场地划分中存在的问题及建议

迟明杰, 李小军, 陈学良, 马笙杰

迟明杰,李小军,陈学良,马笙杰. 2021. 场地划分中存在的问题及建议. 地震学报,43(6):787−803. DOI: 10.11939/jass.20200152
引用本文: 迟明杰,李小军,陈学良,马笙杰. 2021. 场地划分中存在的问题及建议. 地震学报,43(6):787−803. DOI: 10.11939/jass.20200152
Chi M J,Li X J,Lu X L,Ma S J. 2021. Problems and suggestions on site classification. Acta Seismologica Sinica43(6):787−803. DOI: 10.11939/jass.20200152
Citation: Chi M J,Li X J,Lu X L,Ma S J. 2021. Problems and suggestions on site classification. Acta Seismologica Sinica43(6):787−803. DOI: 10.11939/jass.20200152

场地划分中存在的问题及建议

基金项目: 国家重点研发计划(2017YFC1500400)、国家自然科学基金重点项目(51639006)和国家自然科学基金(51878625)共同资助
详细信息
    通讯作者:

    迟明杰: e-mail:03115049@bjtu.edu.cn

  • 中图分类号: P 315.9

Problems and suggestions on site classification

  • 摘要: 针对现行建筑抗震设计规范中场地分类方法面临的场地分类物理含义不明确,各类场地的界限容易引起设计地震动参数发散等问题进行了探讨并给出解决建议。针对场地分类物理含义不明确的问题,在现行场地分类方法的基础上,根据场地覆盖层厚度和等效剪切波速,对场地进行分层次分类:第一层次与现行的分类相一致,以场地基本周期为基础,根据覆盖层厚度进行分类;第二层次在第一层次分类基础上进一步考虑场地软硬程度,根据等效剪切波速进行亚分类。根据目前对厚软场地地震灾害及地震动特性的研究,并结合大量长周期建筑结构的经济建设发展现状,对场地分类进行了扩展,由原来的四大类扩展到五大类,同时明确各分类界限,尤其是Ⅱ,Ⅲ和Ⅳ类场地的界限由原来的开放式进行有限化,有效地避免了由场地分类导致的设计地震动参数发散的问题。
    Abstract: The physical meaning of site classification is not clear in the current seismic design code for buildings, at the same time, the boundary of site classification is easy to cause the divergence of design ground motion parameters. For the above problems and deficiencies, some suggestions are given. To solve the problem that the physical meaning of site classification is not clear, on the basis of the current site classification method, according to the site classification index such as the covering layer thickness and the equivalent shear wave velocity, the sites are classified by two-level: the first level classification is consistent with the current one, which classifies sites based on the fundamental period of the site and the thickness of the overburden layer; the second level classification further considers the degree of hardness of the geotechnical medium based on the first level classification, and sub-classification according to equivalent shear wave velocity. Based on the current research on seismic disaster and seismic motion characteristics of thick soft site, combined with the development of long-period constructions, the site classification is expanded from the original four categories to five categories, at the same time, the boundary of each classification, especially the boundary of class II, III and IV sites, is limited from the original open type, which can effectively avoid the problem of divergence of design ground motion parameters caused by site classification. The related research results can provide reference for site classification and determination of design ground motion parameters.
  • 图  1   (a) 西安台地震动加速度时程;(b) 长安台地震动加速度时程;(c) 西安台与长安台的加速度反应谱;(d) 西安台与长安台的相对位置示意图

    Figure  1.   (a) Time-history of ground motion acceleration at Xi'an station;(b) Time-history of ground motion acceleration at Chang'an station;(c) Acceleration response spectra of Xi'an station and Chang'an station;(d) Diagrammatic sketch of the relative position of Xi'an station and Chang'an station

    表  1   《建筑抗震设计规范》(GB50011—2010)中的场地分类方法

    Table  1   Site classification method in Code for Seismic Design of Buildings (GB50011—2010)

    岩石的剪切波速或土的等效
    剪切波速/(m·s−1
    覆盖层厚度/m
    01
    800<vS 0
    500<vS≤800 0
    250<vSe≤500 <5 ≥5
    150<vSe≤250 <3 3—50 >50
    vSe≤150 <3 3—15 15—80 >80
      注:表中vS表示岩石的剪切波速,vSe表示土层计算深度内的等效剪切波速,计算深度取覆盖层厚度和20 m中的较小值。
    下载: 导出CSV

    表  2   建议场地分类方法

    Table  2   Suggested site classification method

    岩石的剪切波速或土的等效
    剪切波速/(m·s−1
    覆盖层厚度/m场地类别亚类
    01
    vS>800 0
    800≥vS>500 0
    500≥vSe>250 <5 5—30 30—100 100—280 >280 1
    250≥vSe>150 <3 3—20 20—90 90—270 >270 2
    vSe≤150 <3 3—15 15—80 80—260 >260 3
      注:表中vS表示岩石的剪切波速,vSe表示近地表20 m岩土介质等效剪切波速
    下载: 导出CSV

    表  3   中硬场地钻孔资料及分析结果

    Table  3   Drilling data and analysis results of medium-hard sites

    钻孔层序厚度/m剪切波速
    /(m·s−1
    场地卓越
    周期/s
    根据钻孔资料计算的
    场地基本周期/s
    现行规范
    场地分类
    本文场地分类
    及特征描述
    CHBH10 1 24 240 1.42
    1.45
    2.06
    2.59 2
    厚中硬场地
    2 50 340
    3 176 440
    4 300 580
    5 450 770
    6
    CHBH13 1 22 220 0.66
    0.57
    0.56
    2.22 2
    厚中硬场地
    2 78 350
    3 100 430
    4 350 570
    5 300 680
    6
    CHBH12 1 22 190 1.70
    1.73
    1.97
    1.31 2
    厚中硬场地
    2 76 360
    3 122 580
    4 180 680
    5 450 850
    6
    KNGH11 1 22 220 0.92
    0.94
    1.02
    1.44 2
    厚中硬场地
    2 78 300
    3 124 580
    4 126 920
    5 125 1360
    6
      注:场地的卓越周期是陈永新(2015)文中根据强震记录获得的结果,下同
    下载: 导出CSV

    表  4   软弱场地钻孔资料及分析结果

    Table  4   Drilling data and analysis results of soft sites

    钻孔层序厚度/m剪切波速
    /(m·s−1
    场地卓越
    周期/s
    根据钻孔资料计算的
    场地基本周期
    现行规范
    场地分类
    本文场地分类
    及特征描述
    IBRH07
    1 22 90 1.59 2.62 3
    厚软场地
    2 26 220
    3 99 340
    4 153 500
    5 350 650
    6
    IBRH10
    1 20 110 0.81 2.52 3
    厚软场地
    2 170 380
    3 220 530
    4 108 850
    5 182 2350
    6
    SZOH35 1 15 100 0.44
    0.61
    0.22
    0.92 3
    中厚软场地
    2 30 380
    3 95 690
    4
    SZOH42 1 5 50 0.46
    0.49
    0.78 3
    中厚软场地
    2 25 260
    3 40 630
    4 70 690
    5
    下载: 导出CSV
  • 薄景山,翟庆生,刘红帅,孙超. 2004. 场地分类及其在我国的演变[J]. 自然灾害学报,13(3):44–49. doi: 10.3969/j.issn.1004-4574.2004.03.009

    Bo J S,Zhai Q S,Liu H S,Sun C. 2004. Site classification and its evolution in Chinese code for seismic design of buildings[J]. Journal of Natural Disasters,13(3):44–49 (in Chinese).

    陈国兴. 2003. 中国建筑抗震设计规范的演变与展望[J]. 防灾减灾工程学报,23(1):102–113.

    Chen G X. 2003. The evolution and prospect of the code for seismic design of buildings in China[J]. Journal of Disaster Prevention and Mitigation Engineering,23(1):102–113 (in Chinese).

    陈国兴,丁杰发,方怡,彭艳菊,李小军. 2020. 场地类别分类方案研究[J]. 岩土力学,41(11):3509–3522.

    Chen G X,Ding J F,Fang Y,Peng Y J,Li X J. 2020. Investigation of seismic site classification scheme[J]. Rock and Soil Mechanics,41(11):3509–3522 (in Chinese).

    陈永新. 2015. 基于KiK-net强震动记录对不同土层条件下场地非线性反应的研究[D]. 北京: 中国地震局地球物理研究所: 13–46.

    Chen Y X. 2015. Research on Nonlinearity in Different Soil Site Effect Based on KiK-net Strong Motion Records[D]. Beijing: Institute of Geophysics, China Earthquake Asministration: 13–46 (in Chinese).

    高孟潭. 2015. GB 18306-2015《中国地震动参数区划图》宣贯教材[M]. 北京: 中国标准出版社: 186.

    Gao M T. 2015. GB18306-2015: The Material of Earthquake Dynamic Parameter Map of China[M]. Beijing: China Standard Press: 186 (in Chinese).

    高武平,高孟潭,陈学良. 2012. 天津滨海软土场地的大震远场作用[J]. 地震学报,34(2):235–243. doi: 10.3969/j.issn.0253-3782.2012.02.010

    Gao W P,Gao M T,Chen X L. 2012. Far-field strong earthquake effect in Tianjin coastal soft site[J]. Acta Seismologica Sinica,34(2):235–243 (in Chinese).

    高印立,阎澍旺,王金英. 1998. 剪切波速与土性指标间的统计关系[J]. 建筑科学,14(5):20–22.

    Gao Y L,Yan S W,Wang J Y. 1998. The statistical relation of shear velocity with soil properties[J]. Building Science,14(5):20–22 (in Chinese).

    胡聿贤,孙平善,章在墉,田启文. 1980. 场地条件对震害和地震动的影响[J]. 地震工程与工程振动,(1):34–41.

    Hu Y X,Sun P S,Zhang Z Y,Tian Q W. 1980. Effects of site conditions on earthquake damage and ground motion[J]. Earthquake Engineering and Engineering Vibration,(1):34–41 (in Chinese).

    胡聿贤. 2006. 地震工程学[M]. 2版. 北京: 地震出版社: 63.

    Hu Y X. 2006. Earthquake Engineering[M]. 2nd ed. Beijing: Seismological Press: 63 (in Chinese).

    蒋连接,巩思锋,蔡万军. 2017. 覆盖层厚度对远场长周期地震动能量特性的影响[J]. 科学技术与工程,17(14):1–6. doi: 10.3969/j.issn.1671-1815.2017.14.001

    Jiang L J,Gong S F,Cai W J. 2017. Effect of thickness of overburden layer on energy property of far-field long period ground motions[J]. Science Technology and Engineering,17(14):1–6 (in Chinese).

    蒋溥, 戴丽思. 1993. 工程地震学概论[M]. 北京: 地震出版社: 256.

    Jiang P, Dai L S. 1993. Introduction of Engineering Seismology[M]. Beijing: Seismological Press: 256 (in Chinese).

    李春锋,张旸,赵金宝,唐晖. 2006. 台湾集集大地震及其余震的长周期地震动特性[J]. 地震学报,28(4):417–428. doi: 10.3321/j.issn:0253-3782.2006.04.009

    Li C F,Zhang Y,Zhao J B,Tang H. 2006. Long-period ground motion characteristics of the 1999 JiJi(Chi-Chi),Taiwan,mainshock and aftershocks[J]. Acta Seismologica Sinica,28(4):417–428 (in Chinese).

    李建亮,邱恩喜,赵晶,李福海,亢川川. 2014. 建筑抗震设计规范中场地类别划分的进展分析[J]. 路基工程,(3):55–58.

    Li J L,Qiu E X,Zhao J,Li F H,Kang C C. 2014. Analysis of the progress of site classification methods in building seismic design codes[J]. Subgrade Engineering,(3):55–58 (in Chinese).

    李敏. 2015. 考虑场地地震动影响的场地分类方法研究[D]. 北京: 中国地震局地球物理研究所: 129−130.

    Li M. 2015. Study on the Site Classification Method based on Seismic Site Effects[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 129−130 (in Chinese).

    李小军,彭青. 2001. 不同类别场地地震动参数的计算分析[J]. 地震工程与工程振动,21(1):29–36. doi: 10.3969/j.issn.1000-1301.2001.01.005

    Li X J,Pen Q. 2001. Calculation and analysis of earthquake ground motion parameters for different site categories[J]. Earthquake Engineering and Engineering Vibration,21(1):29–36 (in Chinese).

    李小军. 2013. 地震动参数区划图场地条件影响调整[J]. 岩土工程学报,35(增刊):21–29.

    Li X J. 2013. Adjustment of seismic ground motion parameters considering site effects in seismic zonation map[J]. Chinese Journal of Geotechnical Engineering,35(S2):21–29 (in Chinese).

    廖振鹏. 1989. 地震小区划: 理论与实践[M]. 北京: 地震出版社: 111.

    Liao Z P. 1989. Seismic Microzonation: Theory and Practice[M]. Beijing: Seismological Press: 111 (in Chinese).

    刘恢先. 1958. 关于编制我国地震区建筑物设计规范的一些意见[J]. 土木工程,3(7):333–336.

    Liu H X. 1958. Some opinions on compiling the design code for buildings in earthquake areas in China[J]. Civil Engineering,3(7):333–336 (in Chinese).

    刘曾武. 1991. 场地指数法在场地评定中的合理性和适用性[J]. 水文地质工程地质,18(1):31–34.

    Liu Z W. 1991. Rationality and applicability of the site index method in site assessment[J]. Hydrogeology and Engineering Geology,18(1):31–34 (in Chinese).

    刘曾武,郭玉学. 1992. 场地指数法与场地分类法在实际应用中的比较[J]. 工程抗震,13(4):23–27.

    Liu Z W,Guo Y X. 1992. Comparison of site index method and site classification in practice[J]. Earthquake Resistant Engineering,13(4):23–27 (in Chinese).

    门进杰,史庆轩,陈曦虎. 2008. 汶川地震对远震区高层建筑造成的震害及设计建议[J]. 西安建筑科技大学学报(自然科学版),40(5):648–653. doi: 10.3969/j.issn.1006-7930.2008.05.011

    Men J J,Shi Q X,Chen X H. 2008. Seismic damage of high buildings caused in the ramote areas from epicenter and aseismic design suggestion[J]. Journal of Xian University of Architecture and Technology (Natural Science Edition),40(5):648–653 (in Chinese).

    彭艳菊,吕悦军,黄雅虹,施春花,唐荣余. 2009. 工程地震中的场地分类方法及适用性评述[J]. 地震地质,31(2):349–362. doi: 10.3969/j.issn.0253-4967.2009.02.016

    Peng Y J,Lü Y J,Huang Y H,Shi C H,Tang R Y. 2009. A review on site classification method and its applicability in earthquake engineering[J]. Seismology and Geology,31(2):349–362 (in Chinese).

    沈蒲生,张超,叶缙垚,何益斌. 2014. 我国高层及超高层建筑的基本自振周期[J]. 建筑结构,44(18):1–3.

    Shen P S,Zhang C,Ye J Y,He Y B. 2014. Fundamental natural period of high-rise and super high-rise buildings in China[J]. Building Structure,44(18):1–3 (in Chinese).

    史大成,温瑞智,任叶飞,周宝峰. 2011. 基于GIS的场地分类方法研究[J]. 地理信息世界,9(1):23–27. doi: 10.3969/j.issn.1672-1586.2011.01.005

    Shi D C,Wen R Z,Ren Y F,Zhou B F. 2011. The study of site classification based on GIS[J]. Geomatics World,9(1):23–27 (in Chinese).

    孙崇绍. 1992. 从海原大震看我国特大地震的震害特点及应从中吸取的对策经验[J]. 西北地震学报,14(增刊):23–27.

    Sun C S. 1992. The characteristics of earthquake damage caused by the great earthquake in China and the countermeasures to be learned from the great earthquake in Haiyuan[J]. Journal of Northwest Seismology,14(S1):23–27 (in Chinese).

    汪闻韶. 1994. 土工地震减灾工程中的一个重要参量:剪切波速[J]. 水利学报,25(3):80–84. doi: 10.3321/j.issn:0559-9350.1994.03.012

    Wang W S. 1994. An important parameter in geotechnical engineering for earthquake disaster mitigation:Shear wave velocity[J]. Shuili Xuebao,25(3):80–84 (in Chinese).

    吴志坚,王兰民,陈拓,王平. 2012. 汶川地震远场黄土场地地震动场地放大效应机制研究[J]. 岩土力学,33(12):3736–3740.

    Wu Z J,Wang L M,Chen T,Wang P. 2012. Study of mechanism of site amplification effects on ground motion in far field loess during Wenchuan MS8.0 earthquake[J]. Rock and Soil Mechanics,33(12):3736–3740 (in Chinese).

    夏唐代,颜可珍,石中明,薛跃东. 2004. 地基剪切波速与抗剪强度的关系研究[J]. 岩石力学与工程学报,23(增刊):4435–4437.

    Xia T D,Yan K Z,Shi Z M,Xue Y D. 2004. Study on relationship of shear wave velocity and shear strength of foundation[J]. Chinese Journal of Rock Mechanics and Engineering,23(S1):4435–4437 (in Chinese).

    谢礼立,周雍年,胡成祥,于海英. 1990. 地震动反应谱的长周期特性[J]. 地震工程与工程振动,10(1):1–20.

    Xie L L,Zhou Y N,Hu C X,Yu H Y. 1990. Characteristics of response spectra of long-period earthquake ground motion[J]. Earthquake Engineering and Engineering Vibration,10(1):1–20 (in Chinese).

    徐扬,赵晋泉,李小军,马秀芳,赵向佳. 2008. 基于汶川地震远场强震动记录的厚覆盖土层对长周期地震动影响分析[J]. 震灾防御技术,3(4):345–351. doi: 10.3969/j.issn.1673-5722.2008.04.003

    Xu Y,Zhao J Q,Li X J,Ma X F,Zhao X J. 2008. Study on effect of thick sedimentary layers on long-period ground motion from far-field strong motion records of Wenchuan earthquake[J]. Technology for Earthquake Disaster Prevention,3(4):345–351 (in Chinese).

    中国工程建设标准化协会. 2004. CECS160-2004 建筑工程抗震性态设计通则(试用)[S]. 北京: 中国计划出版社: 209−210.

    China Association for Engineering Construction Standardization. 2004. CECS160-2004 General Rule for Performance-Based Seismic Design of Buildings[S]. Beijing: China Planning Press: 209−210 (in Chinese).

    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 2010. GB50011-2010 建筑抗震设计规范 (2016版)[S]. 北京: 中国建筑工业出版社: 8−21.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. 2010. GB50011-2010 Code for Seismic Design of Buildings (2016 Version)[S]. Beijing: China Architecture & Building Press: 8−21 (in Chinese).

    中华人民共和国住房和城乡建设部. 2012. GB50009-2012 建筑结构荷载规范[S]. 北京: 中国建筑工业出版社: 154.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. 2012. GB50009-2012 Load Code for the Design of Building Structures[S]: Beijing: China Architecture & Building Press: 154 (in Chinese).

    中国人民共和国住房和城乡建设部. 2019. GB50352-2019 民用建筑设计统一标准[S]. 北京: 中国建筑工业出版社: 6.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. 2019. GB50352-2019 Uinform standard for Design of Civil Building[S]. Beijing: China Architecture & Building Press: 6 (in Chinese).

    中华人民共和国住房和城乡建设部, 中华人民共和国国家发展和改革委员会. 2020. 住房和城乡建设部 国家发展改革委关于进一步加强城市与建筑风貌管理的通知( 建科〔2020〕38号)[Z/OL].[2020–17–28]. http://www.mohurd.gov.cn/jzjnykj/202004/t20200429_245239.html.

    The Ministry of Housing and Urban-Rural Development of the People’s Republic of China, the National Development and Reform Commission. 2020. Circular of the Ministry of Housing and urban-rural development and the National Development and Reform Commission of the People’s Republic of China on further strengthening the management of urban and architectural features (No.38[2020] of the Construction Department) [Z/OL]. [2020-17-28]. http://www.mohurd.gov.cn/jzjnykj/202004/t20200429_245239.html (in Chinese).

    周锡元,樊水荣,苏经宇. 1999. 场地分类和设计反应谱的特征周期:《建筑抗震设计规范》修订简介(八)[J]. 工程抗震,(4):3–8.

    Zhou X Y,Fan S R,Su J Y. 1999. Site classification and the corresponding characteristic periods of design spectra[J]. Earthquake Resistant Engineering,(4):3–8 (in Chinese).

    Beck J L,Hall J F. 1986. Factors contributing to the catastrophe in Mexico City during the earthquake of September 19,1985[J]. Geophys Res Lett,13(6):593–596. doi: 10.1029/GL013i006p00593

    Boore D B. 2001. Comparisons of ground motions from the 1999 Chi-Chi earthquake with empirical predictions largely based on data from California[J]. Bull Seismol Soc Am,91(5):1212–1217.

    Building Seismic Safeby Council. 2003. NEHRP Recommended Provisions and Commentary for Seismic Regulations for New Buildings and Other Structures FEMA, 450[S].Washington, D. C.: Federal Emengency Management Agency: 76–180.

    Drimmel J. 1984. A theoretical basis for macroseismic scales and some implications for practical work. Eng Geol, 20(1): 99−104.

    European Committee for Standardization. 2004. BS EN 1998-1: 2004 Eurocode 8: Design of structures for earthquake resistance-Part 1: General rules, seismic actions and rules for buildings[S]. Brussels, Belgium: Commission of the European Communities: 33–34.

    Furumura T,Koketsu K,Wen K L. 2002. Parallel PSM/FDM hybrid simulation of ground motions from the 1999 Chi-Chi,Taiwan,earthquake[J]. Pure Appl Geophys,159(9):2133–2146. doi: 10.1007/s00024-002-8727-6

    Japan Road Association (JRA). 2002. Design Specifications of Highway Bridges, Part V: Seismic Design[S]. Tokyo: 48−49.

    Li X J,Zhou Z H,Yu H Y,Wen R Z,Lu D W,Huang M,Zhou Y N,Cu J W. 2008. Strong motion observations and recordings from the great Wenchuan earthquake[J]. Earthq Eng Eng Vib,7(3):235–246. doi: 10.1007/s11803-008-0892-x

    Pitilakis K,Riga E,Anastasiadis A. 2013. New code site classification,amplification factors and normalized response spectra based on a worldwide ground-motion database[J]. Bull Earthq Eng,11(4):925–966. doi: 10.1007/s10518-013-9429-4

    Wen R Z,Ren Y F,Shi D C. 2011. Improved HVSR site classification method for free-field strong motion stations validated with Wenchuan aftershock recordings[J]. Earthquake Engineering &Engineering Vibration,10(3):325–337.

    Zhao J X. 2006. An empirical site-classification method for strong-motion stations in Japan using H/V response spectral ratio[J]. Bull Seismol Soc Am,96(3):914–925. doi: 10.1785/0120050124

    Zhao J X,Xu H. 2013. A comparison of vS30 and site period as site-effect parameters in response spectral ground-motion prediction equations[J]. Bull Seismol Soc Am,103(1):1–18. doi: 10.1785/0120110251

图(1)  /  表(4)
计量
  • 文章访问数:  476
  • HTML全文浏览量:  163
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-09
  • 修回日期:  2020-12-02
  • 网络出版日期:  2021-11-22
  • 发布日期:  2021-12-30

目录

    /

    返回文章
    返回