak seismic acceleration[J]. Chinese Journal of Underground Space and Engineering,13(2):545–550 (in Chinese).

    杜修力,王福源,王进廷,赵密,金浏. 2015. 地震动峰值位移对高拱坝地震反应的影响[J]. 水力发电学报,34(11):134–142. doi: 10.11660/slfdxb.20151115

    Du X L,Wang F Y,Wang J T,Zhao M,Jin L. 2015. Effect of peak ground displacement on seismic responses of high arch dam[J]. Journal of Hydroelectric Engineering,34(11):134–142 (in Chinese).

    杜修力,许紫刚,袁雪纯,许成顺,张驰宇. 2018. 地震动峰值位移和峰值速度对地下结构地震反应的影响[J]. 震灾防御技术,13(2):293–303. doi: 10.11899/zzfy20180205

    Du X L,Xu Z G,Yuan X C,Xu C S,Zhang C Y. 2018. Influence of peak ground displacement and peak ground velocity of ground motion on dynamic response of underground structures[J]. Technology for Earthquake Disaster Prevention,13(2):293–303 (in Chinese).

    胡敏章,郝洪涛,李辉,祝意青. 2019. 地震分析预报的重力变化异常指标分析[J]. 中国地震,35(3):417–430. doi: 10.3969/j.issn.1001-4683.2019.03.001

    Hu M Z,Hao H T,Li H,Zhu Y Q. 2019. Quantitative analysis of gravity changes for earthquake prediction[J]. Earthquake Research in China,35(3):417–430 (in Chinese).

    胡聿贤. 2006. 地震工程学[M]. 2版. 北京: 地震出版社: 169–170.

    Hu Y X. 2006. Earthquake Engineering[M]. 2nd edition. Beijing: Seismological Press: 169–170 (in Chinese).

    李小军. 2013. 地震动参数区划图场地条件影响调整[J]. 岩土工程学报,35(增刊):21–29.

    Li X J. 2013. Adjustment of seismic ground motion parameters considering site effects in seismic zonation map[J]. Chinese Journal of Geotechnical Engineering,35(S2):21–29 (in Chinese).

    王秀英,聂高众,王登伟. 2010. 汶川地震诱发滑坡与地震动峰值加速度对应关系研究[J]. 岩石力学与工程学报,29(1):82–89.

    Wang X Y,Nie G Z,Wang D W. 2010. Research on relationship between landslides and peak ground accelerations induced by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering,29(1):82–89 (in Chinese).

    张江伟,李小军,齐剑峰,王玉石,贺秋梅. 2018. 地震动参数对土坡地震响应的影响权重研究[J]. 振动与冲击,37(6):225–230.

    Zhang J W,Li X J,Qi J F,Wang Y S,He Q M. 2018. Effect of influence weights of ground motion parameters on soil slope seismic responses[J]. Journal of Vibration and Shock,37(6):225–230 (in Chinese).

    张郁山,赵凤新. 2011. 地震动峰值位移对单自由度体系非线性动力反应的影响[J]. 工程力学,28(1):55–64.

    Zhang Y S,Zhao F X. 2011. Influence of ground-motion peak displacement on non-linear dynamic response of single-degree-of-freedom systems[J]. Engineering Mechanics,28(1):55–64 (in Chinese).

    Yuan R M,Xu X W,Chen G H,Tan X B,Klinger Y,Xing H L. 2010. Ejection landslide at northern terminus of Beichuan rupture triggered by the 2008 MW7.9 Wenchuan earthquake[J]. Bull Seismol Soc Am,100(5B):2689–2699. doi: 10.1785/0120090256

    Yuan R M,Deng Q H,Cunningham D,Xu C,Xu X W,Chang C P. 2013. Density distribution of landslides triggered by the 2008 Wenchuan earthquake and their relationships to peak ground acceleration[J]. Bull Seismol Soc Am,130(4):2344–2355.

图(10)  /  表(2)
计量
  • 文章访问数:  545
  • HTML全文浏览量:  199
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-18
  • 修回日期:  2021-04-12
  • 网络出版日期:  2021-08-15
  • 发布日期:  2021-07-14

目录

    /

    返回文章
    返回