Empirical relationship of stochastic uncertainty of source parameters in relative local area
-
摘要: 在进行未来破坏性地震的强地面运动数值模拟时,震源参数选取的准确性对地震动预测的结果影响很大。震源参数的确定存在很多不确定性因素,既包含随机的不确定性因素,又包含认知的不确定性因素。本文在大量地震事件及文献调研的基础上,运用统计学方法对具备随机不确定性特征的震源参数进行统计研究,以震源参数经验公式的形态建立解释其随机性和不确定性的数学模型。为了研究局部地区震源参数的定标关系特征,获得更加适用于局部地震密集区域,尤其是包含中国大陆地区在内的局部区域的震源参数的经验关系,本文从GCMT地震目录中选取了1 700多个MW≥5.5的地震事件,运用统计学方法研究地震密集地区的震源参数经验关系,包括震级、地震矩、破裂面积等,增加了相对较大的局部范围内凹凸体的地震样本数量,从统计学角度计算更加适合局部区域的震源参数的经验关系。统计结果表明:局部区域震例获得的震源参数的经验关系与不限区域震例获得的经验关系存在差异,尤其是涉及到断层破裂面积、凹凸体相关参数时差异较大,局部区域内震例获得的震源参数的经验关系将更具有代表性。应用本文获得的相对局部区域的经验公式计算未来破坏性地震的强地面运动所需的震源参数时,获得的地震动预测结果将更能体现目标区域真实的地震动特征,进而提高地震动预测结果的可靠性。Abstract: In the numerical simulation of strong ground motion of future destructive earthquakes, the accuracy of source parameters selection has a great impact on the results of ground motion prediction. There are many uncertain factors in determining source parameters, including both random and cognitive uncertainties. Based on a large number of seismic events and literature researches, this paper focuses on statistical analysis of source parameters with random uncertainty characteristics by using statistical methods. Through regression analysis, a mathematical model is established to explain the randomness and uncertainty of source parameters in the form of empirical formula. In order to study the scaling relation characteristics of source parameters in local regions, we get more empirical relations which are more suitable for local seismic densely regions, especially those of the local regions including the Chinese mainland. This paper more than 1 700 seismic events with MW≥5.5 are selected from the global CMT catalogue. The empirical relationship of source parameters in earthquake intensive areas is studied by using statistical methods, including focal depth, magnitude, seismic moment, rupture area, etc. The number of seismic samples of asperity in a relatively large local range is increased, so as to obtain more suitable experience for local areas to calculate source parameters from the perspective of statistics relationship. The statistical results show that there are differences between the empirical relationship of source parameters obtained from local earthquake cases and those obtained from unlimited regional cases, especially when it comes to fault rupture area and asperity related parameters. The empirical relationship of source parameters obtained from local earthquake cases is more representative. When using the empirical formula obtained in this paper to calculate the focal parameters required for the strong ground motion of future destructive earthquakes, the ground motion prediction results will better reflect the real ground motion characteristics of the target area. It could improve the reliability of the ground motion prediction results.
-
-
图 1 全球矩心矩张量地震分布.区域1主要是中国大陆西部地区、南亚、中亚等;区域2主要是中国台湾地区、菲律宾、东海及黄海大陆架等;区域3主要是日本及延伸的大陆架地区等
Figure 1. Distribution of Global CMT earthquakes. Region 1 contains most of China,South Asia and Middle Asia; Region 2 contains China Taiwan region,Philippines,East China and Yellow Sea continental shelf; Region 3 mainly contains Japan and its extended continental shelf
图 4 凹凸体相关震源参数经验关系统计
(a) 凹凸体面积Aa与地震矩Ma的经验关系;(b) 凹凸体面积Aa与断层破裂面积A的经验关系;(c) 凹凸体面积Aa与面波震级MS的经验关系;(d) 凹凸体长度La与断层长度L的经验关系
Figure 4. The empirical relationship statistical of asperity
(a) The relationship between asperity area Aa and seismic moment Ma;(b) The relationship between asperity area Aa and fault area A;(c) The relationship between asperity area Aa and magnitude MS;(d) The relationship between asperity length La and fault length L
图 5 本文部分震源参数经验关系与前人统计震源参数经验关系对比
(a) 地震矩与面波震级经验关系;(b) 地震矩与断层破裂面积经验关系;(c) 地震矩与矩震级经验关系;(d) 凹凸体面积与地震矩之间的关系;(e) 地震矩与平均滑动位移之间的经验关系
Figure 5. The source parameters relationship comparing between predecessors and this paper
(a) The relationship between seismic moment and MS magnitude;(b) The relationship between seismic moment and fault rupture area;(c) The relationship between magnitude MW and seismic moment;(d) The relationship between seismic moment and asperity area;(e) The empirical relationship between seismic moment and average sliding displacement
表 1 各局部区域相关信息
Table 1 Information of different local regions
区域 经纬度范围 事件个数 MW 1 (63°E—110°E),(2.51°N—57.53°N) 438 5.5—7.9 2 (115°E—135°E),(2.51°N—45°N) 526 5.5—7.7 3 (135°E—149.94°E),(2.51°N—57.53°N) 785 5.5—9.1 表 2 各区域内平均震源深度及出现频率较高的震源深度
Table 2 The average source depth of different local regions and more occurrences source depths
区域 平均震源深度/km 众数深度1 众数深度2 众数深度3 众数深度4 1 18.749 15 km (157) 12 km (54) 10 km (32) 33 km (21) 2 23.578 15 km (132) 12 km (28) 24 km (11) 10 km (8) 3 23.806 15 km (186) 12 km (82) 20 km (15) 16 km (12) 注:众数深度表示出现该震源深度的频率。例如15 km (157),表明震源深度为15 km的震例有157个。 表 3 各区域面波震级与地震矩经验关系参数
Table 3 Parameters of empirical relationship between MS and M0 in different regions
区域 斜率a 标准差 截距b 标准差 皮尔逊相关系数r 校正决定系数 1 1.057 0.018 18.787 0.105 0.94 0.89 2 1.066 0.019 18.843 0.113 0.92 0.85 3 1.156 0.019 18.305 0.112 0.91 0.82 全区域 1.076 0.010 18.753 0.058 0.91 0.84 表 4 相对局部区域地震记录震源参数信息
Table 4 The information of source parameters in relative local region
位置 地震 MW 地震矩M0/(N·m) 破裂面积/km2 平均滑动量/cm 日本 新泻 7.59 2.72×1020 1 800 503.70 中国 松潘 6.37 4.03×1018 216 62.19 伊朗 塔巴斯戈尔山 7.39 1.37×1020 1 628 280.51 中国台湾 花莲 6.37 4.03×1018 480 27.99 中国台湾 花莲 7.33 1.11×1020 1 248 296.47 日本 秋田 6.13 1.76×1018 154 38.10 日本 瓦卡萨湾 6.28 2.95×1018 160 61.46 日本 岐阜 6.34 3.63×1018 180 67.22 中国 唐山 7.46 1.74×1020 1 680 345.24 伊朗 鲍勃探戈 5.89 7.67×1017 168 15.22 日本 伊豆大岛 6.71 1.30×1019 500 86.67 日本 长崎西武 6.24 2.57×1018 96 89.24 中国 澜沧—耿马 7.13 5.56×1019 1 600 115.83 日本 伊豆奥基 6.54 7.24×1018 198 121.89 伊朗 达什—巴亚兹 7.23 7.85×1019 2 200 118.94 中国 炉霍 7.47 1.80×1020 1 430 419.58 中国 海城gnehciah 6.99 3.43×1019 900 127.04 日本 伊豆河东 6.39 4.32×1018 140 102.86 中国 道孚 6.64 1.02×1019 690 49.28 日本 伊豆大岛 6.37 4.03×1018 228 58.92 菲律宾 吕宋岛 7.74 4.57×1020 2 400 634.72 日本 大分县 6.32 3.39×1018 100 113.00 中国 松潘 6.71 1.30×1019 360 120.37 中国 松潘 6.58 8.32×1018 242 114.60 日本 大町 5.51 2.07×1017 28 24.64 日本 瓦茨 5.90 6.00×1017 144 13.89 中国台湾 集集 7.60 2.70×1020 3 432 262.24 日本 格约 6.80 3.30×1019 630 174.60 日本 神户 6.90 2.40×1019 1 200 66.67 日本 鹿儿岛 6.10 1.20×1025 216 18.52 日本 山口 5.80 6.00×1024 224 8.93 土耳其 Kocach 7.40 1.52×1027 3 282 154.36 日本 鸟取 6.80 1.90×1026 693 91.39 注:本表中各地震样本的震源参数信息参考来源为:① 王海云(2004)博士论文第二章P23—26的表2.1-地震震源参数表;② Wells和Coppersmith (1994)data base节中的Table1. 表 5 地震矩M0与平均滑动位移
$\overline D$ 、破裂面积A的经验关系拟合指标Table 5 The empirical relationship parameters between M0 and average sliding displacement
$\overline D$ or rupture area A经验关系 斜率a标准差 截距b标准差 皮尔逊相关系数r 校正决定系数 M0 & A 0.04 0.96 0.93 0.85 M0 & $\overline D$ 0.04 1.04 0.90 0.80 表 6 凹凸体相关震源参数信息汇总
Table 6 The information summary of asperity parameters
序号 位置 地震 东经
/°北纬
/°MS 地震矩
/(N·m)破裂长度
/km破裂面积
/km2凹凸体长度
/km凹凸体面积
/km21 日本 浓尾 136.60 35.60 8.0 1.50×1020 80 1 200 16.23 243.45 2 中国 海原 105.70 36.70 8.5 3.00×1021 220 4 400 150.43 3 008.62 3 日本 北伊豆地震 138.98 35.04 7.3 3.78×1019 35 420 1.15 13.79 4 中国 可可托海 89.90 46.74 7.9 8.24×1020 180 3 600 86.26 1 725.17 5 中国 昌马 97.00 39.70 7.7 6.30×1020 148 2 220 72.77 1 091.52 6 日本 鸟取县 134.18 35.47 7.4 6.65×1018 33 429 22.80 296.37 7 中国 当雄 91.40 31.10 8.0 4.96×1020 200 2 000 28.10 280.99 8 中国 当雄 91.50 31.00 7.5 6.89×1019 58 1 044 31.85 573.28 9 蒙古国 戈壁阿尔泰省 99.20 45.20 8.0 1.22×1021 300 6 000 29.90 597.96 10 中国 通海 102.60 24.10 7.7 8.50×1019 75 1 125 1.72 25.81 11 中国 炉霍 100.40 31.50 7.6 1.80×1020 90 1 170 60.71 789.28 12 中国 道孚 101.35 30.86 6.8 7.28×1018 55 715 38.13 495.74 13 伊朗 科里 59.58 34.45 7.1 4.61×1019 75 1 650 51.97 1143.24 14 中国 澜沧-耿马 99.68 23.00 7.3 3.66×1019 80 1 600 44.99 899.83 15 中国 云南耿马 99.70 22.80 7.2 5.50×1019 46 920 17.73 354.63 16 中国 昆仑山 92.91 35.80 8.0 5.90×1020 426 12 780 273.99 8 219.59 17 中国 汶川 104.10 31.44 8.0 8.97×1020 227 7 029 79.11 1 186.62 18 日本 神户 134.99 34.78 6.6 2.43×1019 58 928 67.85 1 119.61 19 伊朗 塔巴斯戈尔山 57.02 33.37 7.4 5.80×1019 92 4 048 20.00 300.00 20 中国 玉树 96.82 33.10 7.1 2.53×1019 73 1 733 43.34 156.71 21 中国 芦山 103.00 30.30 7.0 1.02×1019 65 2 015 * 80.00 22 中国 唐山 118.18 39.63 7.9 2.77×1020 115 3 300 * 237.00 23 中国 伽师 76.93 39.61 6.1 2.06×1018 13 130 * 26.94 注:“*”表示该参数暂时缺乏.震源参数参考文献来源为王椿镛等(1978),唐荣昌等(1980),王凯等(1991),国家地震局兰州地震研究所,胡方秋和刘景元(1994),马淑田等(1997),Somerville等(1999),王海云(2004,2010),王海云和陶夏新(2005),吴迪(2008),李启成(2010),张军龙等(2010),李正芳(2013,2014),温瑞智等(2013),药晓东和章文波(2015),药晓东等(2015)。 表 7 凹凸体相关震源参数的经验关系拟合指标
Table 7 The empirical relationship fitting parameters about asperity
经验关系 斜率a 截距b 皮尔逊相关系数r 校正决定系数 凹凸体地震矩Ma与凹凸体面积Aa 0.415 1.515 0.655 0.399 断层面积A与凹凸体面积Aa 0.979 −0.556 0.655 0.402 断层长度L与凹凸体长度La 0.930 −0.145 0.817 0.644 面波震级MS与凹凸体面积Aa 0.572 −1.650 0.656 0.397 表 8 主要震源参数经验关系汇总
Table 8 The summary of empirical relationship for main source parameters
经验关系 统计公式 皮尔逊相关系数r 区域1地震矩M0与面波震级MS lgM0=1.057MS+18.787 0.94 区域2地震矩M0与面波震级MS lgM0=1.066MS+18.843 0.92 区域3地震矩M0与面波震级MS lgM0=1.156MS+18.305 0.91 全区域地震矩M0与面波震级MS lgM0= 1.076MS+18.754 0.91 地震矩M0与断层破裂面积A lgA= 0.542lgM0-4.388 0.93 地震矩M0与平均滑动位移$\overline{ {D} }$ lg$\overline { {D} }$= 0.46lgM0-10 0.90 凹凸体地震矩Ma与凹凸体面积Aa lgMa= 0.415lgAa+1.515 0.66 断层破裂面积A与凹凸体面积Aa lgAa= 0.979lgA-0.556 0.66 断层长度L与凹凸体长度La lgLa= 0.93lgL-0.145 0.66 面波震级MS与凹凸体面积Aa lgAa= 0.572lgMS-1.65 0.82 -
车自成, 罗金海, 刘良. 2011. 中国及其邻区区域大地构造学[M]. 2版. 北京: 科学出版社: 1–20. Che Z C, Luo J H, Liu L. 2011. Introduction to the New Regional Geotectonics of China and Its Adjacent Area[M]. 2nd ed. Beijing: Science Press: 1–20 (in Chinese).
陈运泰 顾浩鼎. 2012.震源理论基础[M]. 北京: 中国科学院研究生院: 175–185. Chen Y T, Gu H D. 2012. The Basis Theory of Seismic Source[M]. Beijing: Graduate University of Chinese Academy of Sciences: 175–185 (in Chinese).
程佳. 2017. 川滇地区地震危险性预测模型[D]. 北京: 中国地震局地质研究所: 1–10. Cheng J. 2017. Seismic Hazard Modeling of the Sichuan-Yunnan Regions[D]. Beijing: Institute of Geology, China Earthquake Administration: 1–10 (in Chinese).
国家地震局兰州地震研究所. 1992. 昌马活动断裂带[M]. 北京: 地震出版社: 1–20. China Earthquake Administration Lanzhou Institute of Seismology. 1992. Changma Active Fault Belt[M]. Beijing: Seismological Press (in Chinese).
国家地震局《一九七六年唐山地震》编辑组. 1982. 一九七六年唐山地震[M]. 北京: 地震出版社: 1–20. Editorial Group of 1976 Tangshan Earthquake, State Seismological Bureau. 1982. The Mammoth Tangshan Earthquake of 1976[M]. Beijing: Seismological Press: 1–20 (in Chinese).
郭履灿,庞明虎. 1981. 面波震级和它的台基校正值[J]. 地震学报,3(3):312–320. Guo L C,Pang M H. 1981. Surface-wave magnitude of earthquakes and its station correction[J]. Acta Seismologica Sinica,3(3):312–320 (in Chinese).
胡方秋,刘景元. 1994. 可可托海—阿克塞测深大剖面北段深部构造与地震[J]. 内陆地震,8(2):152–158. Hu F Q,Liu J Y. 1994. Deep-seated structures on the Northern part of Koktokay-Aksay deep sounding profile and its correlation with earthquake[J]. Inland Earthquake,8(2):152–158 (in Chinese).
黄汲清. 1980. 中国大地构造及其演化[M]. 北京: 科学出版社: 1–20. Huang J Q. 1980. Geotectonic Evolution of China[M]. Beijing: Science Press: 1–20 (in Chinese).
李启成. 2010. 经验格林函数方法模拟地震动研究[D]. 哈尔滨: 中国地震局工程力学研究所: 1–10. Li Q C. 2010. Research on Ground Motion Simulation with Empirical Green’s Function Method[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 1–10 (in Chinese).
李四光. 1973. 地质力学概论[M]. 北京: 科学出版社: 1–20. Li S G. 1973. Introduction to Geomechanics[M]. Beijing: Science Press: 1–20 (in Chinese).
李正芳. 2013. 强震破裂面上的不均匀体及其在地震危险性分析中的应用研究[D]. 北京: 中国地震局地质研究所: 33–35. Li Z F. 2013. A Study on Inhomogeneous Bodies of Strong Earthquake Rupture Plane and its Application to Seismic Hazard Analysis[D]. Beijing: China Earthquake Administration: 33–35 (in Chinese).
李正芳. 2014. 强震破裂面上的不均匀体及其在地震危险性分析中的应用研究[J]. 国际地震动态,(9):42–45. doi: 10.3969/j.issn.0235-4975.2014.09.012 Li Z F. 2014. A study on inhomogeneous bodies of strong earthquake rupture plane and its application to seismic hazard analysis[J]. Recent Developments in World Seismology,(9):42–45 (in Chinese).
马淑田,姚振兴,纪晨. 1997. 1996年3月19日新疆伽师MS6.9地震的震源机制以及相关问题研究[J]. 地球物理学报,40(6):782–790. doi: 10.3321/j.issn:0001-5733.1997.06.007 Ma S T,Yao Z X,Ji C. 1997. The focal mechanism solution for March 19,1996 MS6.9 earthquake in Xin-jiang,Jia-shi region and related problems[J]. Acta Geophysica Sinica,40(6):782–790 (in Chinese).
潘华. 2000. 概率地震危险性分析中参数不确定性研究[D]. 北京: 中国地震局地球物理研究所: 10–20. Pan H. 2000. Study on Uncertainties in the Parameters of PSHA[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 10–20 (in Chinese).
任纪舜,王作勋,陈炳蔚,姜春发,牛宝贵,李锦轶,谢广连,和政军,刘志刚. 1997. 新一代中国大地构造图[J]. 中国区域地质,16(3):225–230,248. Ren J S,Wang Z X,Chen B W,Jiang C F,Niu B G,Li J T,Xie G L,He Z J,Liu Z G. 1997. A new generation tectonic map of China[J]. Regional Geology in China,16(3):225–230,248 (in Chinese).
唐荣昌,李天祒,李介成. 1980. 当雄7.5级地震地质构造背景及其成因的初步认识[J]. 地震研究,(1):87–96. Tang R C,Li T S,Li J C. 1980. Preliminary understanding of geological tectonic background and genesis of the Dangxiong MS7.5 earthquake[J]. Journal of Seismological Research,(1):87–96 (in Chinese).
王椿镛,朱成男,刘玉权. 1978. 用地形变资料测定通海地震的地震断层参数[J]. 地球物理学报,21(3):191–198. Wang C Y,Zhu C N,Liu Y Q. 1978. Determination of earthquake fault parameter for the Tonghai earthquake from ground deformation data[J]. Acta Geophysica Sinica,21(3):191–198 (in Chinese).
王海云. 2004. 近场强地震动预测的有限断层震源模型[D]. 哈尔滨: 中国地震局工程力学研究所: 23–26. Wang H Y. 2004. Finite Fault Source Model for Predicting Near-Field Strong Ground Motion[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 23–26 (in Chinese).
王海云,陶夏新. 2005. 近场强地震动预测中浅源地震的asperity模型特征[J]. 哈尔滨工业大学学报,37(11):1533–1539. doi: 10.3321/j.issn:0367-6234.2005.11.022 Wang H Y,Tao X X. 2005. Characterizing a shallow earthquake asperity model for predicting near field strong ground motion[J]. Journal of Harbin Institute of Technology,37(11):1533–1539 (in Chinese).
王海云. 2010. 2010年4月14日玉树MS7.1地震加速度场预测[J]. 地球物理学报,53(10):2345–2354. doi: 10.3969/j.issn.0001-5733.2010.10.008 Wang H Y. 2010. Prediction of acceleration field of the 14 April 2010 Yushu earthquake[J]. Chinese Journal of Geophysics,53(10):2345–2354 (in Chinese).
王凯,高莉萍,姚振兴,张受生. 1991. 澜沧—耿马地震的震源机制研究[J]. 地球物理学报,34(5):569–580. doi: 10.3321/j.issn:0001-5733.1991.05.005 Wang K,Gao L P,Yao Z X,Zhang S S. 1991. Source mechanism of the 1988 Lancang-Gengma China earthquake[J]. Acta Geophysica Sinica,34(5):569–580 (in Chinese).
温瑞智,任叶飞,齐文浩,卢滔,杨振宇,单振东,汪云龙. 2013. 2013年4月20日芦山地震最大加速度记录分析[J]. 西南交通大学学报,48(5):783–791. doi: 10.3969/j.issn.0258-2724.2013.05.001 Wen R Z,Ren Y F,Qi W H,Lu T,Yang Z Y,Shan Z D,Wang Y L. 2013. Maximum acceleration recording from Lushan earthquake on April 20,2013[J]. Journal of Southwest Jiaotong University,48(5):783–791 (in Chinese).
吴迪. 2008. 基于凹凸体模型的地震动半经验合成研究[D]. 上海: 同济大学: 19–30. Wu D. 2008. The Semi-empirical Synthesis of Ground Motions Basing on Asperity Model[D]. Shanghai: Tongji University: 19–30 (in Chinese).
药晓东,章文波. 2015. 2013年四川芦山MS7.0地震强地面运动模拟[J]. 地震学报,37(4):599–616. doi: 10.11939/jass.2015.04.007 Yao X D,Zhang W B. 2015. Strong ground motion simulation for the 2013 MS7.0 Lushan,China,earthquake[J]. Acta Seismologica Sinica,37(4):599–616 (in Chinese).
药晓东,章文波,于湘伟. 2015. 2008年汶川8.0级大地震近场强地面运动的模拟[J]. 地球物理学报,58(3):886–903. doi: 10.6038/cjg20150317 Yao X D,Zhang W B,Yu X W. 2015. Simulation of near-field strong ground motion caused by the 2008 MS8.0 Wenchuan earthquake[J]. Chinese Journal of Geophysics,58(3):886–903 (in Chinese).
张军龙,陈长云,胡朝忠,杨攀新,熊仁伟,李智敏,任金卫. 2010. 玉树MS7.1地震地表破裂带及其同震位移分布[J]. 地震,30(3):1–12. doi: 10.3969/j.issn.1000-3274.2010.03.001 Zhang J L,Chen C Y,Hu C Z,Yang P X,Xiong R W,Li Z M,Ren J W. 2010. Surface rupture and coseismic displacement of the Yushu MS7.1 earthquake,China[J]. Earthquake,30(3):1–12 (in Chinese).
张齐. 2016. 地震动衰减关系的区域性差异研究[D]. 哈尔滨: 中国地震局工程力学研究所: 1–10. Zhang Q. 2016. Study on Regional Differentiation of Ground Motion Attenuation Relationship[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 1–10 (in Chinese).
笠原庆一. 1992.防灾工程学中的地震学[M]. 北京: 地震出版社: 1–20. Li Y Q Y. 1992. Seismology in Disaster Prevention Engineering[M]. Beijing: Earthquake Press: 1–20 (in Chinese).
Abe K. 1975. Reliable estimation of the seismic moment of large earthquakes[J]. J Phys Earth,23(4):381–390. doi: 10.4294/jpe1952.23.381
Chen S Z,Atkinson G M. 2002. Global comparisons of earthquake source spectra[J]. Bull Seismol Soc Am,92(3):885–895. doi: 10.1785/0120010152
Chiou B,Youngs R,Abrahamson N,Addo K. 2010. Ground-motion attenuation model for small-to-moderate shallow crustal earthquakes in California and its implications on regionalization of ground-motion prediction models[J]. Earthq Spectra,26(4):907–926. doi: 10.1193/1.3479930
Douglas J. 2004. An investigation of analysis of variance as a tool for exploring regional differences in strong ground motions[J]. J Seismol,8(4):485–496. doi: 10.1007/s10950-004-3094-7
Duda S J,Kaiser D. 1989. Spectral magnitudes,magnitude spectra and earthquake quantification; The stability issue of the corner period and of the maximum magnitude for a given earthquake[J]. Tectonophysics,166(1/3):205–211,215–219.
Gutenberg B. 1945. Magnitude determination for deep-focus earthquakes[J]. Bull Seismol Soc Am,35(3):117–130. doi: 10.1785/BSSA0350030117
Hanks T C,Kanamori H. 1979. A moment magnitude scale[J]. J Geophys Res,84(B5):2348–2350. doi: 10.1029/JB084iB05p02348
Hanks T C,Johnston A C. 1992. Common features of the excitation and propagation of strong ground motion for North American earthquakes[J]. Bull Seismol Soc Am,82(B5):1–23.
Kanamori H. 1977. The energy release in great earthquakes[J]. J Geophys Res,82(20):2981–2987. doi: 10.1029/JB082i020p02981
Mahani A B,Atkinson G M. 2013. Regional differences in ground-motion amplitudes of small-to-moderate earthquakes across North America[J]. Bull Seismol Soc Am,103(5):2604–2620. doi: 10.1785/0120120350
Sato R. 1979. Theoretical basis on relationships between focal parameters and earthquake magnitude[J]. J Phys Earth,27(5):353–372. doi: 10.4294/jpe1952.27.353
Somerville P,Irikura K,Graves R,Sawada S,Wald D,Abrahamson N,Iwasaki Y,Kagawa T,Smith N,Kowada A. 1999. Characterizing crustal earthquake slip models for the prediction of strong ground motion[J]. Seismol Res Lett,70(1):59–80. doi: 10.1785/gssrl.70.1.59
Wells D L,Coppersmith K J. 1994. New empirical relationships among magnitude,rupture length,rupture width,rupture area,and surface displacement[J]. Bull Seismol Soc Am,84(4):974–1002.
Miyake H,Iwata T,Irikura K. 2003. Source characterization for broadband ground-motion simulation:Kinematic heterogeneous source model and strong motion generation area[J]. Bull Seismol Soc Am,93(6):2531–2545. doi: 10.1785/0120020183
Slemmons D B, Bodin P, Zhang X. 1989. Determination of Earthquake Size From Surface Faulting Events[D]. Guangzhou: Proceedings of International Seminar on Seismic Zonation: 157–169.
-
期刊类型引用(3)
1. Zongchao Li,Zhiwei Ji,Jize Sun,Hiroe Miyake,Yanna Zhao,Hongjun Si,Mengtan Gao,Yi Ding. High-Probability Ground Motion Simulation in Maduo County for the Maduo M_S7.4 Earthquake in 2021:A Possible Supershear Earthquake. Journal of Earth Science. 2025(02): 781-800 . 必应学术
2. 赵扬锋,樊艺,荆刚,刘玉春,王学滨. 断层黏滑失稳过程声发射特征试验研究. 岩石力学与工程学报. 2022(S2): 3101-3113 . 百度学术
3. 孟增,汪栋梁,郝鹏. 面向概率-区间混合可靠性分析的自适应共轭控制方法与应用. 应用力学学报. 2022(06): 1076-1085 . 百度学术
其他类型引用(2)