场地划分中存在的问题及建议

Problems and suggestions on site classification

  • 摘要: 针对现行建筑抗震设计规范中场地分类方法面临的场地分类物理含义不明确,各类场地的界限容易引起设计地震动参数发散等问题进行了探讨并给出解决建议。针对场地分类物理含义不明确的问题,在现行场地分类方法的基础上,根据场地覆盖层厚度和等效剪切波速,对场地进行分层次分类:第一层次与现行的分类相一致,以场地基本周期为基础,根据覆盖层厚度进行分类;第二层次在第一层次分类基础上进一步考虑场地软硬程度,根据等效剪切波速进行亚分类。根据目前对厚软场地地震灾害及地震动特性的研究,并结合大量长周期建筑结构的经济建设发展现状,对场地分类进行了扩展,由原来的四大类扩展到五大类,同时明确各分类界限,尤其是Ⅱ,Ⅲ和Ⅳ类场地的界限由原来的开放式进行有限化,有效地避免了由场地分类导致的设计地震动参数发散的问题。

     

    Abstract: The physical meaning of site classification is not clear in the current seismic design code for buildings, at the same time, the boundary of site classification is easy to cause the divergence of design ground motion parameters. For the above problems and deficiencies, some suggestions are given. To solve the problem that the physical meaning of site classification is not clear, on the basis of the current site classification method, according to the site classification index such as the covering layer thickness and the equivalent shear wave velocity, the sites are classified by two-level: the first level classification is consistent with the current one, which classifies sites based on the fundamental period of the site and the thickness of the overburden layer; the second level classification further considers the degree of hardness of the geotechnical medium based on the first level classification, and sub-classification according to equivalent shear wave velocity. Based on the current research on seismic disaster and seismic motion characteristics of thick soft site, combined with the development of long-period constructions, the site classification is expanded from the original four categories to five categories, at the same time, the boundary of each classification, especially the boundary of class II, III and IV sites, is limited from the original open type, which can effectively avoid the problem of divergence of design ground motion parameters caused by site classification. The related research results can provide reference for site classification and determination of design ground motion parameters.

     

/

返回文章
返回